1
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Risk of infection of white-nose syndrome in North American vespertilionid bats in Mexico. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Use of Secondary Metabolites of Wood-Decaying Fungi to Reduce Damping off Disease. FORESTS 2022. [DOI: 10.3390/f13081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phytopathogenic fungi can cause plant diseases that are difficult to control, including mass mortality of some tree species. The Fusarium oxysporum complex (sensu lato) is one of the most dangerous groups of phytopathogenic fungi, causing the death of conifer species, including Pinus sylvestris seedlings in forest and ornamental nurseries. Recently, non-chemical methods of plant protection have become the basis of integrated pest management (IPM) in the European Union (EC Directive). The possibility of protection of pine seedlings against the pathogen F. oxysporum using active substances from wood-destroying fungi commonly found in forests was examined. Methanolic extracts of Fomitopsis pinicola, Ganoderma applanatum, and Trametes versicolor were found to contain substances effective in both prevention and treatment of infected seedlings. G. applanatum and T. versicolor showed particular biological activity in increasing plant resistance. Efficacy, especially of the extract of F. pinicola, increased with concentration. Further field trials are needed to confirm the results obtained in laboratory tests on plant protection.
Collapse
|
4
|
Korn VL, Pennerman KK, Padhi S, Bennett JW. Trans-2-hexenal downregulates several pathogenicity genes of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats. J Ind Microbiol Biotechnol 2021; 48:kuab060. [PMID: 34415032 PMCID: PMC8788850 DOI: 10.1093/jimb/kuab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
White-nose syndrome is an emergent wildlife disease that has killed millions of North American bats. It is caused by Pseudogymnoascus destructans, a cold-loving, invasive fungal pathogen that grows on bat tissues and disrupts normal hibernation patterns. Previous work identified trans-2-hexenal as a fungistatic volatile compound that potentially could be used as a fumigant against P. destructans in bat hibernacula. To determine the physiological responses of the fungus to trans-2-hexenal exposure, we characterized the P. destructans transcriptome in the presence and absence of trans-2-hexenal. Specifically, we analyzed the effects of sublethal concentrations (5 μmol/L, 10 μmol/L, and 20 μmol/L) of gas-phase trans-2-hexenal of the fungus grown in liquid culture. Among the three treatments, a total of 407 unique differentially expressed genes (DEGs) were identified, of which 74 were commonly affected across all three treatments, with 44 upregulated and 30 downregulated. Downregulated DEGs included several probable virulence genes including those coding for a high-affinity iron permease, a superoxide dismutase, and two protein-degrading enzymes. There was an accompanying upregulation of an ion homeostasis gene, as well as several genes involved in transcription, translation, and other essential cellular processes. These data provide insights into the mechanisms of action of trans-2-hexenal as an anti-fungal fumigant that is active at cold temperatures and will guide future studies on the molecular mechanisms by which six carbon volatiles inhibit growth of P. destructans and other pathogenic fungi.
Collapse
Affiliation(s)
| | - Kayla K Pennerman
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
| | - Sally Padhi
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Vanderwolf KJ, Kyle CJ, Faure PA, McAlpine DF, Davy CM. Skin pH varies among bat species and seasons and between wild and captive bats. CONSERVATION PHYSIOLOGY 2021; 9:coab088. [PMID: 34925845 PMCID: PMC8672241 DOI: 10.1093/conphys/coab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Skin is a key aspect of the immune system in the defence against pathogens. Skin pH regulates the activity of enzymes produced both by hosts and by microbes on host skin, thus implicating pH in disease susceptibility. Skin pH varies inter- and intra-specifically and is influenced by a variety of intrinsic and extrinsic variables. Increased skin alkalinity is associated with a predisposition to cutaneous infections in humans and dogs, and inter-specific and inter-individual variation in skin pH is implicated in differential susceptibility to some skin diseases. The cutaneous pH of bats has not been characterized but is postulated to play a role in susceptibility to white-nose syndrome (WNS), a fungal infection that has decimated several Nearctic bat species. We used non-invasive probes to measure the pH of bat flight membranes in five species with differing susceptibility to WNS. Skin pH ranged from 4.67 to 8.59 and varied among bat species, geographic locations, body parts, age classes, sexes and seasons. Wild Eptesicus fuscus were consistently more acidic than wild Myotis lucifugus, Myotis leibii and Perimyotis subflavus. Juvenile bats had more acidic skin than adults during maternity season but did not differ during swarming. Male M. lucifugus were more acidic than females during maternity season, yet this trend reversed during swarming. Bat skin was more acidic in summer compared to winter, a pattern also reported in humans. Skin pH was more acidic in captive than wild E. fuscus, suggesting environmental impacts on skin pH. The pH of roosting substrates affects skin pH in captive bats and may partially explain seasonal patterns in wild bats that use different roost types across seasons. Future research on the influence of pH on microbial pathogenic factors and skin barrier function may provide valuable insights on new therapeutic targets for treating bat skin conditions.
