1
|
Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells. Int J Pharm 2022; 628:122341. [DOI: 10.1016/j.ijpharm.2022.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
2
|
Salem SM, Hamed AR, Fayez AG, Nour Eldeen G. Non-target Genes Regulate miRNAs-Mediated Migration Steering of Colorectal Carcinoma. Pathol Oncol Res 2018; 25:559-566. [PMID: 30361904 DOI: 10.1007/s12253-018-0502-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) trigger a two-layer regulatory network directly or through transcription factors and their co-regulators. Unlike miR-375, the role of miR-145 and miR-224 in inhibiting or driving cancer cell migration is controversial. This study is a step towards addressing the potential of miR-375, miR-145 and miR-224 expression modulation to inhibit colorectal carcinoma (CRC) cells migration in vitro through regulation of non-target genes VEGFA, TGFβ1, IGF1, CD105 and CD44. Transwell migration assay results revealed a significant subdue of migration ability of cells transfected with miR-375 and miR-145 mimics and miR-224 inhibitor. Real time PCR data showed that expression of VEGFA, TGFβ1, IGF1, CD105 and CD44 was downregulated as a consequence of exogenous re-expression of miR-375 and inhibition of miR-224. On the other hand, ectopic expression of miR-145 did not affect VEGFA, TGFβ1 and CD44 expression, while it elevated CD105 and suppressed IGF1 expression. MAP4K4, a predicted target of miR-145, was validated as a target that could play a role in miR-145-mediated regulation of migration. At mRNA level, no change was observed in expression of MAP4K4 in cells with restored expression of miR-145, while western blotting analysis revealed a 25% reduction of protein level. By applying luciferase reporter assay, a significant decrease in luciferase activity was observed, supporting that miR-145 directly target 3' UTR of MAP4K4. The study highlighted the involvement of non-target genes VEGFA, TGFβ1, IGF1, CD105 and CD44 in mediating anti- and pro-migratory effect of miR-375 and miR-224, respectively, and validated MAP4K4 as a direct target of anti-migratory miR-145.
Collapse
Affiliation(s)
- Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Ahmed R Hamed
- Phytochemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt.,Biology Unit - Central Laboratory of Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Alaaeldin G Fayez
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Ghada Nour Eldeen
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt.,Stem Cell Research Unit, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
3
|
Martinvalet D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis 2018; 9:336. [PMID: 29491398 PMCID: PMC5832423 DOI: 10.1038/s41419-017-0237-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity.
Collapse
Affiliation(s)
- Denis Martinvalet
- Department of Cell Physiology and Metabolism, Geneva Medical School, 1211, Geneva, Switzerland.
| |
Collapse
|
4
|
Liu J, Liu Y, Xie T, Luo L, Xu C, Gao Q, Shen L, Wan F, Lei T, Ye F. Radiation-induced G2/M arrest rarely occurred in glioblastoma stem-like cells. Int J Radiat Biol 2018; 94:394-402. [PMID: 29463172 DOI: 10.1080/09553002.2018.1440094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE The purpose of this study is to systematically study the cell-cycle alterations of glioblastoma stem-like cells (GSLCs) after irradiation, possibly enriching the mechanisms of radioresistance of GSLCs. MATERIALS AND METHODS GSLCs were enriched and identified, and then the radioresistance of GSLCs was validated by analyzing cell survival, cell proliferation, and radiation-induced apoptosis. The discrepancy of the cell-cycle distribution and expression of cell-cycle-related proteins between GSLCs and glioblastoma differentiated cells (GDCs) after irradiation was completely analyzed. RESULTS The survival fractions and the cell viabilities of GSLCs were significantly higher than those of GDCs after irradiation. Radiation-induced apoptosis was less prominent in GSLCs than in GDCs. After irradiation with high-dose X-rays, the percentages of GDCs in G2/M phase was evidently increased. However, radiation-induced G2/M arrest occurred less frequently in GSLCs, but S-phase arrest occurred in GSLCs after irradiation with 8 Gy. Further mechanistic studies showed that the expressions levels of Cdc25c, Cdc2, and CyclinB1 in GSLCs were not apparently changed after irradiation, while those of p-ATM and p-Chk1 were sharply increased after irradiation in GSLCs. The basal level of Cdc25c expression in GSLCs was much higher than that in GDCs. CONCLUSIONS We explored the cell-cycle alterations and cell-cycle-related proteins expression levels in GSLCs after irradiation, providing a novel mechanism of radioresistance of GSLCs.
