1
|
Kamkin AG, Kamkina OV, Kazansky VE, Mitrokhin VM, Bilichenko A, Nasedkina EA, Shileiko SA, Rodina AS, Zolotareva AD, Zolotarev VI, Sutyagin PV, Mladenov MI. Identification of RNA reads encoding different channels in isolated rat ventricular myocytes and the effect of cell stretching on L-type Ca 2+current. Biol Direct 2023; 18:70. [PMID: 37899484 PMCID: PMC10614344 DOI: 10.1186/s13062-023-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The study aimed to identify transcripts of specific ion channels in rat ventricular cardiomyocytes and determine their potential role in the regulation of ionic currents in response to mechanical stimulation. The gene expression levels of various ion channels in freshly isolated rat ventricular cardiomyocytes were investigated using the RNA-seq technique. We also measured changes in current through CaV1.2 channels under cell stretching using the whole-cell patch-clamp method. RESULTS Among channels that showed mechanosensitivity, significant amounts of TRPM7, TRPC1, and TRPM4 transcripts were found. We suppose that the recorded L-type Ca2+ current is probably expressed through CaV1.2. Furthermore, stretching cells by 6, 8, and 10 μm, which increases ISAC through the TRPM7, TRPC1, and TRPM4 channels, also decreased ICa,L through the CaV1.2 channels in K+ in/K+ out, Cs+ in/K+ out, K+ in/Cs+ out, and Cs+ in/Cs+ out solutions. The application of a nonspecific ISAC blocker, Gd3+, during cell stretching eliminated ISAC through nonselective cation channels and ICa,L through CaV1.2 channels. Since the response to Gd3+ was maintained in Cs+ in/Cs+ out solutions, we suggest that voltage-gated CaV1.2 channels in the ventricular myocytes of adult rats also exhibit mechanosensitive properties. CONCLUSIONS Our findings suggest that TRPM7, TRPC1, and TRPM4 channels represent stretch-activated nonselective cation channels in rat ventricular myocytes. Probably the CaV1.2 channels in these cells exhibit mechanosensitive properties. Our results provide insight into the molecular mechanisms underlying stretch-induced responses in rat ventricular myocytes, which may have implications for understanding cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Andre G Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Olga V Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Viktor E Kazansky
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim M Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Andrey Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Elizaveta A Nasedkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Stanislav A Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Anastasia S Rodina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Alexandra D Zolotareva
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Valentin I Zolotarev
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Pavel V Sutyagin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mitko I Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
- Faculty of Natural Sciences and Mathematics, Institute of Biology, "Ss. Cyril and Methodius" University, Skopje, North, Macedonia.
| |
Collapse
|
2
|
PKC regulation of ion channels: The involvement of PIP 2. J Biol Chem 2022; 298:102035. [PMID: 35588786 PMCID: PMC9198471 DOI: 10.1016/j.jbc.2022.102035] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Ion channels are integral membrane proteins whose gating has been increasingly shown to depend on the presence of the low-abundance membrane phospholipid, phosphatidylinositol (4,5) bisphosphate. The expression and function of ion channels is tightly regulated via protein phosphorylation by specific kinases, including various PKC isoforms. Several channels have further been shown to be regulated by PKC through altered surface expression, probability of channel opening, shifts in voltage dependence of their activation, or changes in inactivation or desensitization. In this review, we survey the impact of phosphorylation of various ion channels by PKC isoforms and examine the dependence of phosphorylated ion channels on phosphatidylinositol (4,5) bisphosphate as a mechanistic endpoint to control channel gating.