Collapse
Affiliation(s)
- Karen J Vanderwolf
- Corresponding author: Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Canada.
| | - Christopher J Kyle
- Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Ontario, Canada
- Forensic Science Department, Trent University, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Donald F McAlpine
- Department of Natural History, New Brunswick Museum, 277 Douglas Ave, Saint John, E2K 1E5, New Brunswick, Canada
| | - Christina M Davy
- Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Ontario, Canada
- Wildlife Research and Monitoring Section, Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
- Current affiliation: Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Ontario, Canada
| |
Collapse
|
6
|
Hao G, Barker GC. Fatty acid secretion by the white rot fungus, Trametes versicolor. J Ind Microbiol Biotechnol 2021; 49:6426184. [PMID: 34788844 PMCID: PMC9113147 DOI: 10.1093/jimb/kuab083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
Fungi can acquire and store nutrients through decomposing and converting organic matter into fatty acids. This research demonstrates for the first time that the white-rot fungus Trametes versicolor has the ability to secrete extracellular droplets which can contain a high concentration of long chain fatty acids and unsaturated fatty acids as well as monosaccharides and polysaccharides. The concentration and composition of the fatty acids varied according to the age of the droplet and the feedstock used for growth of the fungi. The results raise the possibility that these droplets could be harvested offering a new approach for the microbial generation of oil from waste.
Collapse
Affiliation(s)
- Guyu Hao
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Guy C Barker
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
7
|
Pannkuk EL, Dorville NASY, Dzal YA, Fletcher QE, Norquay KJO, Willis CKR, Fornace AJ, Laiakis EC. Hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at early stages of white-nose syndrome. Sci Rep 2021; 11:11581. [PMID: 34078939 PMCID: PMC8172879 DOI: 10.1038/s41598-021-90828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
White-nose syndrome (WNS) is an emergent wildlife fungal disease of cave-dwelling, hibernating bats that has led to unprecedented mortalities throughout North America. A primary factor in WNS-associated bat mortality includes increased arousals from torpor and premature fat depletion during winter months. Details of species and sex-specific changes in lipid metabolism during WNS are poorly understood and may play an important role in the pathophysiology of the disease. Given the likely role of fat metabolism in WNS and the fact that the liver plays a crucial role in fatty acid distribution and lipid storage, we assessed hepatic lipid signatures of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus) at an early stage of infection with the etiological agent, Pseudogymnoascus destructans (Pd). Differences in lipid profiles were detected at the species and sex level in the sham-inoculated treatment, most strikingly in higher hepatic triacylglyceride (TG) levels in E. fuscus females compared to males. Interestingly, several dominant TGs (storage lipids) decreased dramatically after Pd infection in both female M. lucifugus and E. fuscus. Increases in hepatic glycerophospholipid (structural lipid) levels were only observed in M. lucifugus, including two phosphatidylcholines (PC [32:1], PC [42:6]) and one phosphatidylglycerol (PG [34:1]). These results suggest that even at early stages of WNS, changes in hepatic lipid mobilization may occur and be species and sex specific. As pre-hibernation lipid reserves may aid in bat persistence and survival during WNS, these early perturbations to lipid metabolism could have important implications for management responses that aid in pre-hibernation fat storage.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Nicole A S-Y Dorville
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Yvonne A Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Quinn E Fletcher
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Kaleigh J O Norquay
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, MB, Canada.
