1
|
Csilléry K, Buchmann N, Brendel O, Gessler A, Glauser A, Doris Kupferschmid A. Recovery of silver fir (Abies alba Mill.) seedlings from ungulate browsing mirrors soil nitrogen availability. TREE PHYSIOLOGY 2022; 42:273-288. [PMID: 34528673 DOI: 10.1093/treephys/tpab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Abies alba (Mill.) has a high potential for mitigating climate change in European mountain forests; yet, its natural regeneration is severely limited by ungulate browsing. Here, we simulated browsing in a common garden experiment to study growth and physiological traits, measured from bulk needles, using a randomized block design with two levels of browsing severity and seedlings originating from 19 populations across Switzerland. Genetic factors explained most variation in growth (on average, 51.5%) and physiological traits (10.2%) under control conditions, while heavy browsing considerably reduced the genetic effects on growth (to 30%), but doubled those on physiological traits related to carbon storage. While browsing reduced seedling height, it also lowered seedling water-use efficiency (decreased $\delta ^{13}$C) and increased their $\delta ^{15}$N. Different populations reacted differently to browsing stress, and for seedling height, starch concentration and $\delta ^{15}$N, population differences appeared to be the result of natural selection. First, we found that populations originating from the warmest regions recovered the fastest from browsing stress, and they did so by mobilizing starch from their needles, which suggests a genetic underpinning for a growth-storage trade-off across populations. Second, we found that seedlings originating from mountain populations growing on steep slopes had a higher $\delta ^{15}$N in the common garden than those originating from flat areas, indicating that they have been selected to grow on N-poor, potentially drained, soils. This finding was corroborated by the fact that nitrogen concentration in adult needles was lower on steep slopes than on flat ground, strongly indicating that steep slopes are the most N-poor environments. These results suggest that adaptation to climate and soil nitrogen availability, as well as ungulate browsing pressure, co-determine the regeneration and range limit of silver fir.
Collapse
Affiliation(s)
- Katalin Csilléry
- Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Brendel
- UMR Silva, INRAE, AgroParisTech, Université de Lorraine, Nancy, France
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Alexandra Glauser
- Forest Resources and Management, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | |
Collapse
|
2
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska‐Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon‐Cochard C, Rose L, Ryser P, Scherer‐Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde‐Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021; 232:973-1122. [PMID: 34608637 PMCID: PMC8518129 DOI: 10.1111/nph.17572] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T. Freschet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
| | - Loïc Pagès
- UR 1115 PSHCentre PACA, site AgroparcINRAE84914Avignon cedex 9France
| | - Colleen M. Iversen
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Louise H. Comas
- USDA‐ARS Water Management Research Unit2150 Centre Avenue, Bldg D, Suite 320Fort CollinsCO80526USA
| | - Boris Rewald
- Department of Forest and Soil SciencesUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Catherine Roumet
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Jitka Klimešová
- Department of Functional EcologyInstitute of Botany CASDukelska 13537901TrebonCzech Republic
| | - Marcin Zadworny
- Institute of DendrologyPolish Academy of SciencesParkowa 562‐035KórnikPoland
| | - Hendrik Poorter
- Plant Sciences (IBG‐2)Forschungszentrum Jülich GmbHD‐52425JülichGermany
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | | | - Thomas S. Adams
- Department of Plant SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Agnieszka Bagniewska‐Zadworna
- Department of General BotanyInstitute of Experimental BiologyFaculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznańskiego 661-614PoznańPoland
| | - A. Glyn Bengough
- The James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- School of Science and EngineeringUniversity of DundeeDundee,DD1 4HNUK
