1
|
Petraglia T, Latronico T, Pepe A, Crescenzi A, Liuzzi GM, Rossano R. Increased Antioxidant Performance of Lignin by Biodegradation Obtained from an Extract of the Mushroom Pleurotus eryngii. Molecules 2024; 29:5575. [PMID: 39683735 DOI: 10.3390/molecules29235575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to evaluate the antioxidant properties of the products derived from the biodegradation of lignin by the ligninolytic enzymes present in an aqueous extract of the mushroom P. eryngii. A mixture obtained after the incubation of lignin for 18 h with P. eryngii extract was tested in vitro for its total polyphenol content, reducing power, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (OH) radical-scavenging activities. The results showed that the enzymatic treatment of lignin enhanced its antioxidant performance. The biocompatibility of the products of lignin biodegradation and their ability to scavenge reactive oxygen species (ROS) were also tested on the astrocytic cell line DI-TNC1. The results obtained indicated that a lignin mixture incubated for 18 h does not affect cell viability or inhibit the H2O2-induced ROS production. These results suggest that the enzymatic degradation of lignin represents an efficient and ecofriendly approach to obtain lignin derivatives potentially useful for antioxidant applications.
Collapse
Affiliation(s)
- Tania Petraglia
- Department of Basic and Applied Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Antonietta Pepe
- Department of Basic and Applied Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Aniello Crescenzi
- Department of Agricultural, Forestry, Food and Environmental, University of Basilicata, 85100 Potenza, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Rocco Rossano
- Department of Basic and Applied Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
2
|
Rizzi F, Panniello A, Comparelli R, Arduino I, Fanizza E, Iacobazzi RM, Perrone MG, Striccoli M, Curri ML, Scilimati A, Denora N, Depalo N. Luminescent Alendronic Acid-Conjugated Micellar Nanostructures for Potential Application in the Bone-Targeted Delivery of Cholecalciferol. Molecules 2024; 29:2367. [PMID: 38792228 PMCID: PMC11123821 DOI: 10.3390/molecules29102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Vitamin D, an essential micronutrient crucial for skeletal integrity and various non-skeletal physiological functions, exhibits limited bioavailability and stability in vivo. This study is focused on the development of polyethylene glycol (PEG)-grafted phospholipid micellar nanostructures co-encapsulating vitamin D3 and conjugated with alendronic acid, aimed at active bone targeting. Furthermore, these nanostructures are rendered optically traceable in the UV-visible region of the electromagnetic spectrum via the simultaneous encapsulation of vitamin D3 with carbon dots, a newly emerging class of fluorescents, biocompatible nanoparticles characterized by their resistance to photobleaching and environmental friendliness, which hold promise for future in vitro bioimaging studies. A systematic investigation is conducted to optimize experimental parameters for the preparation of micellar nanostructures with an average hydrodynamic diameter below 200 nm, ensuring colloidal stability in physiological media while preserving the optical luminescent properties of the encapsulated carbon dots. Comprehensive chemical-physical characterization of these micellar nanostructures is performed employing optical and morphological techniques. Furthermore, their binding affinity for the principal inorganic constituent of bone tissue is assessed through a binding assay with hydroxyapatite nanoparticles, indicating significant potential for active bone-targeting. These formulated nanostructures hold promise for novel therapeutic interventions to address skeletal-related complications in cancer affected patients in the future.
Collapse
Affiliation(s)
- Federica Rizzi
- CNR-Institute for Chemical and Physical Process, 70125 Bari, Italy; (F.R.); (A.P.); (R.C.); (E.F.); (M.S.); (M.L.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Annamaria Panniello
- CNR-Institute for Chemical and Physical Process, 70125 Bari, Italy; (F.R.); (A.P.); (R.C.); (E.F.); (M.S.); (M.L.C.)
| | - Roberto Comparelli
- CNR-Institute for Chemical and Physical Process, 70125 Bari, Italy; (F.R.); (A.P.); (R.C.); (E.F.); (M.S.); (M.L.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Ilaria Arduino
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (R.M.I.)
| | - Elisabetta Fanizza
- CNR-Institute for Chemical and Physical Process, 70125 Bari, Italy; (F.R.); (A.P.); (R.C.); (E.F.); (M.S.); (M.L.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
- Department of Chemistry, University of Bari, 70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (R.M.I.)
| | - Maria Grazia Perrone
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (M.G.P.); (A.S.)
| | - Marinella Striccoli
- CNR-Institute for Chemical and Physical Process, 70125 Bari, Italy; (F.R.); (A.P.); (R.C.); (E.F.); (M.S.); (M.L.C.)