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20057, USA
| |
Collapse
|
8
|
Vanderwolf KJ, Campbell LJ, Goldberg TL, Blehert DS, Lorch JM. Skin fungal assemblages of bats vary based on susceptibility to white-nose syndrome. THE ISME JOURNAL 2021; 15:909-920. [PMID: 33149209 PMCID: PMC8027032 DOI: 10.1038/s41396-020-00821-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023]
Abstract
Microbial skin assemblages, including fungal communities, can influence host resistance to infectious diseases. The diversity-invasibility hypothesis predicts that high-diversity communities are less easily invaded than species-poor communities, and thus diverse microbial communities may prevent pathogens from colonizing a host. To explore the hypothesis that host fungal communities mediate resistance to infection by fungal pathogens, we investigated characteristics of bat skin fungal communities as they relate to susceptibility to the emerging disease white-nose syndrome (WNS). Using a culture-based approach, we compared skin fungal assemblage characteristics of 10 bat species that differ in susceptibility to WNS across 10 eastern U.S. states. The fungal assemblages on WNS-susceptible bat species had significantly lower alpha diversity and abundance compared to WNS-resistant species. Overall fungal assemblage structure did not vary based on WNS-susceptibility, but several yeast species were differentially abundant on WNS-resistant bat species. One yeast species inhibited Pseudogymnoascus destructans (Pd), the causative agent on WNS, in vitro under certain conditions, suggesting a possible role in host protection. Further exploration of interactions between Pd and constituents of skin fungal assemblages may prove useful for predicting susceptibility of bat populations to WNS and for developing effective mitigation strategies.
Collapse
Affiliation(s)
- Karen J Vanderwolf
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WIS, USA
- U.S. Geological Survey, National Wildlife Health Center, Madison, WIS, USA
| | - Lewis J Campbell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WIS, USA
- U.S. Geological Survey, National Wildlife Health Center, Madison, WIS, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WIS, USA
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, Madison, WIS, USA
| | - Jeffrey M Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, WIS, USA.
| |
Collapse
|
9
|
Lemieux-Labonté V, Dorville NASY, Willis CKR, Lapointe FJ. Antifungal Potential of the Skin Microbiota of Hibernating Big Brown Bats ( Eptesicus fuscus) Infected With the Causal Agent of White-Nose Syndrome. Front Microbiol 2020; 11:1776. [PMID: 32793178 PMCID: PMC7390961 DOI: 10.3389/fmicb.2020.01776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023] Open
Abstract
Little is known about skin microbiota in the context of the disease white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), that has caused enormous declines of hibernating North American bats over the past decade. Interestingly, some hibernating species, such as the big brown bat (Eptesicus fuscus), appear resistant to the disease and their skin microbiota could play a role. However, a comprehensive analysis of the skin microbiota of E. fuscus in the context of Pd has not been done. In January 2017, we captured hibernating E. fuscus, sampled their skin microbiota, and inoculated them with Pd or sham inoculum. We allowed the bats to hibernate in the lab under controlled conditions for 11 weeks and then sampled their skin microbiota to test the following hypotheses: (1) Pd infection would not disrupt the skin microbiota of Pd-resistant E. fuscus; and (2) microbial taxa with antifungal properties would be abundant both before and after inoculation with Pd. Using high-throughput 16S rRNA gene sequencing, we discovered that beta diversity of Pd-inoculated bats changed more over time than that of sham-inoculated bats. Still, the most abundant taxa in the community were stable throughout the experiment. Among the most abundant taxa, Pseudomonas and Rhodococcus are known for antifungal potential against Pd and other fungi. Thus, in contrast to hypothesis 1, Pd infection destabilized the skin microbiota but consistent with hypothesis 2, bacteria with known antifungal properties remained abundant and stable on the skin. This study is the first to provide a comprehensive survey of skin microbiota of E. fuscus, suggesting potential associations between the bat skin microbiota and resistance to the Pd infection and WNS. These results set the stage for future studies to characterize microbiota gene expression, better understand mechanisms of resistance to WNS, and help develop conservation strategies.
