1
|
Yan H, Opachaloemphan C, Carmona-Aldana F, Mancini G, Mlejnek J, Descostes N, Sieriebriennikov B, Leibholz A, Zhou X, Ding L, Traficante M, Desplan C, Reinberg D. Insulin signaling in the long-lived reproductive caste of ants. Science 2022; 377:1092-1099. [PMID: 36048960 PMCID: PMC9526546 DOI: 10.1126/science.abm8767] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In most organisms, reproduction is correlated with shorter life span. However, the reproductive queen in eusocial insects exhibits a much longer life span than that of workers. In Harpegnathos ants, when the queen dies, workers can undergo an adult caste switch to reproductive pseudo-queens (gamergates), exhibiting a five-times prolonged life span. To explore the relation between reproduction and longevity, we compared gene expression during caste switching. Insulin expression is increased in the gamergate brain that correlates with increased lipid synthesis and production of vitellogenin in the fat body, both transported to the egg. This results from activation of the mitogen-activated protein kinase (MAPK) branch of the insulin signaling pathway. By contrast, the production in the gamergate developing ovary of anti-insulin Imp-L2 leads to decreased signaling of the AKT/forkhead box O (FOXO) branch in the fat body, which is consistent with their extended longevity.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| | - Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Francisco Carmona-Aldana
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Giacomo Mancini
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bogdan Sieriebriennikov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Long Ding
- Department of Biology, New York University, New York, NY 10003, USA
| | - Maria Traficante
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Catalani GC, Camargo RS, Sousa KKA, Caldato N, Silva AAC, Forti LC. Fat-Soluble Substance Flow During Symbiotic Fungus Cultivation by Leaf-Cutter Ants. NEOTROPICAL ENTOMOLOGY 2020; 49:116-123. [PMID: 31701477 DOI: 10.1007/s13744-019-00718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Leaf-cutter ants perform a series of specialized behaviors in preparing plant substrates for their symbiotic fungus. This process may be related to contamination of workers by substances such as insecticides, leading us to hypothesize that substances are spread among workers through behaviors they perform to grow the fungus. To test this hypothesis, we analyzed the behavioral acts of workers during the processing of the pellets by using a fat-soluble tracing dye, since the active ingredient that composes toxic baits, used for control of leaf-cutter ants, is fat-soluble. The frequencies of performed behaviors were recorded and the number of dyed workers was assessed after fungus cultivation. The most frequent behavior is allogrooming and corresponds to 45.87% of the contamination process in workers, followed by holding, licking, and cutting pellets, which account for 40.22% of the process. After pellet processing, the workers had their external and internal morphological structures marked by the tracing dye-93.75% and 79.25%, respectively. These results confirm that behaviors performed during fungus cultivation contribute to dispersing substances such as insecticides, causing the contamination of workers.
Collapse
Affiliation(s)
- G C Catalani
- Depto de Proteção Vegetal, Faculdade de Ciências Agronômicas, Univ Estadual Paulista, Botucatu, SP, Brasil.
| | - R S Camargo
- Depto de Proteção Vegetal, Faculdade de Ciências Agronômicas, Univ Estadual Paulista, Botucatu, SP, Brasil
| | - K K A Sousa
- Depto de Proteção Vegetal, Faculdade de Ciências Agronômicas, Univ Estadual Paulista, Botucatu, SP, Brasil
| | - N Caldato
- Depto de Proteção Vegetal, Faculdade de Ciências Agronômicas, Univ Estadual Paulista, Botucatu, SP, Brasil
| | - A A C Silva
- Univ Federal do Piauí, Campus Univ Ministro Petrônio Portella, Teresina, PI, Brasil
| | - L C Forti
- Depto de Proteção Vegetal, Faculdade de Ciências Agronômicas, Univ Estadual Paulista, Botucatu, SP, Brasil
| |
Collapse
|
3
|
Is the Salivary Gland Associated with Honey Bee Recognition Compounds in Worker Honey Bees (Apis mellifera)? J Chem Ecol 2018; 44:650-657. [PMID: 29876722 PMCID: PMC6096523 DOI: 10.1007/s10886-018-0975-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 01/14/2023]
Abstract
Cuticular hydrocarbons (CHCs) function as recognition compounds with the best evidence coming from social insects such as ants and honey bees. The major exocrine gland involved in hydrocarbon storage in ants is the post-pharyngeal gland (PPG) in the head. It is still not clearly understood where CHCs are stored in the honey bee. The aim of this study was to investigate the hydrocarbons and esters found in five major worker honey bee (Apis mellifera) exocrine glands, at three different developmental stages (newly emerged, nurse, and forager) using a high temperature GC analysis. We found the hypopharyngeal gland contained no hydrocarbons nor esters, and the thoracic salivary and mandibular glands only contained trace amounts of n-alkanes. However, the cephalic salivary gland (CSG) contained the greatest number and highest quantity of hydrocarbons relative to the five other glands with many of the hydrocarbons also found in the Dufour’s gland, but at much lower levels. We discovered a series of oleic acid wax esters that lay beyond the detection of standard GC columns. As a bee’s activities changed, as it ages, the types of compounds detected in the CSG also changed. For example, newly emerged bees have predominately C19-C23n-alkanes, alkenes and methyl-branched compounds, whereas the nurses’ CSG had predominately C31:1 and C33:1 alkene isomers, which are replaced by a series of oleic acid wax esters in foragers. These changes in the CSG were mirrored by corresponding changes in the adults’ CHCs profile. This indicates that the CSG may have a parallel function to the PPG found in ants acting as a major storage gland of CHCs. As the CSG duct opens into the buccal cavity the hydrocarbons can be worked into the comb wax and could help explain the role of comb wax in nestmate recognition experiments.