| | - Maria Lucia Curri
- CNR-Institute for Chemical and Physical Process, 70125 Bari, Italy; (F.R.); (A.P.); (R.C.); (E.F.); (M.S.); (M.L.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
- Department of Chemistry, University of Bari, 70125 Bari, Italy
| | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (M.G.P.); (A.S.)
| | - Nunzio Denora
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (R.M.I.)
| | - Nicoletta Depalo
- CNR-Institute for Chemical and Physical Process, 70125 Bari, Italy; (F.R.); (A.P.); (R.C.); (E.F.); (M.S.); (M.L.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| |
Collapse
|
3
|
Minò A, Lopez F, Barbaro R, Barile M, Ambrosone L, Colella M. Effects of Anionic Liposome Delivery of All- Trans-Retinoic Acid on Neuroblastoma Cell Differentiation. Biomimetics (Basel) 2024; 9:257. [PMID: 38786467 PMCID: PMC11118614 DOI: 10.3390/biomimetics9050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
All-trans-retinoic acid (ATRA) has long been known to affect cell growth and differentiation. To improve ATRA's therapeutic efficacy and pharmacodynamics, several delivery systems have been used. In this study, free ATRA and anionic-liposome-encapsulated ATRA were compared for their effects on SK-N-SH human neuroblastoma cell growth and differentiation. Anionic liposomes made of L-α-phosphatidylcholine (PC) and L-α-phosphatidic acid (PA), empty (PC-PA) and loaded with ATRA (PC-PA-ATRA), were characterized by dynamic light scattering (DLS) and electrophoretic mobility measurements, and drug entrapment efficiency (EE%) was measured to evaluate the applicability of the new colloidal formulation. The results of brightfield microscopy and cell growth curves indicated that ATRA, whether free or encapsulated, reduced growth and induced differentiation, resulting in SK-N-SH cells changing from epithelioid to neuronal-like morphologies, and producing a significant increase in neurite growth. To further characterize the neuro-differentiation of SK-N-SH cells, the expression of βIII-Tubulin and synaptophysin and mitochondria localization were analyzed via immunofluorescence. Increased expression of neuronal markers and a peculiar localization of mitochondria in the neuritic extensions were apparent both in ATRA- and PC-PA-ATRA-differentiated cells. As a whole, our results strongly indicate that ATRA treatment, by any means, can induce the differentiation of parent SK-N-SH, and they highlight that its encapsulation in anionic liposomes increases its differentiation ability in terms of the percentage of neurite-bearing cells. Interestingly, our data also suggest an unexpected differentiation capability of anionic liposomes per se. This work highlights the importance of developing and carefully testing novel delivery nanocarriers, which are a necessary first "step" in the development of new therapeutic settings.
Collapse
Affiliation(s)
- Antonio Minò
- Department of Biosciences and Territory (DiBT), University of Molise, Contrada Lappone, 86090 Pesche, Italy;
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Roberto Barbaro
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy;
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Environment (DBBA), University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.B.); (M.B.)
| |
Collapse
|
4
|
Tolomeo M, Chimienti G, Lanza M, Barbaro R, Nisco A, Latronico T, Leone P, Petrosillo G, Liuzzi GM, Ryder B, Inbar-Feigenberg M, Colella M, Lezza AMS, Olsen RKJ, Barile M. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2. Free Radic Res 2022; 56:511-525. [PMID: 36480241 DOI: 10.1080/10715762.2022.2146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavin adenine dinucleotide (FAD) synthase (EC 2.7.7.2), encoded by human flavin adenine dinucleotide synthetase 1 (FLAD1), catalyzes the last step of the pathway converting riboflavin (Rf) into FAD. FLAD1 variations were identified as a cause of LSMFLAD (lipid storage myopathy due to FAD synthase deficiency, OMIM #255100), resembling Multiple Acyl-CoA Dehydrogenase Deficiency, sometimes treatable with high doses of Rf; no alternative therapeutic strategies are available. We describe here cell morphological and mitochondrial alterations in dermal fibroblasts derived from a LSMFLAD patient carrying a homozygous truncating FLAD1 variant (c.745C > T) in exon 2. Despite a severe decrease in FAD synthesis rate, the patient had decreased cellular levels of Rf and flavin mononucleotide and responded to Rf treatment. We hypothesized that disturbed flavin homeostasis and Rf-responsiveness could be due to a secondary impairment in the expression of the Rf transporter 2 (RFVT2), encoded by SLC52A2, in the frame of an adaptive retrograde signaling to mitochondrial dysfunction. Interestingly, an antioxidant response element (ARE) is found in the region upstream of the transcriptional start site of SLC52A2. Accordingly, we found that abnormal mitochondrial morphology and impairments in bioenergetics were accompanied by increased cellular reactive oxygen species content and mtDNA oxidative damage. Concomitantly, an active response to mitochondrial stress is suggested by increased levels of PPARγ-co-activator-1α and Peroxiredoxin III. In this scenario, the treatment with high doses of Rf might compensate for the secondary RFVT2 molecular defect, providing a molecular rationale for the Rf responsiveness in patients with loss of function variants in FLAD1 exon 2.HIGHLIGHTSFAD synthase deficiency alters mitochondrial morphology and bioenergetics;FAD synthase deficiency triggers a mitochondrial retrograde response;FAD synthase deficiency evokes nuclear signals that adapt the expression of RFVT2.