Collapse
Affiliation(s)
| | - Nicole A. S.-Y. Dorville
- Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada
| | - Craig K. R. Willis
- Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
10
|
Rusman Y, Wilson MB, Williams JM, Held BW, Blanchette RA, Anderson BN, Lupfer CR, Salomon CE. Antifungal Norditerpene Oidiolactones from the Fungus Oidiodendron truncatum, a Potential Biocontrol Agent for White-Nose Syndrome in Bats. JOURNAL OF NATURAL PRODUCTS 2020; 83:344-353. [PMID: 31986046 DOI: 10.1021/acs.jnatprod.9b00789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
White-nose syndrome (WNS) is a devastating disease of hibernating bats caused by the fungus Pseudogymnoascus destructans. We obtained 383 fungal and bacterial isolates from the Soudan Iron Mine, an important bat hibernaculum in Minnesota, then screened this library for antifungal activity to develop biological control treatments for WNS. An extract from the fungus Oidiodendron truncatum was subjected to bioassay-guided fractionation, which led to the isolation of 14 norditerpene and three anthraquinone metabolites. Ten of these compounds were previously described in the literature, and here we present the structures of seven new norditerpene analogues. Additionally, this is the first report of 4-chlorophyscion from a natural source, previously identified as a semisynthetic product. The compounds PR 1388 and LL-Z1271α were the only inhibitors of P. destructans (MIC = 7.5 and 15 μg/mL, respectively). Compounds were tested for cytotoxicity against fibroblast cell cultures obtained from Myotis septentrionalis (northern long eared bat) and M. grisescens (gray bat) using a standard MTT viability assay. The most active antifungal compound, PR 1388, was nontoxic toward cells from both bat species (IC50 > 100 μM). We discuss the implications of these results in the context of the challenges and logistics of developing a substrate treatment or prophylactic for WNS.
Collapse
Affiliation(s)
- Yudi Rusman
- Center for Drug Design , University of Minnesota , Minneapolis , Minnesota 55405 , United States
| | - Michael B Wilson
- Center for Drug Design , University of Minnesota , Minneapolis , Minnesota 55405 , United States
| | - Jessica M Williams
- Center for Drug Design , University of Minnesota , Minneapolis , Minnesota 55405 , United States
| | - Benjamin W Held
- Department of Plant Pathology , University of Minnesota , Minneapolis , Minnesota 55405 , United States
| | - Robert A Blanchette
- Department of Plant Pathology , University of Minnesota , Minneapolis , Minnesota 55405 , United States
| | - Brianna N Anderson
- Department of Biology , Missouri State University , Springfield , Missouri 65897 , United States
| | - Christopher R Lupfer
- Department of Biology , Missouri State University , Springfield , Missouri 65897 , United States
| | - Christine E Salomon
- Center for Drug Design , University of Minnesota , Minneapolis , Minnesota 55405 , United States
| |
Collapse
|
11
|
Frank CL, Davis AD, Herzog C. The evolution of a bat population with white-nose syndrome (WNS) reveals a shift from an epizootic to an enzootic phase. Front Zool 2019; 16:40. [PMID: 31827569 PMCID: PMC6889174 DOI: 10.1186/s12983-019-0340-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background White-nose Syndrome (WNS) is a mycosis caused by a cutaneous infection with the fungus Pseudogymnoascus destructans (Pd). It produces hibernation mortality rates of 75-98% in 4 bats: Myotis lucifugus, M. septentrionalis, M. sodalis, and Perimyotis subflavus. These high mortality rates were observed during the first several years after the arrival of P. destructans at a hibernation site. Mortality is caused by a 60% decrease in torpor bout duration, which results in a premature depletion of depot fat prior to spring. Results Little is known about the long-term effects of Pd on torpor and mortality, thus we conducted a 9-year study on M. lucifugus at 5 of the hibernation sites where Pd first appeared in North America during the winter of 2007-08. The M. lucifugus hibernating at one of these sites one year after the arrival of Pd (2008-09) had: a) a mean torpor bout duration of 7.6 d, b) no depot fat reserves by March, and c) an apparent over-winter mortality rate of 88%. The M. lucifugus hibernating at this same site 6-9 years after the arrival of Pd, in contrast, had: a) a mean torpor bout duration of 14.7 d, b) depot fat remaining in March, and c) an apparent mortality rate of 50%. The number of M. lucifugus hibernating at 2 of these sites has consistently increased since 2010 and is now more than 3.0-fold higher than the number remaining after the winter of 2008-09. Conclusions These findings indicate that this population of M. lucifugus has evolved mechanisms to hibernate well in the presence of Pd, thus reducing over-winter mortality.
