1
|
Lemus-Conejo A, Medrano M, Lopez S, Millan-Linares MC, Rosillo MA, Perez-Simon JA, Muriana FJG, Abia R. MUFAs in High-Fat Diets Protect against Obesity-Induced Bias of Hematopoietic Cell Lineages. Mol Nutr Food Res 2021; 65:e2001203. [PMID: 34132459 DOI: 10.1002/mnfr.202001203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/27/2021] [Indexed: 11/08/2022]
Abstract
SCOPE The role of dietary fatty acids in the generation of bone marrow (BM) immune cells and their trafficking to extramedullary compartments in the obesity is not yet fully understood. METHODS AND RESULTS C57BL/6J mice are randomly assigned to isocaloric high-fat diets (HFDs) formulate with dietary fats rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs fortified with eicosapentaenoic and docosahexaenoic acids for 20 weeks, followed by profiling of the obese metabolic phenotype and immunophenotypic features of immune cells in blood, spleen, and BM. All HFDs induce an obese phenotype, but it becomes largely less disruptive after the HFDs are enriched in MUFAs, which also induce signs of granulopoiesis and an expansion of long-term hematopoietic stem and granulocyte-macrophage progenitor cells in BM. In contrast, a HFD enriched in SFAs disturbs the fitness of medullary lymphocytes and promotes monopoiesis in favor of pro-inflammatory activated subsets. CONCLUSION The reshaping of the fatty acid pools with MUFAs from the diet serves to manipulate the generation and trafficking of immune cells that are biased during obesity. These findings reveal a novel strategy by which dietary MUFAs may be instrumental in combating HFD-induced dysfunctional immune systems.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
| | - Mayte Medrano
- Department of Haematology, Instituto de Biomedicina de Sevilla (IBiS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocio, University of Seville, Seville, 41012, Spain
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, 41012, Spain
- Instituto de Biomedicina de Sevilla (IBiS/CSIC), Hospital Universitario Virgen del Rocio, University of Seville, Seville, 41012, Spain
| | | | - Maria A Rosillo
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
| | - Jose A Perez-Simon
- Department of Haematology, Instituto de Biomedicina de Sevilla (IBiS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocio, University of Seville, Seville, 41012, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, The Spanish National Research Council (CSIC), Seville, 41013, Spain
| |
Collapse
|
2
|
Fu P, Zhu R, Jia J, Hu Y, Wu C, Cieszczyk P, Holmberg HC, Gong L. Aerobic exercise promotes the functions of brown adipose tissue in obese mice via a mechanism involving COX2 in the VEGF signaling pathway. Nutr Metab (Lond) 2021; 18:56. [PMID: 34082784 PMCID: PMC8176720 DOI: 10.1186/s12986-021-00581-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background High-fat diet (HFD)-induced obesity causes immune cells to infiltrate adipose tissue, leading to chronic inflammation and metabolic syndrome. Brown adipose tissue (BAT) can dissipate the energy produced by lipid oxidation as heat, thereby counteracting obesity. Aerobic exercise activates BAT, but the specific underlying mechanism is still unclear. Methods Male C57BL/6 J mice were divided into a normal diet control group (NC group) and HFD group (H group). After becoming obese, the animals in the H group were subdivided into a control group (HC group) and an exercise group (HE group, with treadmill training). After 4 weeks, the mRNA profile of BAT was determined, and then differentially expressed key genes and pathways were verified in vitro. Results Relative to the NC group, the genes upregulated in the HC group coded mainly for proteins involved in immune system progression and inflammatory and immune responses, while the downregulated genes regulated lipid metabolism and oxidation–reduction. Relative to the HC group, the genes upregulated in the HE group coded for glycolipid metabolism, while those that were downregulated were involved in cell death and apoptosis. VEGF and other signaling pathways were enhanced by aerobic exercise. Interaction analysis revealed that the gene encoding cyclooxygenase 2 (COX2) of the VEGF signaling pathway is central to this process, which was verified by a sympathetic activator (isoprenaline hydrochloride) and COX2 inhibitor (NS-398). Conclusions In mice with HFD-induced obesity, four weeks of aerobic exercise elevated BAT mass and increased the expression of genes related to glycolipid metabolism and anti-inflammatory processes. Several pathways are involved, with COX2 in the VEGF signaling pathway playing a key role.