Collapse
Affiliation(s)
- Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy.,Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Martina Lanza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Barbaro
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Bryony Ryder
- National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matilde Colella
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Angela M S Lezza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Shapoval O, Engstová H, Jirák D, Drahokoupil J, Sulková K, Berková Z, Pop-Georgievski O, Holendová B, Ježek P, Horák D. Poly(4-Styrenesulfonic Acid- co-maleic Anhydride)-Coated NaGdF 4:Yb,Tb,Nd Nanoparticles with Luminescence and Magnetic Properties for Imaging of Pancreatic Islets and β-Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18233-18247. [PMID: 35416039 DOI: 10.1021/acsami.2c04274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel Yb,Tb,Nd-doped GdF3 and NaGdF4 nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) in the presence of the poly(4-styrenesulfonic acid-co-maleic anhydride) stabilizer. The particle size and morphology, crystal structure, and phase change were controlled by adjusting the PSSMA concentration and source of fluoride anions in the reaction. Doping of Yb3+, Tb3+, and Nd3+ ions in the NaGdF4 host nanoparticles induced luminescence under ultraviolet and near-infrared excitation and high relaxivity in magnetic resonance (MR) imaging (MRI). In vitro toxicity of the nanoparticles and their cellular uptake efficiency were determined in model rat pancreatic β-cells (INS-1E). As the NaGdF4:Yb,Tb,Nd@PSSMA-EG nanoparticles were non-toxic and possessed good luminescence and magnetic properties, they were applicable for in vitro optical and MRI of isolated pancreatic islets in phantoms. The superior contrast was achieved for in vivo T2*-weighted MR images of the islets transplanted under the kidney capsule to mice in preclinical trials.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hana Engstová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, Prague 2 120 00, Czech Republic
| | - Jan Drahokoupil
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 21, Czech Republic
| | - Kateřina Sulková
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
| | - Zuzana Berková
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Blanka Holendová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Petr Ježek
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
6
|
Latronico T, Rizzi F, Panniello A, Laquintana V, Arduino I, Denora N, Fanizza E, Milella S, Mastroianni CM, Striccoli M, Curri ML, Liuzzi GM, Depalo N. Luminescent PLGA Nanoparticles for Delivery of Darunavir to the Brain and Inhibition of Matrix Metalloproteinase-9, a Relevant Therapeutic Target of HIV-Associated Neurological Disorders. ACS Chem Neurosci 2021; 12:4286-4301. [PMID: 34726377 PMCID: PMC9297288 DOI: 10.1021/acschemneuro.1c00436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Human
immunodeficiency virus (HIV) can independently replicate
in the central nervous system (CNS) causing neurocognitive impairment
even in subjects with suppressed plasma viral load. The antiretroviral
drug darunavir (DRV) has been approved for therapy of HIV-infected
patients, but its efficacy in the treatment of HIV-associated neurological
disorders (HAND) is limited due to the low penetration through the
blood–brain barrier (BBB). Therefore, innovations in DRV formulations,
based on its encapsulation in optically traceable nanoparticles (NPs),
may improve its transport through the BBB, providing, at the same
time, optical monitoring of drug delivery within the CNS. The aim
of this study was to synthesize biodegradable polymeric NPs loaded
with DRV and luminescent, nontoxic carbon dots (C-Dots) and investigate
their ability to permeate through an artificial BBB and to inhibit in vitro matrix metalloproteinase-9 (MMP-9) that represents
a factor responsible for the development of HIV-related neurological
disorders. Biodegradable poly(lactic-co-glycolic)
acid (PLGA)-based nanoformulations resulted characterized by an average
hydrodynamic size less than 150 nm, relevant colloidal stability in
aqueous medium, satisfactory drug encapsulation efficiency, and retained
emitting optical properties in the visible region of the electromagnetic
spectrum. The assay on the BBB artificial model showed that a larger
amount of DRV was able to cross BBB when incorporated in the PLGA
NPs and to exert an enhanced inhibition of matrix metalloproteinase-9
(MMP-9) expression levels with respect to free DRV. The overall results
reveal the great potential of this class of nanovectors of DRV for
an efficacious treatment of HANDs.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annamaria Panniello