Collapse
Affiliation(s)
- Craig L Frank
- 1Department of Biological Sciences, Fordham University, The Louis Calder Center, P.O. Box 887, Armonk, NY 10504 USA
| | - April D Davis
- 2Griffin Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Carl Herzog
- 3New York State Department of Environmental Conservation, 625 Broadway, Albany, NY 12233 USA
| |
Collapse
|
12
|
Gabriel KT, Neville JJ, Pierce GE, Cornelison CT. Lipolytic Activity and the Utilization of Fatty Acids Associated with Bat Sebum by Pseudogymnoascus destructans. Mycopathologia 2019; 184:625-636. [PMID: 31529298 DOI: 10.1007/s11046-019-00381-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/28/2019] [Indexed: 01/13/2023]
Abstract
Pseudogymnoascus destructans is the causative agent of a fungal infection of bats known as white-nose syndrome (WNS). Since its discovery in 2006, it has been responsible for precipitous declines of several species of cave-dwelling North American bats. While numerous advancements in the understanding of the disease processes underlying WNS have been made in recent years, there are still many aspects of WNS, particularly with respect to pathogen virulence, that remain unknown. In this preliminary investigation, we sought to further elucidate the disease cycle by concentrating on the pathogen, with specific focus on its ability to utilize lipids that compose bat wing sebum and are found in wing membranes, as a substrate for energy and growth. In vitro growth experiments were conducted with the three most common fatty acids that comprise bat sebum: oleic, palmitic, and stearic acids. None of the fatty acids were observed to contribute a significant difference in mean growth from controls grown on SDA, although morphological differences were observed in several instances. Additionally, as an accompaniment to the growth experiments, bat wing explants from Perimyotis subflavus and Eptesicus fuscus were fluorescently stained to visualize the difference in distribution of 16- and 18-carbon chain fatty acids in the wing membrane. Which substrates contribute to the growth of P. destructans is important to understanding the progressive impact P. destructans has on bat health through the course of the disease cycle.
Collapse
Affiliation(s)
- Kyle T Gabriel
- Division of Research and Advanced Studies, Kennesaw State University, Kennesaw, GA, USA.
| | - John J Neville
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - George E Pierce
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
13
|
Beekman CN, Meckler L, Kim E, Bennett RJ. Galleria mellonella as an insect model for P. destructans, the cause of White-nose Syndrome in bats. PLoS One 2018; 13:e0201915. [PMID: 30183704 PMCID: PMC6124720 DOI: 10.1371/journal.pone.0201915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Pseudogymnoascus destructans is the fungal pathogen responsible for White-nose Syndrome (WNS), a disease that has killed millions of bats in North America over the last decade. A major obstacle to research on P. destructans has been the lack of a tractable infection model for monitoring virulence. Here, we establish a high-throughput model of infection using larvae of Galleria mellonella, an invertebrate used to study host-pathogen interactions for a wide range of microbial species. We demonstrate that P. destructans can kill G. mellonella larvae in an inoculum-dependent manner when infected larvae are housed at 13°C or 18°C. Larval killing is an active process, as heat-killed P. destructans spores caused significantly decreased levels of larval death compared to live spores. We also show that fungal spores that were germinated prior to inoculation were able to kill larvae 3–4 times faster than non-germinated spores. Lastly, we identified chemical inhibitors of P. destructans and used G. mellonella to evaluate these inhibitors for their ability to reduce virulence. We demonstrate that amphotericin B can effectively block larval killing by P. destructans and thereby establish that this infection model can be used to screen biocontrol agents against this fungal pathogen.
