1
|
Tan YH, Lim PE, Beardall J, Poong SW, Phang SM. A metabolomic approach to investigate effects of ocean acidification on a polar microalga Chlorella sp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105349. [PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
Collapse
Affiliation(s)
- Yong-Hao Tan
- Institute of Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean & Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Phaik-Eem Lim
- Institute of Ocean & Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Sze-Wan Poong
- Institute of Ocean & Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew-Moi Phang
- Institute of Ocean & Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Bachy C, Charlesworth CJ, Chan AM, Finke JF, Wong CH, Wei CL, Sudek S, Coleman ML, Suttle CA, Worden AZ. Transcriptional responses of the marine green alga Micromonas pusilla and an infecting prasinovirus under different phosphate conditions. Environ Microbiol 2018; 20:2898-2912. [PMID: 29749714 DOI: 10.1111/1462-2920.14273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate-replete (0.65 ± 0.07 d-1 ) and 10-fold lower (low)-phosphate (0.11 ± 0.04 d-1 ) conditions, and infected by the phycodnavirus MpV-SP1. Expression of 17% of Micromonas genes in uninfected cells differed by >1.5-fold (q < 0.01) between nutrient conditions, with genes for P-metabolism and the uniquely-enriched Sel1-like repeat (SLR) family having higher relative transcript abundances, while phospholipid-synthesis genes were lower in low-P than P-replete. Approximately 70% (P-replete) and 30% (low-P) of cells were lysed 24 h post-infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low-P) hosts. All MpV-SP1 genes were expressed, and our analyses suggest responses to differing host-phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host-phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host-prasinovirus system that differ from other marine algal-virus systems.
Collapse
Affiliation(s)
- Charles Bachy
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Christina J Charlesworth
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jan F Finke
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chee-Hong Wong
- Lawrence Berkeley National Laboratory, Sequencing Technology Group, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Chia-Lin Wei
- Lawrence Berkeley National Laboratory, Sequencing Technology Group, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada.,Departments of Botany, and Microbiology & Immunology, and Institute of Oceans & Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada
| |
Collapse
|
4
|
Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, Bell CJ, Bharti A, Dyhrman ST, Guida SM, Heidelberg KB, Kaye JZ, Metzner J, Smith SR, Worden AZ. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol 2016; 15:6-20. [DOI: 10.1038/nrmicro.2016.160] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|