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Serafina Milella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Claudio M. Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, AOU Policlinico Umberto 1, 00185 Rome, Italy
| | - Marinella Striccoli
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Grazia M. Liuzzi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
7
|
Arduino I, Depalo N, Re F, Dal Magro R, Panniello A, Margiotta N, Fanizza E, Lopalco A, Laquintana V, Cutrignelli A, Lopedota AA, Franco M, Denora N. PEGylated solid lipid nanoparticles for brain delivery of lipophilic kiteplatin Pt(IV) prodrugs: An in vitro study. Int J Pharm 2020; 583:119351. [PMID: 32339634 DOI: 10.1016/j.ijpharm.2020.119351] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
Here, polyethylene glycol (PEG)-stabilized solid lipid nanoparticles (SLNs) containing Pt(IV) prodrugs derived from kiteplatin were designed and proposed as novel nanoformulations potentially useful for the treatment of glioblastoma multiforme. Four different Pt(IV) prodrugs were synthesized, starting from kiteplatin by the addition of two carboxylate ligands with different length of the alkyl chains and lipophilicity degree, and embedded in the core of PEG-stabilized SLNs composed of cetyl palmitate. The SLNs were extensively characterized by complementary optical and morphological techniques. The results proved the formation of SLNs characterized by average size under 100 nm and dependence of drug encapsulation efficiency on the lipophilicity degree of the tested Pt(IV) prodrugs. A monolayer of immortalized human cerebral microvascular endothelial cells (hCMEC/D3) was used as in vitro model of blood-brain barrier (BBB) to evaluate the ability of the SLNs to penetrate the BBB. For this purpose, optical traceable SLNs were achieved by co-incorporation of Pt(IV) prodrugs and luminescent carbon dots (C-Dots) in the SLNs. Finally, an in vitro study was performed by using a human glioblastoma cell line (U87), to investigate on the antitumor efficiency of the SLNs and on their improved ability to be cell internalized respect to the free Pt(IV) prodrugs.
Collapse
Affiliation(s)
- Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Nicoletta Depalo
- CNR-Institute for Physical and Chemical Processes SS, Bari, Italy
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Roberta Dal Magro
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | | | - Nicola Margiotta
- Department of Chemistry, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | - Elisabetta Fanizza
- CNR-Institute for Physical and Chemical Processes SS, Bari, Italy; Department of Chemistry, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Massimo Franco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125, Bari, Italy; CNR-Institute for Physical and Chemical Processes SS, Bari, Italy.
| |
Collapse
|
8
|
Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate temperature measurements with a high spatial resolution for application in the biomedical fields demand novel nanosized thermometers with new advanced properties. Here, a water dispersible ratiometric temperature sensor is fabricated by encapsulating in silica nanoparticles, organic capped PbS@CdS@CdS “giant” quantum dots (GQDs), characterized by dual emission in the visible and near infrared spectral range, already assessed as efficient fluorescent nanothermometers. The chemical stability, easy surface functionalization, limited toxicity and transparency of the silica coating represent advantageous features for the realization of a nanoscale heterostructure suitable for temperature sensing. However, the strong dependence of the optical properties on the morphology of the final core–shell nanoparticle requires an accurate control of the encapsulation process. We carried out a systematic investigation of the synthetic conditions to achieve, by the microemulsion method, uniform and single core silica coated GQD (GQD@SiO2) nanoparticles and subsequently recorded temperature-dependent fluorescent spectra in the 281-313 K temperature range, suited for biological systems. The ratiometric response—the ratio between the two integrated PbS and CdS emission bands—is found to monotonically decrease with the temperature, showing a sensitivity comparable to bare GQDs, and thus confirming the effectiveness of the functionalization strategy and the potential of GQD@SiO2 in future biomedical applications.
Collapse
|
9
|
De Angelis B, Depalo N, Petronella F, Quintarelli C, Curri ML, Pani R, Calogero A, Locatelli F, De Sio L. Stimuli-responsive nanoparticle-assisted immunotherapy: a new weapon against solid tumours. J Mater Chem B 2020; 8:1823-1840. [DOI: 10.1039/c9tb02246e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay between photo-thermal therapy and immunotherapy allows the realization of new nanotechnology-based cancer treatments for solid tumors.