Collapse
Affiliation(s)
- Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Lauren Meckler
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Eleanor Kim
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI United States of America
- * E-mail:
| |
Collapse
|
14
|
The Antifungal Properties of Epidermal Fatty Acid Esters: Insights from White-Nose Syndrome (WNS) in Bats. Molecules 2018; 23:molecules23081986. [PMID: 30096918 PMCID: PMC6222711 DOI: 10.3390/molecules23081986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 02/01/2023] Open
Abstract
Numerous free fatty acids (FFAs) are known to have potent antifungal effects. The mammalian epidermis contains both FFAs and multiple classes of fatty acid esters, including 1-monoacylglycerols and wax esters. We thus hypothesized that wax esters and 1-monoacylglycerols composed of antifungal fatty acids would also have antifungal properties. We tested this hypothesis by examining the effects of 1-monoacylglycerols, 1,3-diacylglycerols, and wax esters on the growth of Pseudogymnoascus destructans (Pd), the fungus that causes White-nose Syndrome (WNS) in North American bats by invading their epidermis. Laboratory experiments with Pd cultures demonstrated that: (a) three 1-monoacylglycerols (1-monopalmitolein, 1-monoolein, and 1-monolinolein), as well as, (b) two wax esters, behenyl oleate and behenyl palmitoleate, profoundly inhibit Pd growth. The normal growth cycle of Pd was interrupted by addition of two cholesterol esters to the media as well. A bat species resistant to cutaneous Pd infections has these 1-monoacylglycerols in the epidermis, and another Pd resistant bat species has these wax esters in the sebum, thus cutaneous lipid composition is one factor which enables some bats to avoid WNS. Our experiments also revealed that the fatty acid esters which inhibit Pd growth are not hydrolyzed by the lipases secreted by this fungus, whereas the esters that do not inhibit Pd growth are hydrolyzed.
Collapse
|
15
|
Ingala MR, Ravenelle RE, Monro JJ, Frank CL. The effects of epidermal fatty acid profiles, 1-oleoglycerol, and triacylglycerols on the susceptibility of hibernating bats to Pseudogymnoascus destructans. PLoS One 2017; 12:e0187195. [PMID: 29077745 PMCID: PMC5659645 DOI: 10.1371/journal.pone.0187195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
White Nose Syndrome (WNS) greatly increases the over-winter mortality of little brown (Myotis lucifugus), Indiana (M. sodalis), northern (M. septentrionalis), and tricolored (Perimyotis subflavus) bats, and is caused by cutaneous infections with Pseudogymnoascus destructans (Pd). Big brown bats (Eptesicus fuscus) are highly resistant to Pd infections. Seven different fatty acids (myristic, pentadecanoic, palmitic, palmitoleic, oleic, and, linoleic acids) occur in the wing epidermis of both M. lucifugus and E. fuscus, 4 of which (myristic, palmitoleic, oleic, and, linoleic acids) inhibit Pd growth. The amounts of myristic and linoleic acids in the epidermis of M. lucifugus decrease during hibernation, thus we predicted that the epidermal fatty acid profile of M. lucifugus during hibernation has a reduced ability to inhibit Pd growth. Laboratory Pd growth experiments were conducted to test this hypothesis. The results demonstrated that the fatty acid profile of M. lucifugus wing epidermis during hibernation has a reduced ability to inhibit the growth of Pd. Additional Pd growth experiments revealed that: a) triacylglycerols composed of known anti-Pd fatty acids do not significantly affect growth, b) pentadecanoic acid inhibits Pd growth, and c) 1-oleoglycerol, which is found in the wing epidermis of E. fuscus, also inhibits the growth of this fungus. Analyses of white adipose from M. lucifugus also revealed the selective retention of oleic and linoleic acids in this tissue during hibernation.
