1
|
Lee SY, Lee E, Lim JU, Ku B, Seong YJ, Ryu JO, Cho HJ, Kim K, Hwang Y, Moon SW, Moon MH, Kim KS, Hyun K, Kim TJ, Sung YE, Choi JY, Park CK, Kim SW, Yeo CD, Kim SJ, Lee DW. U-Shape Pillar Strip for 3D Cell-Lumped Organoid Model (3D-COM) Mimicking Lung Cancer Hypoxia Conditions in High-Throughput Screening (HTS). Anal Chem 2024; 96:10246-10255. [PMID: 38858132 DOI: 10.1021/acs.analchem.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Hypoxia is a representative tumor characteristic associated with malignant progression in clinical patients. Engineered in vitro models have led to significant advances in cancer research, allowing for the investigation of cells in physiological environments and the study of disease mechanisms and processes with enhanced relevance. In this study, we propose a U-shape pillar strip for a 3D cell-lumped organoid model (3D-COM) to study the effects of hypoxia on lung cancer in a high-throughput manner. We developed a U-pillar strip that facilitates the aggregation of PDCs mixed with an extracellular matrix to make the 3D-COM in 384-plate array form. The response to three hypoxia-activated prodrugs was higher in the 3D-COM than in the 2D culture model. The protein expression of hypoxia-inducible factor 1 alpha (HIF-1α) and HIF-2α, which are markers of hypoxia, was also higher in the 3D-COM than in the 2D culture. The results show that 3D-COM better recapitulated the hypoxic conditions of lung cancer tumors than the 2D culture. Therefore, the U-shape pillar strip for 3D-COM is a good tool to study the effects of hypoxia on lung cancer in a high-throughput manner, which can efficiently develop new drugs targeting hypoxic tumors.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon 16229, Republic of Korea
| | - Yu-Jeong Seong
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Ji-O Ryu
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyuhwan Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yongki Hwang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seok Whan Moon
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mi Hyoung Moon
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyung Soo Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kwanyong Hyun
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeoun Eun Sung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Colombani T, Rogers ZJ, Bhatt K, Sinoimeri J, Gerbereux L, Hamrangsekachaee M, Bencherif SA. Hypoxia-inducing cryogels uncover key cancer-immune cell interactions in an oxygen-deficient tumor microenvironment. Bioact Mater 2023; 29:279-295. [PMID: 37600932 PMCID: PMC10432785 DOI: 10.1016/j.bioactmat.2023.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 08/22/2023] Open
Abstract
Hypoxia is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O2) control, leading to non-pathophysiological tumor responses. Therefore, it is essential to develop better cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O2 locally and induce long-standing hypoxia. HICs promoted changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in the plasmacytoid DC (pDC) subset and an impaired conventional DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and has great potential to deepen our understanding of cancer-immune cell relationship in low O2 conditions and may pave the way for developing more effective therapies.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - James Sinoimeri
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Lauren Gerbereux
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | | | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
3
|
Kim HS, Ha HS, Kim DH, Son DH, Baek S, Park J, Lee CH, Park S, Yoon HJ, Yu SE, Kang JI, Park KM, Shin YM, Lee JB, Sung HJ. O 2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow. SCIENCE ADVANCES 2023; 9:eadd4210. [PMID: 36947623 PMCID: PMC10032601 DOI: 10.1126/sciadv.add4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism-driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun-Su Ha
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dae-Hyun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Deok Hyeon Son
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sewoom Baek
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeongeun Park
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chan Hee Lee
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Suji Park
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyo-Jin Yoon
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Eun Yu
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-Bioengineering, College of Life sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, College of Life sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Biomaterials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Young Min Shin
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Colombani T, Rogers ZJ, Bhatt K, Sinoimeri J, Gerbereux L, Hamrangsekachaee M, Bencherif SA. Hypoxia-inducing cryogels uncover key cancer-immune cell interactions in an oxygen-deficient tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523477. [PMID: 36711715 PMCID: PMC9882080 DOI: 10.1101/2023.01.10.523477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypoxia, an important feature of solid tumors, is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O 2 ) control, leading to non-pathophysiological tumor responses. As a result, it is essential to develop new and improved cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) as macroporous scaffolds to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O 2 locally and induce long-standing hypoxia. This state of low oxygen tension, leading to HIF-1α stabilization in tumor cells, resulted in changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in plasmacytoid B220 + DC (pDC) subset and an impaired conventional B220 - DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and identify a phenotypic transition from cDC to pDC in hypoxia and the key contribution of HA in retaining cDC phenotype and inducing their hypoxia-mediated immunosuppression. This technology has great potential to deepen our understanding of the complex relationships between cancer and immune cells in low O 2 conditions and may pave the way for developing more effective therapies.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - James Sinoimeri