Collapse
|
4
|
Vieira AS, Ramalho MO, Martins C, Martins VG, Bueno OC. Microbial Communities in Different Tissues of Atta sexdens rubropilosa Leaf-cutting Ants. Curr Microbiol 2017; 74:1216-1225. [PMID: 28721658 DOI: 10.1007/s00284-017-1307-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023]
Abstract
Bacterial endosymbionts are common in all insects, and symbiosis has played an integral role in ant evolution. Atta sexdens rubropilosa leaf-cutting ants cultivate their symbiotic fungus using fresh leaves. They need to defend themselves and their brood against diseases, but they also need to defend their obligate fungus gardens, their primary food source, from infection, parasitism, and usurpation by competitors. This study aimed to characterize the microbial communities in whole workers and different tissues of A. sexdens rubropilosa queens using Ion Torrent NGS. Our results showed that the microbial community in the midgut differs in abundance and diversity from the communities in the postpharyngeal gland of the queen and in whole workers. The main microbial orders in whole workers were Lactobacillales, Clostridiales, Enterobacteriales, Actinomycetales, Burkholderiales, and Bacillales. In the tissues of the queens, the main orders were Burkholderiales, Clostridiales, Syntrophobacterales, Lactobacillales, Bacillales, and Actinomycetales (midgut) and Entomoplasmatales, unclassified γ-proteobacteria, and Actinomycetales (postpharyngeal glands). The high abundance of Entomoplasmatales in the postpharyngeal glands (77%) of the queens was an unprecedented finding. We discuss the role of microbial communities in different tissues and castes. Bacteria are likely to play a role in nutrition and immune defense as well as helping antimicrobial defense in this ant species.
Collapse
Affiliation(s)
- Alexsandro S Vieira
- Centro de Estudos de Insetos Sociais, UNESP - Univ Estadual Paulista, Campus Rio Claro, Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil.
| | - Manuela O Ramalho
- Centro de Estudos de Insetos Sociais, UNESP - Univ Estadual Paulista, Campus Rio Claro, Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Cintia Martins
- Universidade Federal do Piauí - Campus Ministro Reis Velloso, Av. São Sebastião, 2819, Parnaíba, Piauí, 64.202-020, Brazil
| | - Vanderlei G Martins
- Centro de Estudos de Insetos Sociais, UNESP - Univ Estadual Paulista, Campus Rio Claro, Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Odair C Bueno
- Centro de Estudos de Insetos Sociais, UNESP - Univ Estadual Paulista, Campus Rio Claro, Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil
| |
Collapse
|
5
|
Camargo RDS, Puccini C, Forti LC, de Matos CAO. Allogrooming, Self-Grooming, and Touching Behavior: Contamination Routes of Leaf-Cutting Ant Workers Using a Fat-Soluble Tracer Dye. INSECTS 2017; 8:insects8020059. [PMID: 28598375 PMCID: PMC5492073 DOI: 10.3390/insects8020059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022]
Abstract
The aim of this study was to determine whether worker self-grooming, allogrooming, and direct contact promotes the dispersal of substances among members of the colony. For this purpose, a tracer (Sudan III dye) was applied topically to a worker ant and the social interactions between the worker with the tracer and workers without the tracer were studied. Additionally, the worker heads were dissected to visualize whether or not the post-pharyngeal gland was stained. The post-pharyngeal glands from 50% to 70% of workers were stained depending on the size of the group. With the increase in the experimental group size, the frequency of interactions between workers increased, with touching being the most frequent behavior. The tracer dye was probably passed on by direct contact between workers, followed by self-grooming and allogrooming. These behaviors are responsible for the rapid dispersal of substances among colony members as observed in our experiment. The results therefore support the hypothesis that contact with substances promotes the contamination of nestmates, even in the absence of feeding, serving as a model for further studies on the contamination of workers with the active ingredients of insecticides.
Collapse
Affiliation(s)
- Roberto da Silva Camargo
- Laboratório de Insetos Sociais-Praga, Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, UNESP, Caixa Postal 237, Botucatu, SP 18603-970, Brasil.
| | - Carolina Puccini
- Laboratório de Insetos Sociais-Praga, Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, UNESP, Caixa Postal 237, Botucatu, SP 18603-970, Brasil.
| | - Luiz Carlos Forti
- Laboratório de Insetos Sociais-Praga, Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, UNESP, Caixa Postal 237, Botucatu, SP 18603-970, Brasil.
| | | |
Collapse
|