Collapse
Affiliation(s)
- Pengyu Fu
- China Institute of Sport and Health Science, Beijing Sport University, Xinxi Road 48, Haidian District, Beijing, 100084, China.,Department of Physical Education, Northwestern Polytechnical University, West Youyi Road 127, Beilin District, Shaanxi, 710109, China
| | - Rongxin Zhu
- China Institute of Sport and Health Science, Beijing Sport University, Xinxi Road 48, Haidian District, Beijing, 100084, China.,Shanghai Research Institute of Sports Science, Xuhui District, Wuxing Road 87, Shanghai, 200030, China
| | - Jie Jia
- China Institute of Sport and Health Science, Beijing Sport University, Xinxi Road 48, Haidian District, Beijing, 100084, China.,Sport Science College, Beijing Sport University, Xinxi Road 48, Haidian District, Beijing, 100084, China
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Xinxi Road 48, Haidian District, Beijing, 100084, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology and IC Technology Key Lab of Liaoning, Dalian, 116024, China
| | - Pawel Cieszczyk
- Department of Molecular Biology, Faculty of Physical Education, Gdańsk University of Physical Education and Sport, ul. Kazimierza Górskiego 1, 80-336, Gdańsk, Poland
| | - Hans-Christer Holmberg
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institute, Stockholm, Sweden
| | - Lijing Gong
- China Institute of Sport and Health Science, Beijing Sport University, Xinxi Road 48, Haidian District, Beijing, 100084, China.
| |
Collapse
|
3
|
Svahn SL, Pattanaik B, Grahnemo L, Gutierrez S, Nookaew I, Jansson JO, Johansson ME. Spleen proteomics data from high fat diet fed mice. Data Brief 2020; 32:106110. [PMID: 32904176 PMCID: PMC7451803 DOI: 10.1016/j.dib.2020.106110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
The composition of the diet affects many processes in the body, including body weight and endocrine system. We have previously shown that dietary fat also affects the immune system. Mice fed high fat diet rich in polyunsaturated fatty acids survive S. aureus infection to a much greater extent than mice fed high fat diet rich in saturated fatty acids. Here we present data regarding the dietary effects on protein expression in spleen from mice fed three different diets, I) low fat/chow diet (LFD, n = 4), II) high fat diet rich in saturated fatty acids (HFD-S, n = 4) and III) high fat diet rich in polyunsaturated fatty acids (HFD-P, n = 4). We performed mass spectrophotometry based quantitative proteomics analysis of isolated spleen by implementing the isobaric tags for relative and absolute quantification (iTRAQ) approach. Mass spectrometry data were analyzed using Proteome Discoverer 2.4 software using the search engine mascot against Mus musculus in SwissProt. 924 proteins are identified in all sets (n = 4) for different dietary effects taken for statistical analysis using Qlucore Omics Explorer software. Only 20 proteins were found to be differentially expressed with a cut-off value of false discovery rate < 0.1 (q-value) when comparing HFD-S and HFD-P but no differentially expressed proteins were found when LFD was compared with HFD-P or HFD-S. The identified proteins and statistical analysis comparing HFD-S and HFD-P diets are available as a supplementary file S1. We identified a subset of proteins that showed an inverse expression pattern between two high fat diets. These differentially expressed proteins were further classified by gene ontology for their role in biological processes and molecular functions. Mass spectrometry raw data are also available via ProteomeXchange with identifier PXD020365.
Collapse
Affiliation(s)
- Sara L Svahn
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Bagmi Pattanaik
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Louise Grahnemo
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden.,Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Saray Gutierrez
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Intawat Nookaew
- Dept. of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John-Olov Jansson
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| | - Maria E Johansson
- Dept. of Physiology, Institute of Neuroscience and Physiology, Gothenburg, Sweden
| |
Collapse
|
4
|
Wolf C, Gredig N, Ulbrich SE, Kreuzer M, Berard J, Giller K. Partitioning of Rumen-Protected n-3 and n-6 Fatty Acids is Organ-Specific in Growing Angus Heifers. Lipids 2019; 54:503-517. [PMID: 31410851 DOI: 10.1002/lipd.12183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFA), especially n-3 and n-6 fatty acids (FA), play an important role in the regulation of FA metabolism in all mammals. However, FA metabolism differs between different organs, suggesting a distinct partitioning of highly relevant FA. For the present study in cattle, a novel technology was applied to overcome rumen biohydrogenation of dietary unsaturated FA. Angus heifers were fed a straw-based diet supplemented for 8 weeks with 450 g/day of rumen-protected oil, either from fish (FO) or sunflower (SO). The FA composition in blood and five important organs, namely heart, kidney, liver, lung, and spleen, was examined. In blood, proportions of polyunsaturated FA were increased by supplementing FO compared to SO. The largest increase of eicosapentaenoic acid (EPA) proportion was found with FO instead of SO in the kidney, the lowest in the lung. Docosahexaenoic acid (DHA) was increased more in the liver than in kidney, lung, and spleen. The heart incorporated seven times more EPA than DHA, which is more than all other organs and described here for the first time in ruminants. In addition, the heart had the highest proportions of α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) of all organs. The proportions of polyunsaturated FA in the lung and spleen were exceptionally low compared to heart, liver, and kidney. In conclusion, it was shown that the response to FO in the distribution of dietary n-3 FA was organ-specific while proportions of n-6 FA were quite inert with respect to the type of oil supplemented.