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Lauren Gerbereux
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Mohammad Hamrangsekachaee
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States of America
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
5
|
Wong JJY, Varga BV, Káradóttir RT, Hall EAH. Electrochemically induced in vitro focal hypoxia in human neurons. Front Cell Dev Biol 2022; 10:968341. [PMID: 36247014 PMCID: PMC9555746 DOI: 10.3389/fcell.2022.968341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023] Open
Abstract
Focalised hypoxia is widely prevalent in diseases such as stroke, cardiac arrest, and dementia. While in some cases hypoxia improves cellular functions, it mostly induces or exacerbates pathological changes. The lack of methodologies that can simulate focal acute hypoxia, in either animal or cell culture, impedes our understanding of the cellular consequences of hypoxia. To address this gap, an electrochemical localised oxygen scavenging system (eLOS), is reported, providing an innovative platform for spatiotemporal in vitro hypoxia modulation. The electrochemical system is modelled showing O2 flux patterns and localised O2 scavenging and hypoxia regions, as a function of distance from the electrode and surrounding flux barriers, allowing an effective focal hypoxia tool to be designed for in vitro cell culture study. O2 concentration is reduced in an electrochemically defined targeted area from normoxia to hypoxia in about 6 min depending on the O2-flux boundaries. As a result, a cell culture-well was designed, where localised O2 scavenging could be induced. The impact of localised hypoxia was demonstrated on human neural progenitor cells (hNPCs) and it was shown that miniature focal hypoxic insults can be induced, that evoke time-dependent HIF-1α transcription factor accumulation. This transcription is "patterned" across the culture according to the electrochemically induced spatiotemporal hypoxia gradient. A basic lacunar infarct model was also developed through the application of eLOS in a purpose designed microfluidic device. Miniature focal hypoxic insults were induced in cellular processes of fully oxygenated cell bodies, such as the axons of human cortical neurons. The results demonstrate experimentally that localised axonal hypoxic stress can lead to significant increase of neuronal death, despite the neurons remaining at normoxia. This suggests that focal hypoxic insult to axons alone is sufficient to impact surrounding neurons and may provide an in vitro model to study the impact of microinfarcts occurring in the deep cerebral white matter, as well as providing a promising tool for wider understanding of acute hypoxic insults with potential to uncover its pathophysiology in multiple diseases.
Collapse
Affiliation(s)
- Joseph J Y Wong
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Balazs V Varga
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | - Elizabeth A H Hall
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Kim MH, Green SD, Lin C, Konig H. Engineering Tools for Regulating Hypoxia in Tumour Models. J Cell Mol Med 2021; 25:7581-7592. [PMID: 34213838 PMCID: PMC8358887 DOI: 10.1111/jcmm.16759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Major advances in the field of genomic technologies have led to an improvement in cancer diagnosis, classification and prognostication. However, many cancers remain incurable due to the development of drug resistance, minimal residual disease (MRD) and disease relapse, highlighting an incomplete understanding of the mechanisms underlying these processes. In recent years, the impact of non-genetic factors on neoplastic transformations has increasingly been acknowledged, and growing evidence suggests that low oxygen (O2 ) levels (ie hypoxia) in the tumour microenvironment play a critical role in the development and treatment of cancer. As a result, there is a growing need to develop research tools capable of reproducing physiologically relevant O2 conditions encountered by cancer cells in their natural environments in order to gain in-depth insight into tumour cell metabolism and function. In this review, the authors highlight the importance of hypoxia in the pathogenesis of malignant diseases and provide an overview of novel engineering tools that have the potential to further drive this evolving, yet technically challenging, field of cancer research.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Biomedical EngineeringIndiana University‐Purdue University IndianapolisIndianapolisINUS
| | - Steven D. Green
- Department of MedicineDivision of Hematology/OncologyIndiana University School of MedicineIndianapolisINUS
| | - Chien‐Chi Lin
- Department of Biomedical EngineeringIndiana University‐Purdue University IndianapolisIndianapolisINUS
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUS
| | - Heiko Konig
- Department of MedicineDivision of Hematology/OncologyIndiana University School of MedicineIndianapolisINUS
