1
|
Hansen SSK, Krautz R, Rago D, Havelund J, Stigliani A, Færgeman NJ, Prézelin A, Rivière J, Couturier-Tarrade A, Akimov V, Blagoev B, Elfving B, Neess D, Vogel U, Khodosevich K, Hougaard KS, Sandelin A. Pulmonary maternal immune activation does not cross the placenta but leads to fetal metabolic adaptation. Nat Commun 2024; 15:4711. [PMID: 38830841 PMCID: PMC11148039 DOI: 10.1038/s41467-024-48492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.
Collapse
Affiliation(s)
- Signe Schmidt Kjølner Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Robert Krautz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daria Rago
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arnaud Stigliani
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Julie Rivière
- Paris-Saclay University, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Rodriguez-Calado S, Van Damme P, Avilés FX, Candiota AP, Tanco S, Lorenzo J. Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly. Int J Mol Sci 2023; 24:ijms24021273. [PMID: 36674791 PMCID: PMC9867282 DOI: 10.3390/ijms24021273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
The cytosolic carboxypeptidase 6 (CCP6) catalyzes the deglutamylation of polyglutamate side chains, a post-translational modification that affects proteins such as tubulins or nucleosome assembly proteins. CCP6 is involved in several cell processes, such as spermatogenesis, antiviral activity, embryonic development, and pathologies like renal adenocarcinoma. In the present work, the cellular role of CCP6 has been assessed by BioID, a proximity labeling approach for mapping physiologically relevant protein-protein interactions (PPIs) and bait proximal proteins by mass spectrometry. We used HEK 293 cells stably expressing CCP6-BirA* to identify 37 putative interactors of this enzyme. This list of CCP6 proximal proteins displayed enrichment of proteins associated with the centrosome and centriolar satellites, indicating that CCP6 could be present in the pericentriolar material. In addition, we identified cilium assembly-related proteins as putative interactors of CCP6. In addition, the CCP6 proximal partner list included five proteins associated with the Joubert syndrome, a ciliopathy linked to defects in polyglutamylation. Using the proximity ligation assay (PLA), we show that PCM1, PIBF1, and NudC are true CCP6 physical interactors. Therefore, the BioID methodology confirms the location and possible functional role of CCP6 in centrosomes and centrioles, as well as in the formation and maintenance of primary cilia.
Collapse
Affiliation(s)
- Sergi Rodriguez-Calado
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Sebastian Tanco
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Correspondence: (S.T.); (J.L.); Tel.: +34-93-586-8938 (S.T.); +34-93-586-8957 (J.L.)
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Correspondence: (S.T.); (J.L.); Tel.: +34-93-586-8938 (S.T.); +34-93-586-8957 (J.L.)
| |
Collapse
|
3
|
Yin H, Zhang T, Wang H, Hu X, Hou X, Fang X, Yin Y, Li H, Shi L, Su YQ. Echinoderm Microtubule Associated Protein Like 1 Is Indispensable for Oocyte Spindle Assembly and Meiotic Progression in Mice. Front Cell Dev Biol 2021; 9:687522. [PMID: 34124073 PMCID: PMC8194061 DOI: 10.3389/fcell.2021.687522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Completion of the first meiosis is an essential prerequisite for producing a functionally normal egg for fertilization and embryogenesis, but the precise mechanisms governing oocyte meiotic progression remains largely unclear. Here, we report that echinoderm microtubule associated protein (EMAP) like 1 (EML1), a member of the conserved EMAP family proteins, plays a crucial role in the control of oocyte meiotic progression in the mouse. Female mice carrying an ENU-induced nonsense mutation (c.1956T > A; p.Tyr652∗) of Eml1 are infertile, and the majority of their ovulated oocytes contain abnormal spindles and misaligned chromosomes. In accordance with the mutant oocyte phenotype, we find that EML1 is colocalized with spindle microtubules during the process of normal oocyte meiotic maturation, and knockdown (KD) of EML1 by specific morpholinos in the fully grown oocytes (FGOs) disrupts the integrity of spindles, and delays meiotic progression. Moreover, EML1-KD oocytes fail to progress to metaphase II (MII) stage after extrusion of the first polar body, but enter into interphase and form a pronucleus containing decondensed chromatins. Further analysis shows that EML1-KD impairs the recruitment of γ-tubulin and pericentrin to the spindle poles, as well as the attachment of kinetochores to microtubules and the proper inactivation of spindle assembly checkpoint at metaphase I (MI). The loss of EML1 also compromises the activation of maturation promoting factor around the time of oocyte resumption and completion of the first meiosis, which, when corrected by WEE1/2 inhibitor PD166285, efficiently rescues the phenotype of oocyte delay of meiotic resumption and inability of reaching MII. Through IP- mass spectrometry analysis, we identified that EML1 interacts with nuclear distribution gene C (NUDC), a critical mitotic regulator in somatic cells, and EML1-KD disrupts the specific localization of NUDC at oocyte spindles. Taken together, these data suggest that EML1 regulates acentrosomal spindle formation and the progression of meiosis to MII in mammalian oocytes, which is likely mediated by distinct mechanisms.