Collapse
Affiliation(s)
- Junfeng Liu
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Yu Liu
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Tao Xie
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Longjun Luo
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Cheng Xu
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Qinglei Gao
- b Cancer Biology Research Center (Key Laboratory of the Ministry of Education) , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Lu Shen
- c Department of Obstetrics and Gynecology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Feng Wan
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Ting Lei
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Fei Ye
- a Department of Neurosurgery , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| |
Collapse
|
5
|
NKG2D ligands in glioma stem-like cells: expression in situ and in vitro. Histochem Cell Biol 2018; 149:219-233. [PMID: 29356965 DOI: 10.1007/s00418-018-1633-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 01/29/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor. Tumor stem cells have a major influence on tumor malignancy, and immunological escape mechanisms, involving the Natural Killer Group 2, member D (NKG2D) receptor-ligand-system, are key elements in tumor immuno-surveillance. We analyzed the expression profile and localization of NKG2D ligands (NKG2DL) and embryonic and neural stem cell markers in solid human GBM and stem-like cells isolated from glioma cell lines by qRT-PCR and immunohistochemistry, including quantitative analysis. We also evaluated the effect of Temozolomide (TMZ), the standard chemotherapeutic agent used in GBM therapy, on NKG2DL expression. NKG2DL-positive cells were mostly found scattered and isolated, were detectable in glial fibrillary acidic protein (GFAP)-positive tumor regions and partly in the penumbra of tumor vessels. NKG2DL were found in a distinct tumor stem-like cell subpopulation and were broadly costained with each other. Quantitative analysis revealed, that dependent on the individual NKG2DL investigated, cell portions costained with different stem cell markers varied between small (Musashi-1) and high (KLf-4) amounts. However, a costaining of NKG2DL with CD3γ, typically found in T cells, was also observable, whereas CD11b as a marker for tumor micoglia cells was only rarely costained with NKG2DL. Stem-like cells derived from the glioma cell lines T98G and U251MG showed a distinct expression pattern of NKG2DL and stem cell markers, which seemed to be balanced in a cell line-specific way. With differentiation, T98G displayed less NKG2DL, whereas in U251MG, only expression of most stem cell markers decreased. In addition, stimulation with TMZ led to a significant upregulation of NKG2DL in stem-like cells of both lines. As stem-like glioma cells tend to show a higher expression of NKG2DL than more differentiated tumor cells and TMZ treatment supports upregulation of NKG2DL, the NKG2D system might play an important role in tumor stem cell survival and in GBM therapy.
Collapse
|
6
|
Bassoy EY, Kasahara A, Chiusolo V, Jacquemin G, Boydell E, Zamorano S, Riccadonna C, Pellegatta S, Hulo N, Dutoit V, Derouazi M, Dietrich PY, Walker PR, Martinvalet D. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells. EMBO J 2017; 36:1493-1512. [PMID: 28283580 DOI: 10.15252/embj.201695429] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Atsuko Kasahara
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Valentina Chiusolo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Guillaume Jacquemin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Emma Boydell
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sebastian Zamorano
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cristina Riccadonna
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Serena Pellegatta
- Department of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Hulo
- Biomathematical and Biostatistical Analysis, Institute of Genetics and Genomics University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Amal Therapeutics, Geneva, Switzerland
| | - Pierre Yves Dietrich
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
De Mario A, Quintana-Cabrera R, Martinvalet D, Giacomello M. (Neuro)degenerated Mitochondria-ER contacts. Biochem Biophys Res Commun 2017; 483:1096-1109. [DOI: 10.1016/j.bbrc.2016.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
|
8
|
Decitabine Treatment of Glioma-Initiating Cells Enhances Immune Recognition and Killing. PLoS One 2016; 11:e0162105. [PMID: 27579489 PMCID: PMC5007044 DOI: 10.1371/journal.pone.0162105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022] Open
Abstract
Malignant gliomas are aggressive brain tumours with very poor prognosis. The majority of glioma cells are differentiated (glioma-differentiated cells: GDCs), whereas the smaller population (glioma-initiating cells, GICs) is undifferentiated and resistant to conventional therapies. Therefore, to better target this pool of heterogeneous cells, a combination of diverse therapeutic approaches is envisaged. Here we investigated whether the immunosensitising properties of the hypomethylating agent decitabine can be extended to GICs. Using the murine GL261 cell line, we demonstrate that decitabine augments the expression of the death receptor FAS both on GDCs and GICs. Interestingly, it had a higher impact on GICs and correlated with an enhanced sensitivity to FASL-mediated cell death. Moreover, the expression of other critical molecules involved in cognate recognition by cytotoxic T lymphocytes, MHCI and ICAM-1, was upregulated by decitabine treatment. Consequently, T-cell mediated killing of both GDCs and GICs was enhanced, as was T cell proliferation after reactivation. Overall, although GICs are described to resist classical therapies, our study shows that hypomethylating agents have the potential to enhance glioma cell recognition and subsequent destruction by immune cells, regardless of their differentiation status. These results support the development of combinatorial treatment modalities including epigenetic modulation together with immunotherapy in order to treat heterogenous malignancies such as glioblastoma.
Collapse
|