| | | | - Ivano Brunner
- Forest Soils and BiogeochemistrySwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
| | - Johannes H. C. Cornelissen
- Department of Ecological ScienceFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Eric Garnier
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Arthur Gessler
- Forest DynamicsSwiss Federal Research Institute WSLZürcherstr. 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH Zurich8092ZurichSwitzerland
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| | - Ina C. Meier
- Functional Forest EcologyUniversity of HamburgHaidkrugsweg 122885BarsbütelGermany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation GroupDepartment of Environmental SciencesWageningen University and ResearchPO Box 476700 AAWageningenthe Netherlands
| | | | - Laura Rose
- Station d’Ecologie Théorique et ExpérimentaleCNRS2 route du CNRS09200MoulisFrance
- Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberganlage 2560325Frankfurt am MainGermany
| | - Peter Ryser
- Laurentian University935 Ramsey Lake RoadSudburyONP3E 2C6Canada
| | | | - Nadejda A. Soudzilovskaia
- Environmental Biology DepartmentInstitute of Environmental SciencesCMLLeiden UniversityLeiden2300 RAthe Netherlands
| | - Alexia Stokes
- INRAEAMAPCIRAD, IRDCNRSUniversity of MontpellierMontpellier34000France
| | - Tao Sun
- Institute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical BotanyDepartment of Biological SciencesFlorida International UniversityMiamiFL33199USA
| | - Monique Weemstra
- CEFEUniv Montpellier, CNRS, EPHE, IRD1919 route de MendeMontpellier34293France
| | - Alexandra Weigelt
- Systematic Botany and Functional BiodiversityInstitute of BiologyLeipzig UniversityJohannisallee 21-23Leipzig04103Germany
| | - Nina Wurzburger
- Odum School of EcologyUniversity of Georgia140 E. Green StreetAthensGA30602USA
| | - Larry M. York
- Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Sarah A. Batterman
- School of Geography and Priestley International Centre for ClimateUniversity of LeedsLeedsLS2 9JTUK
- Cary Institute of Ecosystem StudiesMillbrookNY12545USA
| | - Moemy Gomes de Moraes
- Department of BotanyInstitute of Biological SciencesFederal University of Goiás1974690-900Goiânia, GoiásBrazil
| | - Štěpán Janeček
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawley (Perth)WA 6009Australia
| | - Hans Lambers
- School of Biological SciencesThe University of Western AustraliaCrawley (Perth)WAAustralia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Nishanth Tharayil
- Department of Plant and Environmental SciencesClemson UniversityClemsonSC29634USA
| | - M. Luke McCormack
- Center for Tree ScienceMorton Arboretum, 4100 Illinois Rt. 53LisleIL60532USA
| |
Collapse
|
3
|
Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, Klimešová J, Zadworny M, Poorter H, Postma JA, Adams TS, Bagniewska-Zadworna A, Bengough AG, Blancaflor EB, Brunner I, Cornelissen JHC, Garnier E, Gessler A, Hobbie SE, Meier IC, Mommer L, Picon-Cochard C, Rose L, Ryser P, Scherer-Lorenzen M, Soudzilovskaia NA, Stokes A, Sun T, Valverde-Barrantes OJ, Weemstra M, Weigelt A, Wurzburger N, York LM, Batterman SA, Gomes de Moraes M, Janeček Š, Lambers H, Salmon V, Tharayil N, McCormack ML. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. THE NEW PHYTOLOGIST 2021. [PMID: 34608637 DOI: 10.1111/nph.17572.hal-03379708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Collapse
Affiliation(s)
- Grégoire T Freschet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Loïc Pagès
- UR 1115 PSH, Centre PACA, site Agroparc, INRAE, 84914, Avignon cedex 9, France
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Louise H Comas
- USDA-ARS Water Management Research Unit, 2150 Centre Avenue, Bldg D, Suite 320, Fort Collins, CO, 80526, USA
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Catherine Roumet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Jitka Klimešová
- Department of Functional Ecology, Institute of Botany CAS, Dukelska 135, 37901, Trebon, Czech Republic
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Johannes A Postma
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas S Adams
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - A Glyn Bengough
- The James Hutton Institute, Invergowrie, Dundee,, DD2 5DA, UK
- School of Science and Engineering, University of Dundee, Dundee,, DD1 4HN, UK