Collapse
Affiliation(s)
- Hong Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuan Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xianbao Fang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lanying Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Little JN, Dwyer ND. p53 deletion rescues lethal microcephaly in a mouse model with neural stem cell abscission defects. Hum Mol Genet 2019; 28:434-447. [PMID: 30304535 DOI: 10.1093/hmg/ddy350] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
Building a cerebral cortex of the proper size involves balancing rates and timing of neural stem cell (NSC) proliferation, neurogenesis and cell death. The cellular mechanisms connecting genetic mutations to brain malformation phenotypes are still poorly understood. Microcephaly may result when NSC divisions are too slow, produce neurons too early or undergo apoptosis but the relative contributions of these cellular mechanisms to various types of microcephaly are not understood. We previously showed that mouse mutants in Kif20b (formerly called Mphosph1, Mpp1 or KRMP1) have small cortices that show elevated apoptosis and defects in maturation of NSC midbodies, which mediate cytokinetic abscission. Here we test the contribution of intrinsic NSC apoptosis to brain size reduction in this lethal microcephaly model. By making double mutants with the pro-apoptotic genes Bax and Trp53 (p53), we find that p53-dependent apoptosis of cortical NSCs accounts for most of the microcephaly, but that there is a significant apoptosis-independent contribution as well. Remarkably, heterozygous p53 deletion is sufficient to fully rescue survival of the Kif20b mutant into adulthood. In addition, the NSC midbody maturation defects are not rescued by p53 deletion, showing that they are either upstream of p53 activation, or in a parallel pathway. Accumulation of p53 in the nucleus of mutant NSCs at midbody stage suggests the possibility of a novel midbody-mediated pathway for p53 activation. This work elucidates both NSC apoptosis and abscission mechanisms that could underlie human microcephaly or other brain malformations.
Collapse
Affiliation(s)
- Jessica Neville Little
- Department of Cell Biology.,Cell and Developmental Biology Graduate Program.,Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
5
|
Gang X, Qian W, Zhang T, Yang X, Xia Q, Cheng D. Aurora B kinase is required for cell cycle progression in silkworm. Gene 2016; 599:60-67. [PMID: 27836666 DOI: 10.1016/j.gene.2016.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 11/30/2022]
Abstract
Aurora B kinase, a member of serine/threonine kinase family, is the catalytic subunit of the chromosomal passenger complex and is essential for chromosome alignment, chromosome segregation, and cytokinesis during mitosis. Here, we cloned the full-length cDNA sequence of silkworm Aurora B (BmAurB) gene and predicted that BmAurB protein contains a conserved S_TKc domain. Phylogenetic analysis between BmAurB and other Aurora kinases indicates that Aurora kinases may have evolved after separation between mammalian and insect, and prior to radiation of either mammalian or insects. RT-PCR examination revealed that the expression of the BmAurB gene was high in mitotic cycling gonads, moderate in mitotic cycling brain, and undetectable in endocycling silk gland during silkworm larval development. RNAi or inhibitor-mediated inhibition of the BmAurB gene in silkworm ovary-derived BmN4-SID1 cells disrupted cell cycle progression during mitosis and induced an accumulation of polyploid cells, cell cycle arrest at G2/M phase, chromosome misalignment, chromosome bridge, and bi-nucleation. Taken together, our results suggest that the BmAurB gene is required for cell cycle progression in silkworm.
Collapse
Affiliation(s)
- Xiaoxu Gang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tianlei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xinxin Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|