Collapse
Affiliation(s)
- Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Nicoletta Depalo
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Francesca Petronella
- CNR-IC
- National Research Council of Italy
- Institute Crystallography
- 00015 Monterotondo – Rome
- Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - M. Lucia Curri
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Roberto Pani
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Antonella Calogero
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Luciano De Sio
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| |
Collapse
|
10
|
Depalo N, Fanizza E, Vischio F, Denora N, Laquintana V, Cutrignelli A, Striccoli M, Giannelli G, Agostiano A, Curri ML, Scavo MP. Imaging modification of colon carcinoma cells exposed to lipid based nanovectors for drug delivery: a scanning electron microscopy investigation. RSC Adv 2019; 9:21810-21825. [PMID: 35518842 PMCID: PMC9066453 DOI: 10.1039/c9ra02381j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
The adsorption at cell surfaces and cell internalization of two drug delivery lipid based nanovectors has been investigated by means of Field Emission Scanning Electron Microscopy (FE-SEM) operating at low beam voltage on two different colon carcinoma cell lines, CaCo-2 and CoLo-205, that were compared with the M14 melanoma cell line, as a reference. The cells were incubated with the investigated multifunctional nanovectors, based on liposomes and magnetic micelles loaded with 5-fluorouracil, as a chemotherapeutic agent, and a FE-SEM systematic investigation was performed, enabling a detailed imaging of any morphological changes of the drug exposed cells as a function of time. The results of the FE-SEM investigation were validated by MTS assay and immunofluorescence staining of the Ki-67 protein performed on the investigated cell lines at different times. The two nanoformulations resulted in a comparable effect on CaCo-2 and M14 cell lines, while for CoLo 205 cells, the liposomes provided an cytotoxic activity higher than that observed in the case of the micelles. The study highlighted the high potential of FE-SEM as a valuable complementary technique for imaging and monitoring in time the drug effects on the selected cells exposed to the two different nanoformulations.
Collapse
Affiliation(s)
- Nicoletta Depalo
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
| | - Elisabetta Fanizza
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Fabio Vischio
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Nunzio Denora
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Valentino Laquintana
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Annalisa Cutrignelli
- Università degli Studi di Bari Aldo Moro, Dipartimento di Farmacia, Scienze del Farmaco Via Orabona 4 70125 Bari Italy
| | - Marinella Striccoli
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
| | - Gianluigi Giannelli
- Personalized Medicine Laboratory, National Institute of Gastroenterology - Research Hospital "S. De Bellis" Via Turi 27, Castellana Grotte Bari Italy
| | - Angela Agostiano
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Maria Lucia Curri
- Institute for Physical-Chemical Processes (IPCF)-CNR SS Bari Via Orabona 4 70125 Bari Italy
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica Via Orabona 4 70125 Bari Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology - Research Hospital "S. De Bellis" Via Turi 27, Castellana Grotte Bari Italy
| |
Collapse
|
11
|
Green Fluorescent Terbium (III) Complex Doped Silica Nanoparticles. Int J Mol Sci 2019; 20:ijms20133139. [PMID: 31252567 PMCID: PMC6651519 DOI: 10.3390/ijms20133139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
The low photostability of conventional organic dyes and the toxicity of cadmium-based luminescent quantum dots have prompted the development of novel probes for in vitro and in vivo labelling. Here, a new fluorescent lanthanide probe based on silica nanoparticles is fabricated and investigated for optically traceable in vitro translocator protein (TSPO) targeting. The targeting and detection of TSPO receptor, overexpressed in several pathological states, including neurodegenerative diseases and cancers, may provide valuable information for the early diagnosis and therapy of human disorders. Green fluorescent terbium(III)-calix[4]arene derivative complexes are encapsulated within silica nanoparticles and surface functionalized amine groups are conjugated with selective TSPO ligands based on a 2-phenylimidazo[1,2-a]pyridine acetamide structure containing derivatizable carboxylic groups. The photophysical properties of the terbium complex, promising for biological labelling, are demonstrated to be successfully conveyed to the realized nanoarchitectures. In addition, the high degree of biocompatibility, assessed by cell viability assay and the selectivity towards TSPO mitochondrial membrane receptors, proven by subcellular fractional studies, highlight targeting potential of this nanostructure for in vitro labelling of mitochondria.