Collapse
Affiliation(s)
- Christina Wolf
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Nicole Gredig
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Institute of Agricultural Sciences, Animal Physiology, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Joel Berard
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315, Lindau, Switzerland
| | - Katrin Giller
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|
5
|
Dietary Polyunsaturated Fatty Acids Promote Neutrophil Accumulation in the Spleen by Altering Chemotaxis and Delaying Cell Death. Infect Immun 2019; 87:IAI.00270-19. [PMID: 31085706 DOI: 10.1128/iai.00270-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/04/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and are essential for the defense against invading pathogens. Like many other cells of an organism, neutrophils can be highly influenced by the diet. We have previously described that mice fed a high-fat diet rich in polyunsaturated fatty acids (HFD-P) present a higher frequency of neutrophils in bone marrow than mice fed a high-fat diet rich in saturated fatty acids (HFD-S). Interestingly, such an increase correlated with improved survival against bacterium-induced sepsis. In this study, we aimed to investigate the effects of dietary polyunsaturated and saturated fatty acids on neutrophil homeostasis. We found that HFD-P specifically induced the accumulation of neutrophils in the marginal pools of the spleen and liver. The accumulation of neutrophils in the spleen was a result of a dual effect of polyunsaturated fatty acids on neutrophil homeostasis. First, polyunsaturated fatty acids enhanced the recruitment of neutrophils from the circulation into the spleen via chemokine secretion. Second, they delayed neutrophil cell death in the spleen. Interestingly, these effects were not observed in mice fed a diet rich in saturated fatty acids, suggesting that the type of fat rather than the amount of fat mediates the alterations in neutrophil homeostasis. In conclusion, our results show that dietary polyunsaturated fatty acids have a strong modulatory effect on neutrophil homeostasis that may have future clinical applications.
Collapse
|
6
|
N-3 polyunsaturated fatty acids induce granulopoiesis and early monocyte polarization in the bone marrow of a tMCAO rat model. REV ROMANA MED LAB 2019. [DOI: 10.2478/rrlm-2019-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Introduction: Experimental acute cerebral ischemia quickly triggers circulating inflammatory cells, provoking infiltration of neutrophils and macrophages in the damaged brain region. N-3 polyunsaturated fatty acids alleviate the ischemic deterioration, however, their potential effect on bone marrow cell mobilization is less known.
Materials and methods: healthy male Wistar rats were submitted to intraperitoneal saline injection (n=10, sham Group), transient middle cerebral artery occlusion (tMCAO) and saline injection (n=10, placebo Group), tMCAO and highly purified fish-oil administration (n=10, T Group). At the two latter groups, twenty-four hours after tMCAO, MRI scans were performed to identify the ischemic regions; the eligible animals were sacrificed, the left parietal bones being removed and subjected to qualitative and quantitative histological and immunohistochemical analysis.
Results: The active hematopoietic surface was maximal at the T-Group, being significantly lower in the P- and S-Groups (p=0.006 and p= 0.017). The MPO positive surface increased significantly in the T-compared to the S-Group (22.57± 0.86 % vs. 18.87± 0.68%, p= 0.004). Arg1 expression was significantly higher (p=0.001), while iNOS expression was lower (p=0.004) in the T- than in the P-Group, but similar to the S-group. The Arg1/iNOS2 ratio was higher in the FO-treated than in the P-group (p<0.001).