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisINUS
| |
Collapse
|
7
|
Pavlacky J, Polak J. Technical Feasibility and Physiological Relevance of Hypoxic Cell Culture Models. Front Endocrinol (Lausanne) 2020; 11:57. [PMID: 32153502 PMCID: PMC7046623 DOI: 10.3389/fendo.2020.00057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is characterized as insufficient oxygen delivery to tissues and cells in the body and is prevalent in many human physiology processes and diseases. Thus, it is an attractive state to experimentally study to understand its inner mechanisms as well as to develop and test therapies against pathological conditions related to hypoxia. Animal models in vivo fail to recapitulate some of the key hallmarks of human physiology, which leads to human cell cultures; however, they are prone to bias, namely when pericellular oxygen concentration (partial pressure) does not respect oxygen dynamics in vivo. A search of the current literature on the topic revealed this was the case for many original studies pertaining to experimental models of hypoxia in vitro. Therefore, in this review, we present evidence mandating for the close control of oxygen levels in cell culture models of hypoxia. First, we discuss the basic physical laws required for understanding the oxygen dynamics in vitro, most notably the limited diffusion through a liquid medium that hampers the oxygenation of cells in conventional cultures. We then summarize up-to-date knowledge of techniques that help standardize the culture environment in a replicable fashion by increasing oxygen delivery to the cells and measuring pericellular levels. We also discuss how these tools may be applied to model both constant and intermittent hypoxia in a physiologically relevant manner, considering known values of partial pressure of tissue normoxia and hypoxia in vivo, compared to conventional cultures incubated at rigid oxygen pressure. Attention is given to the potential influence of three-dimensional tissue cultures and hypercapnia management on these models. Finally, we discuss the implications of these concepts for cell cultures, which try to emulate tissue normoxia, and conclude that the maintenance of precise oxygen levels is important in any cell culture setting.
Collapse
Affiliation(s)
- Jiri Pavlacky
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
- Rare Diseases Research Unit, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Polak
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Simon LR, Masters KS. Disease-inspired tissue engineering: Investigation of cardiovascular pathologies. ACS Biomater Sci Eng 2019; 6:2518-2532. [PMID: 32974421 DOI: 10.1021/acsbiomaterials.9b01067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused exclusively on the creation of tissues to repair or replace diseased or damaged organs, the field of tissue engineering has undergone an important evolution in recent years. Namely, tissue engineering techniques are increasingly being applied to intentionally generate pathological conditions. Motivated in part by the wide gap between 2D cultures and animal models in the current disease modeling continuum, disease-inspired tissue-engineered platforms have numerous potential applications, and may serve to advance our understanding and clinical treatment of various diseases. This review will focus on recent progress toward generating tissue-engineered models of cardiovascular diseases, including cardiac hypertrophy, fibrosis, and ischemia reperfusion injury, atherosclerosis, and calcific aortic valve disease, with an emphasis on how these disease-inspired platforms can be used to decipher disease etiology. Each pathology is discussed in the context of generating both disease-specific cells as well as disease-specific extracellular environments, with an eye toward future opportunities to integrate different tools to yield more complex and physiologically relevant culture platforms. Ultimately, the development of effective disease treatments relies upon our ability to develop appropriate experimental models; as cardiovascular diseases are the leading cause of death worldwide, the insights yielded by improved in vitro disease modeling could have substantial ramifications for public health and clinical care.
Collapse
Affiliation(s)
- LaTonya R Simon
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705.,Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
9
|
Hudson BN, Dawes CS, Liu HY, DImmitt N, Chen F, Konig H, Lin CC. Stabilization of enzyme-immobilized hydrogels for extended hypoxic cell culture. EMERGENT MATERIALS 2019; 2:263-272. [PMID: 37502125 PMCID: PMC10373429 DOI: 10.1007/s42247-019-00038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/28/2019] [Indexed: 07/29/2023]
Abstract
In this work, glucose oxidase (GOx)-immobilized hydrogels are developed and optimized as an easy and convenient means for creating solution hypoxia in a regular incubator. Specifically, acrylated GOx co-polymerizes with poly(ethylene glycol) diacrylate (PEGDA) to form PEGDA-GOx hydrogels. Results show that freeze-drying and reaction by-products, hydrogen peroxide, negatively affect oxygen-consuming activity of network-immobilized GOx. However, the negative effects of freeze-drying can be mitigated by addition of trehalose/raffinose in the hydrogel precursor solution, whereas the inhibition of GOx caused by hydrogen peroxide can be prevented via addition of glutathione (GSH) in the buffer/media. The ability to preserve enzyme activity following freeze-drying and during long-term incubation permits facile application of this material to induce long-term solution/media hypoxia in cell culture plasticware placed in a regular CO2 incubator.