| | - Elison B Blancaflor
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
| | - Johannes H C Cornelissen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092, Zurich, Switzerland
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Ina C Meier
- Functional Forest Ecology, University of Hamburg, Haidkrugsweg 1, 22885, Barsbütel, Germany
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | | | - Laura Rose
- Station d'Ecologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200, Moulis, France
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Peter Ryser
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | | | - Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, 2300 RA, the Netherlands
| | - Alexia Stokes
- INRAE, AMAP, CIRAD, IRD, CNRS, University of Montpellier, Montpellier, 34000, France
| | - Tao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Oscar J Valverde-Barrantes
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier, 34293, France
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, Leipzig, 04103, Germany
| | - Nina Wurzburger
- Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens, GA, 30602, USA
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sarah A Batterman
- School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds, LS2 9JT, UK
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
| | - Moemy Gomes de Moraes
- Department of Botany, Institute of Biological Sciences, Federal University of Goiás, 19, 74690-900, Goiânia, Goiás, Brazil
| | - Štěpán Janeček
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009, Australia
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA, Australia
| | - Verity Salmon
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - M Luke McCormack
- Center for Tree Science, Morton Arboretum, 4100 Illinois Rt. 53, Lisle, IL, 60532, USA
| |
Collapse
|
4
|
Palacio S, Paterson E, Hester AJ, Nogués S, Lino G, Anadon-Rosell A, Maestro M, Millard P. No preferential carbon-allocation to storage over growth in clipped birch and oak saplings. TREE PHYSIOLOGY 2020; 40:621-636. [PMID: 32050021 PMCID: PMC7201831 DOI: 10.1093/treephys/tpaa011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Herbivory is one of the most globally distributed disturbances affecting carbon (C)-cycling in trees, yet our understanding of how it alters tree C-allocation to different functions such as storage, growth or rhizodeposition is still limited. Prioritized C-allocation to storage replenishment vs growth could explain the fast recovery of C-storage pools frequently observed in growth-reduced defoliated trees. We performed continuous 13C-labeling coupled to clipping to quantify the effects of simulated browsing on the growth, leaf morphology and relative allocation of stored vs recently assimilated C to the growth (bulk biomass) and non-structural carbohydrate (NSC) stores (soluble sugars and starch) of the different organs of two tree species: diffuse-porous (Betula pubescens Ehrh.) and ring-porous (Quercus petraea [Matt.] Liebl.). Carbon-transfers from plants to bulk and rhizosphere soil were also evaluated. Clipped birch and oak trees shifted their C-allocation patterns above-ground as a means to recover from defoliation. However, such increased allocation to current-year stems and leaves did not entail reductions in the allocation to the rhizosphere, which remained unchanged between clipped and control trees of both species. Betula pubescens and Q. petraea showed differences in their vulnerability and recovery strategies to clipping, the ring-porous species being less affected in terms of growth and architecture by clipping than the diffuse-porous. These contrasting patterns could be partly explained by differences in their C cycling after clipping. Defoliated oaks showed a faster recovery of their canopy biomass, which was supported by increased allocation of new C, but associated with large decreases in their fine root biomass. Following clipping, both species recovered NSC pools to a larger extent than growth, but the allocation of 13C-labeled photo-assimilates into storage compounds was not increased as compared with controls. Despite their different response to clipping, our results indicate no preventative allocation into storage occurred during the first year after clipping in either of the species.