Conclusion: the ischemic conditions triggered granulopoiesis and the increase of iNOS2 positive, type M1 macrophage in the rat bone marrow. Fish-oil treatment generated the expansion of overall hematopoietic surface along with normalization of iNOS2, up-regulating the potentially protective Arg1 positive M2 type macrophages and causing a significant shift in the M2/M1 ratio.
Collapse
|
7
|
Berger M, Nelson B, Markulev C, Yuen HP, Schäfer MR, Mossaheb N, Schlögelhofer M, Smesny S, Hickie IB, Berger GE, Chen EYH, de Haan L, Nieman DH, Nordentoft M, Riecher-Rössler A, Verma S, Mitchell TW, Meyer BJ, Thompson A, Yung AR, McGorry PD, Amminger GP. Relationship Between Polyunsaturated Fatty Acids and Psychopathology in the NEURAPRO Clinical Trial. Front Psychiatry 2019; 10:393. [PMID: 31244693 PMCID: PMC6562242 DOI: 10.3389/fpsyt.2019.00393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Deficiencies in membrane polyunsaturated fatty acids (PUFA) such as omega-3 (n-3) fatty acids are thought to contribute to the pathophysiological processes underlying psychotic disorders. Emerging evidence suggests that the levels of PUFA are related to clinical symptoms but significant heterogeneity exists between studies. Here, we investigated associations of membrane PUFA with clinical symptoms and functioning in a large sample of individuals at ultra-high risk (UHR) for psychosis. Methods: A total of 285 participants of the NEURAPRO clinical trial were investigated for erythrocyte PUFA levels, including the n-3 index, n-6/n-3 PUFA ratio, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). Severity of general psychopathology [Brief Psychiatric Rating Scale (BPRS)], psychotic symptoms (BPRS psychosis subscale), negative symptoms [Scale for the Assessment of Negative Symptoms (SANS)], manic symptoms [Young Mania Rating Scale (YMRS)], depressive symptoms [Montgomery Asberg Depression Rating Scale (MADRS)], and functioning [Social and Occupational Functioning Scale (SOFAS), Global Functioning Social (GF-S) and Role (GF-R) scales] were assessed concurrently. Partial correlation taking into account the effects of gender, age, and smoking was used to examine the relationship between PUFAs and symptoms severity. Results: The n-3 index negatively correlated with the severity of general psychopathology, psychotic symptoms, depressive symptoms, and manic symptoms. The n-6/n-3 PUFA ratio positively correlated with severity of psychotic and depressive symptoms. The n-3 PUFA DHA negatively correlated with the severity of general psychopathology, positive, manic, and depressive symptoms. EPA negatively correlated with manic symptoms. Nervonic acid, an n-9 monounsaturated fatty acid, positively correlated with general psychopathology, positive and negative symptoms, depressive symptoms, and manic symptoms. The long-chain saturated fatty acid tetracosanoic acid positively correlated with general psychopathology, positive, manic, and depressive symptoms. Conclusions: Partially consistent with a previous study, psychotic symptoms, depressive symptoms, and symptoms of mania were associated with several classes of FAs in the present study. These findings support the relevance of membrane fatty acids for the onset of psychotic symptoms and indicate that FAs should be further evaluated as biomarkers in the UHR for psychosis group. Clinical Trial Registration: ANZCTR, identifier: 12608000475347.