Collapse
Affiliation(s)
- Melissa R. Ingala
- Department of Biological Sciences, Fordham University, Louis Calder Center, Armonk, NY, United States of America
| | - Rebecca E. Ravenelle
- Department of Biological Sciences, Fordham University, Louis Calder Center, Armonk, NY, United States of America
| | - Johanna J. Monro
- Environmental Science Program, Fordham University, Bronx, NY, United States of America
| | - Craig L. Frank
- Department of Biological Sciences, Fordham University, Louis Calder Center, Armonk, NY, United States of America
- * E-mail:
| |
Collapse
|
16
|
Frank CL. Changes in the Pseudogymnoascus destructans transcriptome during White-nose Syndrome reveal possible mechanisms for both virulence and host resistance. Virulence 2017; 8:1486-1488. [PMID: 28806135 DOI: 10.1080/21505594.2017.1366409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Craig L Frank
- a Department of Biological Sciences , Fordham University , Armonk , NY , USA
| |
Collapse
|
17
|
Energy conserving thermoregulatory patterns and lower disease severity in a bat resistant to the impacts of white-nose syndrome. J Comp Physiol B 2017; 188:163-176. [PMID: 28597237 DOI: 10.1007/s00360-017-1109-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 01/23/2023]
Abstract
The devastating bat fungal disease, white-nose syndrome (WNS), does not appear to affect all species equally. To experimentally determine susceptibility differences between species, we exposed hibernating naïve little brown myotis (Myotis lucifugus) and big brown bats (Eptesicus fuscus) to the fungus that causes WNS, Pseudogymnoascus destructans (Pd). After hibernating under identical conditions, Pd lesions were significantly more prevalent and more severe in little brown myotis. This species difference in pathology correlates with susceptibility to WNS in the wild and suggests that survival is related to different host physiological responses. We observed another fungal infection, associated with neutrophilic inflammation, that was equally present in all bats. This suggests that both species are capable of generating a response to cold tolerant fungi and that Pd may have evolved mechanisms for evading host responses that are effective in at least some bat species. These host-pathogen interactions are likely mediated not just by host physiological responses, but also by host behavior. Pd-exposed big brown bats, the less affected species, spent more time in torpor than did control animals, while little brown myotis did not exhibit this change. This differential thermoregulatory response to Pd infection by big brown bat hosts may allow for a more effective (or less pathological) immune response to tissue invasion.
Collapse
|
18
|
Marroquin CM, Lavine JO, Windstam ST. Effect of Humidity on Development ofPseudogymnoascus destructans, the Causal Agent of Bat White-Nose Syndrome. Northeast Nat (Steuben) 2017. [DOI: 10.1656/045.024.0105] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Cynthia M. Marroquin
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY 13126
| | - Jamal O. Lavine
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY 13126
| | - Sofia T. Windstam
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY 13126
| |
Collapse
|
19
|
Klüg-Baerwald BJ, Brigham RM. Hung out to dry? Intraspecific variation in water loss in a hibernating bat. Oecologia 2017; 183:977-985. [PMID: 28213638 DOI: 10.1007/s00442-017-3837-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/07/2017] [Indexed: 02/05/2023]
Abstract
Hibernation is a period of water deficit for some small mammals, and humidity strongly influences hibernation patterns. Dry conditions reduce length of torpor bouts, stimulate arousals, and decrease overwinter survival. To mitigate these effects, many small mammals hibernate in near saturated (100% RH) conditions. However, big brown bats (Eptesicus fuscus) hibernate in a wider variety of conditions and tolerate lower humidity than most other bats. To assess arid tolerance in this species, we compared torpid metabolic rates (TMR) and rates of total evaporative water loss (TEWL) between two populations of E. fuscus with differing winter ecologies: one that hibernates in humid karst caves and one that hibernates in relatively dry rock crevices. We used flow-through respirometry to measure TMR and TEWL of bats in humid and dry conditions. Torpid metabolic rates did not differ between populations or with humidity treatments. Rates of TEWL were similar between populations in humid conditions, but higher for cave-hibernating bats than crevice-hibernating bats in dry conditions. Our results suggest that E. fuscus hibernating in arid environments have mechanisms to decrease evaporative water loss that are not evident at more humid sites. Drought tolerance may facilitate the sedentary nature of the species, allowing them to tolerate more variable microclimates during hibernation and thus increasing the availability of overwintering habitat. The ability to survive arid conditions may also lessen the susceptibility of E. fuscus to diseases that affect water balance.
Collapse
Affiliation(s)
| | - R Mark Brigham
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, Canada
| |
Collapse
|