Collapse
Affiliation(s)
- Britney N. Hudson
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Camron S. Dawes
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hung-Yi Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Nathan DImmitt
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Fangli Chen
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Heiko Konig
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
10
|
A microfluidic-based lid device for conventional cell culture dishes to automatically control oxygen level. Biotechniques 2018; 64:231-234. [DOI: 10.2144/btn-2018-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Most conventional hypoxic cell culture systems undergo reoxygenation during experimental manipulations, resulting in undesirable effects including the reduction of cell viability. A lid device was developed herein for conventional cell culture dishes to resolve this limitation. The integration of multilayered microfluidic channels inside a thin membrane was designed to prevent the reoxygenation caused by reagent infusion and automatically control the oxygen level. The experimental data clearly show the reducibility of the dissolved oxygen in the infusing reagent and the controllability of the oxygen level inside the dish. The feasibility of the device for hypoxia studies was confirmed by HIF-1α experiments. Therefore, the device could be used as a compact and convenient hypoxic cell culture system to prevent reoxygenation-related issues.
Collapse
|
11
|
Martewicz S, Gabrel G, Campesan M, Canton M, Di Lisa F, Elvassore N. Live Cell Imaging in Microfluidic Device Proves Resistance to Oxygen/Glucose Deprivation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Anal Chem 2018; 90:5687-5695. [PMID: 29595056 DOI: 10.1021/acs.analchem.7b05347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Analyses of cellular responses to fast oxygen dynamics are challenging and require ad hoc technological solutions, especially when decoupling from liquid media composition is required. In this work, we present a microfluidic device specifically designed for culture analyses with high resolution and magnification objectives, providing full optical access to the cell culture chamber. This feature allows fluorescence-based assays, photoactivated surface chemistry, and live cell imaging under tightly controlled pO2 environments. The device has a simple design, accommodates three independent cell cultures, and can be employed by users with basic cell culture training in studies requiring fast oxygen dynamics, defined media composition, and in-line data acquisition with optical molecular probes. We apply this technology to produce an oxygen/glucose deprived (OGD) environment and analyze cell mortality in murine and human cardiac cultures. Neonatal rat ventricular cardiomyocytes show an OGD time-dependent sensitivity, resulting in a robust and reproducible 66 ± 5% death rate after 3 h of stress. Applying an equivalent stress to human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) provides direct experimental evidence for fetal-like OGD-resistant phenotype. Investigation on the nature of such phenotype exposed large glycogen deposits. We propose a culture strategy aimed at depleting these intracellular energy stores and concurrently activate positive regulation of aerobic metabolic molecular markers. The observed process, however, is not sufficient to induce an OGD-sensitive phenotype in hiPS-CMs, highlighting defective development of mature aerobic metabolism in vitro.