Collapse
Affiliation(s)
- Maximus Berger
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Barnaby Nelson
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Connie Markulev
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Hok Pan Yuen
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Miriam R Schäfer
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Nilufar Mossaheb
- Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry, Medical University Vienna, Vienna, Austria.,Department of Child and Adolescent Psychiatry, Medical University Vienna, Vienna, Austria
| | - Monika Schlögelhofer
- Department of Psychiatry and Psychotherapy, Clinical Division of Social Psychiatry, Medical University Vienna, Vienna, Austria
| | - Stefan Smesny
- Department of Psychiatry, University Hospital Jena, Jena, Germany
| | - Ian B Hickie
- Brain and Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Gregor E Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Eric Y H Chen
- Department of Psychiatry, University of Hong Kong, Hong Kong, Hong Kong
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands
| | - Dorien H Nieman
- Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands
| | | | | | - Swapna Verma
- Institute of Mental Health, Singapore, Singapore
| | - Todd W. Mitchell
- School of Medicine and Lipid Research Centre, University of Wollongong, Wollongong, NSW, Australia,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Barbara J. Meyer
- School of Medicine and Lipid Research Centre, University of Wollongong, Wollongong, NSW, Australia,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew Thompson
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Alison Ruth Yung
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Institute of Brain, Behaviour, and Mental Health, University of Manchester, Manchester, United Kingdom
| | - Patrick D McGorry
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - G Paul Amminger
- Orygen-The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Cao J, Zhu Q, Liu L, Glazier BJ, Hinkel BC, Liang C, Shi H. Global Transcriptome Analysis of Brown Adipose Tissue of Diet-Induced Obese Mice. Int J Mol Sci 2018; 19:ijms19041095. [PMID: 29642370 PMCID: PMC5979511 DOI: 10.3390/ijms19041095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/17/2018] [Accepted: 03/24/2018] [Indexed: 12/16/2022] Open
Abstract
Consumption of a high-fat diet (HFD) promotes the development of obesity, a disease resulting from an imbalance between energy intake and energy expenditure. Brown adipose tissue (BAT) has thermogenic capacity that burns calories to produce heat, and it is a potential target for the treatment and prevention of obesity. There is limited information regarding the impact of HFD on the BAT transcriptome. We hypothesized that HFD-induced obesity would lead to transcriptional regulation of BAT genes. RNA sequencing was used to generate global transcriptome profiles from BAT of lean mice fed with a low-fat diet (LFD) and obese mice fed with a HFD. Gene Ontology (GO) analysis identified increased expression of genes involved in biological processes (BP) related to immune responses, which enhanced molecular function (MF) in chemokine activity; decreased expression of genes involved in BP related to ion transport and muscle structure development, which reduced MF in channel and transporter activity and structural binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathway analysis indicated that pathways associated with innate immunity were enhanced by HFD, while pathways associated with muscle contraction and calcium signaling were suppressed by HFD. Collectively, these results suggest that diet-induced obesity changes transcriptomic signatures of BAT, leading to dysfunction involving inflammation, calcium signaling, ion transport, and cell structural development.
Collapse
Affiliation(s)
- Jingyi Cao
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Qi Zhu
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Lin Liu
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Bradley J Glazier
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Benjamin C Hinkel
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Chun Liang
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Haifei Shi
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
9
|
Barrea L, Di Somma C, Muscogiuri G, Tarantino G, Tenore GC, Orio F, Colao A, Savastano S. Nutrition, inflammation and liver-spleen axis. Crit Rev Food Sci Nutr 2017; 58:3141-3158. [PMID: 28799803 DOI: 10.1080/10408398.2017.1353479] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luigi Barrea
- I.O.S. & COLEMAN Srl, Medicina Futura Medical Center, Acerra, Naples, Italy
| | | | | | - Giovanni Tarantino
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, Naples, Italy
| | - Francesco Orio
- Department of Sports Science and Wellness, Unit of Endocrinology, “Parthenope” University of Naples, Via Ammiraglio Ferdinando Acton 38, Naples, Italy
- Via Ammiraglio Ferdinando Acton 38, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, Naples, Italy
| |
Collapse
|
10
|
Telle-Hansen VH, Christensen JJ, Ulven SM, Holven KB. Does dietary fat affect inflammatory markers in overweight and obese individuals?-a review of randomized controlled trials from 2010 to 2016. GENES AND NUTRITION 2017; 12:26. [PMID: 29043006 PMCID: PMC5628471 DOI: 10.1186/s12263-017-0580-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022]
Abstract
Background Obesity, a major cause of death and disability, is increasing worldwide. Obesity is characterized by a chronic, low-grade inflammatory state which is suggested to play a critical role in the development of obesity-related diseases like cardiovascular diseases and type 2 diabetes. In fact, in the hours following consumption of a meal, a transient increase in inflammatory markers occurs, a response that is exaggerated in obese subjects. Dietary composition, including content of dietary fatty acids, may affect this inflammatory response both acutely and chronically, and thereby be predictive of progression of disease. The aim of the review was to summarize the literature from 2010 to 2016 regarding the effects of dietary fat intake on levels of inflammatory markers in overweight and obesity in human randomized controlled trials. Methods and results We performed a literature search in MEDLINE, EMBASE, and PubMed databases. The literature search included human randomized controlled trials, both postprandial and long-term interventions, from January 2010 to September 2016. In total, 37 articles were included. Interventions with dairy products, vegetable oils, or nuts showed minor effects on inflammatory markers. The most consistent inflammatory-mediating effects were found in intervention with whole diets, which suggests that many components of the diet reduce inflammation synergistically. Furthermore, interventions with weight reduction and different fatty acids did not clearly show beneficial effects on inflammatory markers. Conclusion Most interventions showed either no or minor effects of dietary fat intake on inflammatory markers in overweight and obese subjects. To progress our understanding on how diet and dietary components affect our health, mechanistic studies are required. Hence, future studies should include whole diets and characterization of obese phenotypes at a molecular level, including omics data and gut microbiota.