Collapse
Affiliation(s)
- Sara Palacio
- Instituto Pirenaico de Ecología (IPE-CSIC), Av. Nuestra Señora de la Victoria, 16, Jaca, Huesca 22700, Spain
- James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Eric Paterson
- James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Alison J Hester
- James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Salvador Nogués
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Gladys Lino
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
- Facultad de Ciencias Ambientales, Universidad Científica del Sur, Panamericana Sur km 19, Villa El Salvador 15067, Lima, Peru
| | - Alba Anadon-Rosell
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmanstraße 15, Greifswald 17487, Germany
| | - Melchor Maestro
- Instituto Pirenaico de Ecología (IPE-CSIC), Av. Montañana, 1005, Zaragoza 50059, Spain
| | - Peter Millard
- Manaaki Whenua Landcare Research, PO Box 69040, Lincoln 7640, New Zealand
| |
Collapse
|
5
|
Mannerheim N, Blessing CH, Oren I, Grünzweig JM, Bachofen C, Buchmann N. Carbon allocation to the root system of tropical tree Ceiba pentandra using 13C pulse labelling in an aeroponic facility. TREE PHYSIOLOGY 2020; 40:350-366. [PMID: 31976538 DOI: 10.1093/treephys/tpz142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Despite the important role of tropical forest ecosystems in the uptake and storage of atmospheric carbon dioxide (CO2), the carbon (C) dynamics of tropical tree species remains poorly understood, especially regarding belowground roots. This study assessed the allocation of newly assimilated C in the fast-growing pioneer tropical tree species Ceiba pentandra (L.), with a special focus on different root categories. During a 5-day pulse-labelling experiment, 9-month-old (~3.5-m-tall) saplings were labelled with 13CO2 in a large-scale aeroponic facility, which allowed tracing the label in bulk biomass and in non-structural carbohydrates (sugars and starch) as well as respiratory CO2 from the canopy to the root system, including both woody and non-woody roots. A combined logistic and exponential model was used to evaluate 13C mean transfer time and mean residence time (MRT) to the root systems. We found 13C in the root phloem as early as 2 h after the labelling, indicating a mean C transfer velocity of 2.4 ± 0.1 m h-1. Five days after pulse labelling, 27% of the tracers taken up by the trees were found in the leaves and 13% were recovered in the woody tissue of the trunk, 6% in the bark and 2% in the root systems, while 52% were lost, most likely by respiration and exudation. Larger amounts of 13C were found in root sugars than in starch, the former also demonstrating shorter MRT than starch. Of all investigated root categories, non-woody white roots (NRW) showed the largest 13C enrichment and peaked in the deepest NRW (2-3.5 m) as early as 24 ± 2 h after labelling. In contrast to coarse woody brown roots, the sink strength of NRW increased with root depth. The findings of this study improve the understanding of C allocation in young tropical trees and provide unique insights into the changing contributions of woody and non-woody roots to C sink strengths with depth.
Collapse
Affiliation(s)
- Neringa Mannerheim
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Carola H Blessing
- Landwirtschaftliches Technologiezentrum Augustenberg, Kutschenweg 20, 76287 Rheinstetten-Forchheim, Germany
| | - Israel Oren
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - José M Grünzweig
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Christoph Bachofen
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
6
|
Merganičová K, Merganič J, Lehtonen A, Vacchiano G, Sever MZO, Augustynczik ALD, Grote R, Kyselová I, Mäkelä A, Yousefpour R, Krejza J, Collalti A, Reyer CPO. Forest carbon allocation modelling under climate change. TREE PHYSIOLOGY 2019; 39:1937-1960. [PMID: 31748793 PMCID: PMC6995853 DOI: 10.1093/treephys/tpz105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 05/19/2023]
Abstract
Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.
Collapse
Affiliation(s)
- Katarína Merganičová
- Czech University of Life Sciences, Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic
- Technical University Zvolen, Forestry Faculty, T. G. Masaryka 24, 96053 Zvolen, Slovakia
| | - Ján Merganič
- Technical University Zvolen, Forestry Faculty, T. G. Masaryka 24, 96053 Zvolen, Slovakia
| | - Aleksi Lehtonen
- The Finnish Forest Research Institute - Luke, PO Box 18 (Jokiniemenkuja 1), FI-01301 Vantaa, Finland
| | - Giorgio Vacchiano
- Università degli Studi di Milano, DISAA. Via Celoria 2, 20132 Milano, Italy
| | - Maša Zorana Ostrogović Sever
- Croatian Forest Research Institute, Department for forest management and forestry economics, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
| | | | - Rüdiger Grote
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Ina Kyselová
- Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Annikki Mäkelä
- University of Helsinki, Department of Forest Science, Latokartanonkaari 7, P.O. Box 27, 00014 Helsinki, Finland
| | - Rasoul Yousefpour
- University of Freiburg, Tennenbacher Str. 4 (2. OG), D-79106 Freiburg, Germany
| | - Jan Krejza
- Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Alessio Collalti
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), 87036 Rende, Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Christopher P O Reyer
- Potsdam Institute for Climate Impact Research, Telegraphenberg, PO Box 601203, D-14473 Potsdam, Germany
| |
Collapse
|