Collapse
|
12
|
Zheng F, Luo Z, Zheng C, Li J, Zeng J, Yang H, Chen J, Jin Y, Aschner M, Wu S, Zhang Q, Li H. Comparison of the neurotoxicity associated with cobalt nanoparticles and cobalt chloride in Wistar rats. Toxicol Appl Pharmacol 2019; 369:90-99. [DOI: 10.1016/j.taap.2019.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/26/2022]
|
13
|
Chinnathambi S, Hanagata N. Photostability of quantum dot micelles under ultraviolet irradiation. LUMINESCENCE 2019; 34:472-479. [PMID: 30809921 DOI: 10.1002/bio.3618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Phospholipid quantum dot micelles are useful for bio-applications because of their amphiphilicity and exceptional biocompatibilities. We investigated the uptake of phospholipid [polyethylene glycol (PEG), biotin, and folic acid terminated] modified CdSe/ZnS quantum dot micelles by cancer cells and its photostability under ultrviolet light in the C spectrum (UV-C) (254 nm) or UV-A (365 nm) light irradiation. The stability of micelles to the exposure of UV-C and UV-A light was assessed. Biotin-modified quantum dot micelles give photoluminescence enhancement under UV-C light irradiation. Folate modified micelle under UV-C and UV-A results show considerable photoluminescence enhancement. Photoluminescence lifetime measurements showed 7.04, 8.11 and 11.42 ns for PEG, folate, and biotin terminated phospholipid micelles, respectively. Folate and biotin-modified quantum dot micelles showed excellent uptake by HeLa cells under fluorescence confocal microscopy. Phospholipid CdSe/ZnS quantum dot micelles can be potentially used for diagnosis and treatment of cancer in the future.
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Nobutaka Hanagata
- International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.,Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Khan FA, Almohazey D, Alomari M, Almofty SA. Impact of nanoparticles on neuron biology: current research trends. Int J Nanomedicine 2018; 13:2767-2776. [PMID: 29780247 PMCID: PMC5951135 DOI: 10.2147/ijn.s165675] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have enormous applications in textiles, cosmetics, electronics, and pharmaceuticals. But due to their exceptional physical and chemical properties, particularly antimicrobial, anticancer, antibacterial, anti-inflammatory properties, nanoparticles have many potential applications in diagnosis as well as in the treatment of various diseases. Over the past few years, nanoparticles have been extensively used to investigate their response on the neuronal cells. These nanoparticles cause stem cells to differentiate into neuronal cells and promote neuronal cell survivability and neuronal cell growth and expansion. The nanoparticles have been tested both in in vitro and in vivo models. The nanoparticles with various shapes, sizes, and chemical compositions mostly produced stimulatory effects on neuronal cells, but there are few that can cause inhibitory effects on the neuronal cells. In this review, we discuss stimulatory and inhibitory effects of various nanoparticles on the neuronal cells. The aim of this review was to summarize different effects of nanoparticles on the neuronal cells and try to understand the differential response of various nanoparticles. This review provides a bird's eye view approach on the effects of various nanoparticles on neuronal differentiation, neuronal survivability, neuronal growth, neuronal cell adhesion, and functional and behavioral recovery. Finally, this review helps the researchers to understand the different roles of nanoparticles (stimulatory and inhibitory) in neuronal cells to develop effective therapeutic and diagnostic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Pati ML, Fanizza E, Hager S, Groza D, Heffeter P, Laurenza AG, Laquintana V, Curri ML, Depalo N, Abate C, Denora N. Quantum Dot Based Luminescent Nanoprobes for Sigma-2 Receptor Imaging. Mol Pharm 2017; 15:458-471. [PMID: 29226684 DOI: 10.1021/acs.molpharmaceut.7b00825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increasing importance of sigma-2 receptor as target for the diagnosis and therapy of tumors paves the way for the development of innovative optically traceable fluorescent probes as tumor cell contrast and therapeutic agents. Here, a novel hybrid organic-inorganic nanostructure is developed by combining the superior fluorescent properties of inorganic quantum dots (QDs), coated with a hydrophilic silica shell (QD@SiO2 NPs), the versatility of the silica shell, and the high selectivity for sigma-2 receptor of the two synthetic ligands, namely, the 6-[(6-aminohexyl)oxy]-2-(3-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)propyl)-3,4-dihydroisoquinolin-1(2H)-one (MLP66) and 6-[1-[3-(4-cyclohexylpiperazin-1-yl)propyl]-1,2,3,4-tetrahydronaphthalen-5-yloxy]hexylamine (TA6). The proposed nanostructures represent a challenging alternative to all previously studied organic small fluorescent molecules, based on the same sigma-2 receptor affinity moieties. Flow cytometry and confocal fluorescence microscopy experiments, respectively, on fixed and living cancerous MCF7 cells, which overexpress the sigma-2 receptor, prove the ability of functionalized (QD@SiO2-TA6 and QD@SiO2-MLP66) NPs to be internalized and demonstrate their affinity to the sigma-2 receptor, ultimately validating the targeting properties conveyed to the NPs by sigma-2 ligand conjugation. The presented QD-based nanoprobes possess a great potential as in vitro selective sigma-2 receptor imaging agent and, consequently, could provide a significant impact to future theranostic applications.