Collapse
Affiliation(s)
- Vibeke H Telle-Hansen
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Postbox 4, St. Olavsplass, 0130 Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Postbox 1046, Blindern, 0317 Oslo, Norway.,The Lipid Clinic, Oslo University Hospital Rikshospitalet, P.P. box 4950, Nydalen, 0424 Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Postbox 1046, Blindern, 0317 Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Postbox 1046, Blindern, 0317 Oslo, Norway.,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, P.O. box 4950, Nydalen, 0424 Oslo, Norway
| |
Collapse
|
11
|
Dietary cholesterol-induced transcriptome differences in the intestine, hepatopancreas, and muscle of Oriental River prawn Macrobrachium nipponense. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 23:39-48. [DOI: 10.1016/j.cbd.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/10/2017] [Accepted: 06/11/2017] [Indexed: 11/18/2022]
|
12
|
Berger ME, Smesny S, Kim SW, Davey CG, Rice S, Sarnyai Z, Schlögelhofer M, Schäfer MR, Berk M, McGorry PD, Amminger GP. Omega-6 to omega-3 polyunsaturated fatty acid ratio and subsequent mood disorders in young people with at-risk mental states: a 7-year longitudinal study. Transl Psychiatry 2017; 7:e1220. [PMID: 28850110 PMCID: PMC5611753 DOI: 10.1038/tp.2017.190] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
While cross-sectional studies suggest that patients with mood disorders have a higher ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) and lower levels of omega-3 PUFAs, it is unknown if a high n-6/3 ratio indicates vulnerability for depression. We tested this hypothesis in a 7-year follow-up study of young individuals with an ultra-high risk (UHR) phenotype. We conducted a secondary analysis of the Vienna omega-3 study, a longitudinal study of omega-3 PUFAs in individuals at UHR for psychosis (n=69). Levels of n-6 and n-3 PUFAs were measured in the phosphatidylethanolamine fraction of erythrocyte membranes at intake into the study. Mood disorder diagnosis was ascertained with the Structured Clinical Interview for DSM-IV-TR and confirmed by review of medical records and interviews of caregivers. A higher n-6/3 PUFA ratio at baseline predicted mood disorders in UHR individuals over a 7-year (median) follow-up (odds ratio=1.89, 95% CI=1.075-3.338, P=0.03). This association remained significant after adjustment for age, gender, smoking, severity of depressive symptoms at baseline and n-3 supplementation. Consistent results were obtained for individual PUFAs, including lower levels of eicosapentaenoic acid and docosahexaenoic acid. The predictive capacity of these findings was specific to mood disorders as no associations were found for any other psychiatric disorder. To our knowledge, our data provide the first prospective evidence that the n-6/3 PUFA ratio is associated with an increased risk for mood disorders in young people exhibiting an UHR phenotype. These findings may have important implications for treatment and risk stratification beyond clinical characteristics.
Collapse
Affiliation(s)
- M E Berger
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Townsville, QLD, Australia,College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia,Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine (AITHM), 1 James Cook Drive, Townsville, QLD 4810, Australia. E-mail:
| | - S Smesny
- Department of Psychiatry, University Hospital Jena, Jena, Germany
| | - S-W Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - C G Davey
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - S Rice
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Z Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, Townsville, QLD, Australia,College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| | - M Schlögelhofer
- Department of Child and Adolescent Psychiatry, Medical University Vienna, Vienna, Austria
| | - M R Schäfer
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - M Berk
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia,IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, VIC, Australia,Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - P D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - G P Amminger
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia,Department of Child and Adolescent Psychiatry, Medical University Vienna, Vienna, Austria
| |
Collapse
|
13
|
Splenic Immune Response Is Down-Regulated in C57BL/6J Mice Fed Eicosapentaenoic Acid and Docosahexaenoic Acid Enriched High Fat Diet. Nutrients 2017; 9:nu9010050. [PMID: 28075380 PMCID: PMC5295094 DOI: 10.3390/nu9010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022] Open
Abstract
Dietary n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n-3 fatty acids.
Collapse
|