Collapse
|
3
|
Ivanova AD, Filatova TS, Abramochkin DV, Atkinson A, Dobrzynski H, Kokaeva ZG, Merzlyak EM, Pustovit KB, Kuzmin VS. Attenuation of inward rectifier potassium current contributes to the α1-adrenergic receptor-induced proarrhythmicity in the caval vein myocardium. Acta Physiol (Oxf) 2021; 231:e13597. [PMID: 33306261 DOI: 10.1111/apha.13597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
AIM This study is aimed at investigation of electrophysiological effects of α1-adrenoreceptor (α1-AR) stimulation in the rat superior vena cava (SVC) myocardium, which is one of the sources of proarrhythmic activity. METHODS α1-ARs agonists (phenylephrine-PHE or norepinephrine in presence of atenolol-NE + ATL) were applied to SVC and atrial tissue preparations or isolated cardiomyocytes, which were examined using optical mapping, glass microelectrodes or whole-cell patch clamp. α1-ARs distribution was evaluated using immunofluorescence. Kir2.X mRNA and protein level were estimated using RT-PCR and Western blotting. RESULTS PHE or NE + ATL application caused a significant suppression of the conduction velocity (CV) of excitation and inexcitability in SVC, an increase in the duration of electrically evoked action potentials (APs), a decrease in the maximum upstroke velocity (dV/dtmax ) and depolarization of the resting membrane potential (RMP) in SVC to a greater extent than in atria. The effects induced by α1-ARs activation in SVC were attenuated by protein kinase C inhibition (PKC). The whole-cell patch clamp revealed PHE-induced suppression of outward component of IK1 inward rectifier current in isolated SVC, but not atrial myocytes. These effects can be mediated by α1A subtype of α-ARs found in abundance in rat SVC. The basal IK1 level in SVC was much lower than in atria as a result of the weaker expression of Kir2.2 channels. CONCLUSION Therefore, the reduced density of IK1 in rat SVC cardiomyocytes and sensitivity of this current to α1A-AR stimulation via PKC-dependent pathways might lead to proarrhythmic conduction in SVC myocardium by inducing RMP depolarization, AP prolongation, CV and dV/dtmax decrease.
Collapse
Affiliation(s)
- Alexandra D. Ivanova
- Department of Human and Animal Physiology Lomonosov Moscow State University Moscow Russia
| | - Tatiana S. Filatova
- Department of Human and Animal Physiology Lomonosov Moscow State University Moscow Russia
- Department of Physiology Pirogov Russian National Research Medical University Moscow Russia
| | - Denis V. Abramochkin
- Department of Human and Animal Physiology Lomonosov Moscow State University Moscow Russia
- Department of Physiology Pirogov Russian National Research Medical University Moscow Russia
- Laboratory of Cardiac Electrophysiology National Medical Research Center for Cardiology Moscow Russia
| | - Andrew Atkinson
- Faculty of Biology, Medicine and Health University of Manchester Manchester UK
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health University of Manchester Manchester UK
- Heart Embryology and Anatomy Research Team Department of Anatomy Jagiellonian University Medical College Cracow Poland
| | - Zarema G. Kokaeva
- Department of Human and Animal Physiology Lomonosov Moscow State University Moscow Russia
| | - Ekaterina M. Merzlyak
- Shemiakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science Moscow Russia
| | - Ksenia B. Pustovit
- Department of Human and Animal Physiology Lomonosov Moscow State University Moscow Russia
| | - Vladislav S. Kuzmin
- Department of Human and Animal Physiology Lomonosov Moscow State University Moscow Russia
- Department of Physiology Pirogov Russian National Research Medical University Moscow Russia
| |
Collapse
|
4
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
5
|
Kienitz MC, Niemeyer A, König GM, Kostenis E, Pott L, Rinne A. Biased signaling of Ca 2+-sensing receptors in cardiac myocytes regulates GIRK channel activity. J Mol Cell Cardiol 2019; 130:107-121. [PMID: 30935998 DOI: 10.1016/j.yjmcc.2019.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
Ca2+-sensing receptors (CaSRs) belong to the class C of G protein-coupled receptors and are activated by extracellular Ca2+. CaSRs display biased G protein signaling by coupling to different classes of heterotrimeric G proteins depending on agonist and cell type. In this study we used fluorescent biosensors to directly analyze G protein coupling to CaSRs and downstream signaling in living cells. In HEK 293 cells, CaSRs displayed biased signaling: elevation of extracellular Ca2+ or application of the alternative agonist spermine caused activation of Gi- and Gq-proteins. Adult cardiac myocytes express endogenous CaSRs, which have been implicated in regulating Ca2+ signaling and contractility. Biased signaling of CaSRs has not been investigated in these cells. To evaluate efficiencies of Gi- and Gq-signaling via CaSRs in rat atrial myocytes, we measured G protein-activated K+ (GIRK) channels. Activation of GIRK requires binding of Gβγ subunits released from Gi proteins, whereas Gq-signaling results in inhibition of GIRK channel activity. Stimulation of CaSRs by Ca2+ or spermine failed to directly activate Gi and GIRK channels. When GIRK channels were pre-activated via endogenous M2 receptors, stimulation of CaSRs caused pronounced inhibition of GIRK currents. This effect was specific to CaSR activation: GIRK current inhibition was sensitive to NPS-2143, a negative allosteric modulator of CaSRs, and abrogated by FR900359, a direct inhibitor of Gq. GIRK current inhibition was also sensitive to the PKC inhibitor chelerythrine, suggesting that following activation of CaSR and Gq, GIRK currents are modulated by PKC phosphorylation. We conclude from this data that cardiac CaSRs do not activate Gi and affect GIRK currents preferentially via the Gq/PKC pathway.