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Elisabetta Fanizza
- Istituto per i Processi Chimico-Fisici-IPCF-SS Bari, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125 Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Sonja Hager
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Borschkegasse 8a, A-1090 Wien, Austria
| | - Diana Groza
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Borschkegasse 8a, A-1090 Wien, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Borschkegasse 8a, A-1090 Wien, Austria
| | - Amelita Grazia Laurenza
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Maria Lucia Curri
- Istituto per i Processi Chimico-Fisici-IPCF-SS Bari, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Depalo
- Istituto per i Processi Chimico-Fisici-IPCF-SS Bari, Consiglio Nazionale delle Ricerche, c/o Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro , Via Orabona 4, 70125 Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , Via Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
16
|
Depalo N, Corricelli M, De Paola I, Valente G, Iacobazzi RM, Altamura E, Debellis D, Comegna D, Fanizza E, Denora N, Laquintana V, Mavelli F, Striccoli M, Saviano M, Agostiano A, Del Gatto A, Zaccaro L, Curri ML. NIR Emitting Nanoprobes Based on Cyclic RGD Motif Conjugated PbS Quantum Dots for Integrin-Targeted Optical Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43113-43126. [PMID: 29148709 DOI: 10.1021/acsami.7b14155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, silica-coated PbS quantum dots (QDs) with photoluminescence emission properties in the near-infrared (NIR) region are proposed as potential effective single particle optical nanoprobes for future in vivo imaging of tumors. The dispersibility in aqueous medium of hydrophobic PbS QDs was accomplished by growing a silica shell on their surface by exploiting a base assisted water-in-oil microemulsion method. The silica-coated PbS QDs were then conjugated with a specifically designed cyclic arginine-glycine-aspartic acid (cRGD) peptide that is able to specifically recognize αvβ3 integrins, which are overexpressed in angiogenic tumor-induced vasculatures and on some solid tumors, to achieve tumor-specific targeting. The cRGD peptide PbS silica-coated QDs were systematically characterized, at each step of their preparation, by means of complementary optical and structural techniques, demonstrating appropriate colloidal stability and the maintenance of their optical futures in aqueous solutions. The cellular uptake of cRGD peptide functionalized luminescent nanostructures in human melanoma cells, where overexpression of αvβ3 was observed, was assessed by means of confocal microscopy analysis and cytometric study. The selectivity of the cRGD peptide PbS silica-coated QDs for the αvβ3 integrin was established, consequently highlighting the significant potential of the developed NIR emitting nanostructures as optically traceable nanoprobes for future αvβ3 integrin receptor in vivo targeting in the NIR region.
Collapse
Affiliation(s)
- N Depalo
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - M Corricelli
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - I De Paola
- Istituto di Biostrutture e Bioimmagini-CNR , Via Mezzocannone 16, 80134 Napoli, Italy
| | - G Valente
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - R M Iacobazzi
- Istituto Tumori IRCCS Giovanni Paolo II , Viale Orazio Flacco 65, 70124 Bari, Italy
| | | | | | - D Comegna
- Istituto di Biostrutture e Bioimmagini-CNR , Via Mezzocannone 16, 80134 Napoli, Italy
| | - E Fanizza
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - N Denora
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | | | | | - M Striccoli
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - M Saviano
- Istituto di Cristallografia-CNR Bari , Via Amendola 122/O, 70126 Bari, Italy
| | - A Agostiano
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - A Del Gatto
- Istituto di Biostrutture e Bioimmagini-CNR , Via Mezzocannone 16, 80134 Napoli, Italy
| | - L Zaccaro
- Istituto di Biostrutture e Bioimmagini-CNR , Via Mezzocannone 16, 80134 Napoli, Italy
| | - M L Curri
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
17
|
De Leo V, Milano F, Paiano A, Bramato R, Giotta L, Comparelli R, Ruscigno S, Agostiano A, Bucci C, Catucci L. Luminescent CdSe@ZnS nanocrystals embedded in liposomes: a cytotoxicity study in HeLa cells. Toxicol Res (Camb) 2017; 6:947-957. [PMID: 30090555 PMCID: PMC6062261 DOI: 10.1039/c7tx00172j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
The use of fluorescent nanocrystals (NCs) as probes for bioimaging applications has emerged as an advantageous alternative to conventional organic fluorescent dyes. Therefore their toxicological evaluation and intracellular delivery are currently a primary field of research. In this work, hydrophobic and highly fluorescent CdSe@ZnS NCs were encapsulated into the lipid bilayer of liposomes by the micelle-to-vesicle transition (MVT) method. The obtained aqueous NC-liposome suspensions preserved the spectroscopic characteristics of the native NCs. A systematic study of the in vitro toxicological effect on HeLa cells of these red emitting NC-liposomes was then carried out and compared to that of empty liposomes. By using liposomes of different phospholipid composition, we evaluated the effect of the lipid carrier on the cytotoxicity towards HeLa cells. Surprisingly, a cell proliferation and death study along with the MTT test on HeLa cells treated with NC-liposomes have shown that the toxic effects of NCs, at concentrations up to 20 nM, are negligible compared to those of the lipid carrier, especially when