Collapse
Affiliation(s)
- Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS) , Shanghai Tech University , Shanghai , China.,Department of Industrial Engineering , University of Padova , via Marzolo 9 , 35131 Padova , Italy.,Venetian Institute of Molecular Medicine , via Orus 2 , 35129 Padova , Italy
| | - Giulia Gabrel
- Department of Industrial Engineering , University of Padova , via Marzolo 9 , 35131 Padova , Italy
| | - Marika Campesan
- Department of Biomedical Sciences , University of Padova , via Bassi 58/B , 35121 Padova , Italy
| | - Marcella Canton
- Department of Biomedical Sciences , University of Padova , via Bassi 58/B , 35121 Padova , Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences , University of Padova , via Bassi 58/B , 35121 Padova , Italy
| | - Nicola Elvassore
- Stem Cells & Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , 30 Guilford Street , London WC1N 1EH , U.K.,Shanghai Institute for Advanced Immunochemical Studies (SIAIS) , Shanghai Tech University , Shanghai , China.,Department of Industrial Engineering , University of Padova , via Marzolo 9 , 35131 Padova , Italy.,Venetian Institute of Molecular Medicine , via Orus 2 , 35129 Padova , Italy
| |
Collapse
|
12
|
Volchenkov R, Nygaard V, Sener Z, Skålhegg BS. Th17 Polarization under Hypoxia Results in Increased IL-10 Production in a Pathogen-Independent Manner. Front Immunol 2017; 8:698. [PMID: 28674533 PMCID: PMC5474482 DOI: 10.3389/fimmu.2017.00698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/29/2017] [Indexed: 12/15/2022] Open
Abstract
The IL-17-producing CD4+ T helper cell (Th17) differentiation is affected by stimulation of the aryl hydrocarbon receptor (AhR) pathway and by hypoxia-inducible factor 1 alpha (HIF-1α). In some cases, Th17 become non-pathogenic and produce IL-10. However, the initiating events triggering this phenotype are yet to be fully understood. Here, we show that such cells may be differentiated at low oxygen and regardless of AhR ligand treatment such as cigarette smoke extract. Hypoxia led to marked alterations of the transcriptome of IL-10-producing Th17 cells affecting genes involved in metabolic, anti-apoptotic, cell cycle, and T cell functional pathways. Moreover, we show that oxygen regulates the expression of CD52, which is a cell surface protein that has been shown to suppress the activation of other T cells upon release. Taken together, these findings suggest a novel ability for Th17 cells to regulate immune responses in vivo in an oxygen-dependent fashion.
Collapse
Affiliation(s)
- Roman Volchenkov
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vegard Nygaard
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital HF - Radiumhospitalet, Montebello, Oslo, Norway
| | - Zeynep Sener
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Dawes CS, Konig H, Lin CC. Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture. J Biotechnol 2017; 248:25-34. [PMID: 28284922 DOI: 10.1016/j.jbiotec.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/19/2017] [Accepted: 03/07/2017] [Indexed: 11/30/2022]
Abstract
Hypoxia is a critical condition governing many aspects of cellular fate processes. The most common practice in hypoxic cell culture is to maintain cells in an incubator with controlled gas inlet (i.e., hypoxic chamber). Here, we describe the design and characterization of enzyme-immobilized hydrogels to create solution hypoxia under ambient conditions for in vitro cancer cell culture. Specifically, glucose oxidase (GOX) was acrylated and co-polymerized with poly(ethylene glycol)-diacrylate (PEGDA) through photopolymerization to form GOX-immobilized PEG-based hydrogels. We first evaluated the effect of soluble GOX on inducing solution hypoxia (O2<5%) and found that both unmodified and acrylated GOX could sustain hypoxia for at least 24h even under ambient air condition with constant oxygen diffusion from the air-liquid interface. However, soluble GOX gradually lost its ability to sustain hypoxia after 24h due to the loss of enzyme activity over time. On the other hand, GOX-immobilized hydrogels were able to create hypoxia within the hydrogel for at least 120h, potentially due to enhanced protein stabilization by enzyme 'PEGylation' and immobilization. As a proof-of-concept, this GOX-immobilized hydrogel system was used to create hypoxia for in vitro culture of Molm14 (acute myeloid leukemia (AML) cell line) and Huh7 (hepatocellular carcinoma (HCC) cell line). Cells cultured in the presence of GOX-immobilized hydrogels remained viable for at least 24h. The expression of hypoxia associated genes, including carbonic anhydrase 9 (CA9) and lysyl oxidase (LOX), were significantly upregulated in cells cultured with GOX-immobilized hydrogels. These results have demonstrated the potential of using enzyme-immobilized hydrogels to create hypoxic environment for in vitro cancer cell culture.
Collapse
Affiliation(s)
- Camron S Dawes
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Heiko Konig
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
14
|
Sové RJ, Fraser GM, Goldman D, Ellis CG. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies. PLoS One 2016; 11:e0166289. [PMID: 27829071 PMCID: PMC5102494 DOI: 10.1371/journal.pone.0166289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/26/2016] [Indexed: 01/09/2023] Open
Abstract
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.
Collapse
Affiliation(s)
- Richard J. Sové
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Graham M. Fraser
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | |
Collapse
|