Collapse
Affiliation(s)
| | - Anne Niemeyer
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Lutz Pott
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Rinne
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Dave S, Chen L, Yu C, Seaton M, Khodr CE, Al-Harthi L, Hu XT. Methamphetamine decreases K + channel function in human fetal astrocytes by activating the trace amine-associated receptor type-1. J Neurochem 2018; 148:29-45. [PMID: 30295919 DOI: 10.1111/jnc.14606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Methamphetamine (Meth) is a potent and commonly abused psychostimulant. Meth alters neuron and astrocyte activity; yet the underlying mechanism(s) is not fully understood. Here we assessed the impact of acute Meth on human fetal astrocytes (HFAs) using whole-cell patch-clamping. We found that HFAs displayed a large voltage-gated K+ efflux (IKv ) through Kv /Kv -like channels during membrane depolarization, and a smaller K+ influx (Ikir ) via inward-rectifying Kir /Kir -like channels during membrane hyperpolarization. Meth at a 'recreational' (20 μM) or toxic/fatal (100 μM) concentration depolarized resting membrane potential (RMP) and suppressed IKv/Kv-like . These changes were associated with a decreased time constant (Ƭ), and mimicked by blocking the two-pore domain K+ (K2P )/K2P -like and Kv /Kv -like channels, respectively. Meth also diminished IKir/Kir-like , but only at toxic/fatal levels. Given that Meth is a potent agonist for the trace amine-associated receptor type-1 (TAAR1), and TAAR1-coupled cAMP/cAMP-activated protein kinase (PKA) cascade, we further evaluated whether the Meth impact on K+ efflux was mediated by this pathway. We found that antagonizing TAAR1 with N-(3-Ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB) reversed Meth-induced suppression of IKv/Kv-like ; and inhibiting PKA activity by H89 abolished Meth effects on suppressing IKv/Kv-like . Antagonizing TAAR1 might also attenuate Meth-induced RMP depolarization. Voltage-gated Ca2+ currents were not detected in HFAs. These novel findings demonstrate that Meth suppresses IKv/Kv-like by facilitating the TAAR1/Gs /cAMP/PKA cascade and altering the kinetics of Kv /Kv -like channel gating, but reduces K2P /K2P -like channel activity through other pathway(s), in HFAs. Given that Meth-induced decrease in astrocytic K+ efflux through K2P /K2P -like and Kv /Kv -like channels reduces extracellular K+ levels, such reduction could consequently contribute to a decreased excitability of surrounding neurons. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonya Dave
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lihua Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Chunjiang Yu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Melanie Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Christina E Khodr
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Kodama T, Okada M, Yamawaki H. Mechanisms underlying the relaxation by A484954, a eukaryotic elongation factor 2 kinase inhibitor, in rat isolated mesenteric artery. J Pharmacol Sci 2018; 137:86-92. [PMID: 29778449 DOI: 10.1016/j.jphs.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a calmodulin-related protein kinase which regulates protein translation. A484954 is an inhibitor of eEF2K. In the present study, we investigated the acute effects of A484954 on contractility of isolated blood vessels. Isometric contraction of rat isolated aorta and main branch of superior mesenteric artery (MA) was measured. Expression of an inward rectifier K+ (Kir) channel subtype mRNA and protein was examined. A484954 caused relaxation in endothelium-intact [E (+)] and -denuded [E (-)] aorta or MA precontracted with noradrenaline (NA). The relaxation was higher in MA than aorta. The relaxation was partially inhibited by a nitric oxide (NO) synthase inhibitor, NG-nitro-l-arginine methyl ester (300 μM) in E (+) MA. The relaxation was significantly smaller in MA precontracted with high K+ than NA. The A484954-induced relaxation was significantly inhibited by a Kir channel blocker, BaCl2 (1 mM) compared with vehicle control in E (-) MA. Expression of Kir2.2 mRNA and protein was significantly higher in MA than aorta. We for the first time revealed that A484954 induces relaxation through opening smooth muscle Kir (Kir2.2) channel and through endothelium-derived NO in MA.