this is constituted by the cationic phospholipid DOTAP. In particular, obtained data suggest that DOTAP has a dose- and time-dependent toxic effect on HeLa cells. In contrast, the addition of PEG to the liposomes does not alter significantly the viability of the cells. In addition, the ability of NC-liposomes to penetrate the HeLa cells was assessed by fluorescence and confocal microscopy investigation. Captured images show that NC-liposomes are internalized into cells through the endocytic pathway, enter early endosomes and reach lysosomes in 1 h. Interestingly, red emitting NCs co-localized with endosomes and were positioned at the limiting membrane of the organelles. The overall results suggest that the fluorescent system as a whole, NCs and their carrier, should be considered for the development of fully safe biological applications of CdSe@ZnS NCs, and provide essential indications to define the optimal experimental conditions to use the proposed system as an optical probe for future in vivo experiments.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Francesco Milano
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Roberta Bramato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Roberto Comparelli
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Silvia Ruscigno
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
| | - Angela Agostiano
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Lucia Catucci
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
18
|
Kumar A, Tan A, Wong J, Spagnoli JC, Lam J, Blevins BD, G N, Thorne L, Ashkan K, Xie J, Liu H. Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1700489. [PMID: 30853878 PMCID: PMC6404766 DOI: 10.1002/adfm.201700489] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Unlocking the secrets of the brain is a task fraught with complexity and challenge - not least due to the intricacy of the circuits involved. With advancements in the scale and precision of scientific technologies, we are increasingly equipped to explore how these components interact to produce a vast range of outputs that constitute function and disease. Here, an insight is offered into key areas in which the marriage of neuroscience and nanotechnology has revolutionized the industry. The evolution of ever more sophisticated nanomaterials culminates in network-operant functionalized agents. In turn, these materials contribute to novel diagnostic and therapeutic strategies, including drug delivery, neuroprotection, neural regeneration, neuroimaging and neurosurgery. Further, the entrance of nanotechnology into future research arenas including optogenetics, molecular/ion sensing and monitoring, and piezoelectric effects is discussed. Finally, considerations in nanoneurotoxicity, the main barrier to clinical translation, are reviewed, and direction for future perspectives is provided.
Collapse
Affiliation(s)
- Anil Kumar
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Aaron Tan
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Joanna Wong
- Imperial College School of Medicine, Imperial College London,London, United Kingdom
| | - Jonathan Clayton Spagnoli
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - James Lam
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Brianna Diane Blevins
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Natasha G
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Lewis Thorne
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, King's College London, London, United Kingdom
| | - Jin Xie
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Depalo N, De Leo V, Corricelli M, Gristina R, Valente G, Casamassima E, Comparelli R, Laquintana V, Denora N, Fanizza E, Striccoli M, Agostiano A, Catucci L, Curri ML. Lipid-based systems loaded with PbS nanocrystals: near infrared emitting trackable nanovectors. J Mater Chem B 2017; 5:1471-1481. [PMID: 32264638 DOI: 10.1039/c6tb02590k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrophobic PbS nanocrystals (NCs) emitting in the near infrared spectral region were encapsulated in the core of micelles and in the bilayer of liposomes, respectively, to form polyethylene glycol (PEG)-grafted phospholipids. The phospholipid-based functionalization process of PbS NCs required the replacement of the pristine capping ligand at the NC surface with thiol molecules. The procedures carried out for two systems, micelles and liposomes, using PEG-modified phospholipids were carefully monitored by optical, morphological and structural investigations. The hydrodynamic diameter and the colloidal stability of both micelles and liposomes loaded with PbS NCs were evaluated using Dynamic Light Scattering (DLS) and ζ-potential experiments, and both were satisfactorily stable in physiological media. The cytotoxicity of the resulting PbS NC-loaded nanovectors was assessed by the in vitro investigation on Saos-2 cells, indicating that the toxicity of the PbS NC loaded liposomes was lower than that of the micelles with the same NC cargo, which is reasonable due to the different overall composition of the two prepared nanocarriers. Finally, the cellular uptake in the Saos-2 cells of both the NC containing systems was evaluated by means of confocal microscopy studies by exploiting a visible fluorescent phospholipid and demonstrating the ability of both luminescent nanovectors to be internalized. The obtained results show the great potential of the prepared emitting nanoprobes for imaging applications in the second biological window.
Collapse
Affiliation(s)
- N Depalo
- Istituto per i Processi Chimico-Fisici-CNR UOS Bari, Via Orabona 4, 70125 - Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|