Collapse
Affiliation(s)
- Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada City, Aomori, 034-8628, Japan.
| |
Collapse
|
8
|
Goversen B, van der Heyden MAG, van Veen TAB, de Boer TP. The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: Special focus on I K1. Pharmacol Ther 2017; 183:127-136. [PMID: 28986101 DOI: 10.1016/j.pharmthera.2017.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Preclinical drug screens are not based on human physiology, possibly complicating predictions on cardiotoxicity. Drug screening can be humanised with in vitro assays using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, in contrast to adult ventricular cardiomyocytes, iPSC-CMs beat spontaneously due to presence of the pacemaking current If and reduced densities of the hyperpolarising current IK1. In adult cardiomyocytes, IK1 finalises repolarisation by stabilising the resting membrane potential while also maintaining excitability. The reduced IK1 density contributes to proarrhythmic traits in iPSC-CMs, which leads to an electrophysiological phenotype that might bias drug responses. The proarrhythmic traits can be suppressed by increasing IK1 in a balanced manner. We systematically evaluated all studies that report strategies to mature iPSC-CMs and found that only few studies report IK1 current densities. Furthermore, these studies did not succeed in establishing sufficient IK1 levels as they either added too little or too much IK1. We conclude that reduced densities of IK1 remain a major flaw in iPSC-CMs, which hampers their use for in vitro drug screening.
Collapse
Affiliation(s)
- Birgit Goversen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Scherer D, Schworm B, Seyler C, Xynogalos P, Scholz EP, Thomas D, Katus HA, Zitron E. Inhibition of inwardly rectifying Kir2.x channels by the novel anti-cancer agent gambogic acid depends on both pore block and PIP 2 interference. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:701-710. [PMID: 28365825 DOI: 10.1007/s00210-017-1372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022]
Abstract
The caged xanthone gambogic acid (GA) is a novel anti-cancer agent which exhibits anti-proliferative, anti-inflammatory and cytotoxic effects in many types of cancer tissues. In a recent phase IIa study, GA exhibits a favourable safety profile. However, limited data are available concerning its interaction with cardiac ion channels. Heteromeric assembly of Kir2.x channels underlies the cardiac inwardly rectifying IK1 current which is responsible for the stabilization of the diastolic resting membrane potential. Inhibition of the cardiac IK1 current may lead to ventricular arrhythmia due to delayed afterdepolarizations. Compared to Kv2.1, hERG and Kir1.1, a slow, delayed inhibition of Kir2.1 channels by GA in a mammalian cell line was reported before but no data exist in literature concerning action of GA on homomeric Kir2.2 and Kir2.3 and heteromeric Kir2.x channels. Therefore, the aim of this study was to provide comparative data on the effect of GA on homomeric and heteromeric Kir2.x channels. Homomeric and heteromeric Kir2.x channels were heterologously expressed in Xenopus oocytes, and the two-microelectrode voltage-clamp technique was used to record Kir2.x currents. To investigate the mechanism of the channel inhibition by GA, alanine-mutated Kir2.x channels with modifications in the channels pore region or at phosphatidylinositol 4,5-bisphosphate (PIP2)-binding sites were employed. GA caused a slow inhibition of homomeric and heteromeric Kir2.x channels at low micromolar concentrations (with IC50 Kir2.1/2.2 < Kir2.2 < Kir2.2/2.3 < Kir2.3 < Kir2.1 < Kir2.1/2.3). The effect did not reach saturation within 60 min and was not reversible upon washout for 30 min. The inhibition showed no strong voltage dependence. We provide evidence for a combination of direct channel pore blockade and a PIP2-dependent mechanism as a molecular basis for the observed effect. We conclude that Kir2.x channel inhibition by GA may be relevant in patients with pre-existing cardiac disorders such as chronic heart failure or certain rhythm disorders and recommend a close cardiac monitoring for those patients when treated with GA.
Collapse
Affiliation(s)
- Daniel Scherer
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.
| | - Benedikt Schworm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Claudia Seyler
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Panagiotis Xynogalos
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Eberhard P Scholz
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Edgar Zitron
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|