1
|
Tran DV, Terui S, Nomoto K, Nishikawa K. Ecological niche differentiation of two salamanders (Caudata: Hynobiidae) from Hokkaido Island, Japan. Ecol Res 2020. [DOI: 10.1111/1440-1703.12191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dung Van Tran
- Graduate School of Global Environmental Studies Kyoto University Kyoto Japan
- Wildlife Department Vietnam National University of Forestry Ha Noi Vietnam
| | - Shigeharu Terui
- Environment Grasp Promotion Network‐PEG Nonprofit Organization Kushiro‐shi Hokkaido Japan
| | | | - Kanto Nishikawa
- Graduate School of Global Environmental Studies Kyoto University Kyoto Japan
- Graduate School of Human and Environmental Studies Kyoto University Kyoto Japan
| |
Collapse
|
2
|
Zhao L, Hu Y, Liu W, Wu H, Xiao J, Zhang C, Zhang H, Zhang X, Liu J, Lu X, Zheng W. Identification of camel species in food products by a polymerase chain reaction-lateral flow immunoassay. Food Chem 2020; 319:126538. [PMID: 32146291 DOI: 10.1016/j.foodchem.2020.126538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/25/2019] [Accepted: 03/01/2020] [Indexed: 01/08/2023]
Abstract
With an increased demand for camel meat, camel meat-related food products are susceptible to food fraud. To effectively authenticate camel-containing foods, a novel analytical technique based on polymerase chain reaction (PCR)-lateral flow immunoassay (LFI) was developed. The camel-specific PCR primers were designed to target at the mitochondrial COI gene. Both of the in silico and in vitro tests confirmed that the PCR-LFI was specific. A limit of detection of 0.1% w/w of camel meat in beef was achieved for both the raw and cooked (i.e. boiling and deep frying) meat samples. This novel method was used to authenticate 20 processed camel-meat products purchased from local grocery stores in China and online. Two products purchased online were identified as containing no camel meat. Overall, this novel PCR-LFI method is ideal for governmental laboratories to rapidly authenticate camel-meat containing food products.
Collapse
Affiliation(s)
- Liangjuan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China; Tianjin Customs District, Tianjin 300387, China
| | - Yaxi Hu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Wei Liu
- Tianjin Customs District, Tianjin 300387, China
| | - Hong Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Jing Xiao
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Can Zhang
- Center for Disease Prevention and Control of Chinese PLA, Beijing 100071, China
| | | | - Xia Zhang
- Tianjin Customs District, Tianjin 300387, China
| | - Jinyu Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
3
|
Nishimura K. An interaction-driven cannibalistic reaction norm. Ecol Evol 2018; 8:2305-2319. [PMID: 29468045 PMCID: PMC5817123 DOI: 10.1002/ece3.3801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022] Open
Abstract
Cannibalism is induced in larval-stage populations of the Hokkaido salamander, Hynobius retardatus, under the control of a cannibalism reaction norm. Here, I examined phenotypic expression under the cannibalism reaction norm, and how the induction of a cannibalistic morph under the norm leads to populational morphological diversification. I conducted a set of experiments in which density was manipulated to be either low or high. In the high-density treatment, the populations become dimorphic with some individuals developing into the cannibal morph type. I performed an exploratory analysis based on geometric morphometrics and showed that shape characteristics differed between not only cannibal and noncannibal morph types in the high-density treatment but also between those morph types and the solitary morph type in the low-density treatment. Size and shape of cannibal and noncannibal individuals were found to be located at either end of a continuum of expression following a unique size-shape integration rule that was different from the rule governing the size and shape variations of the solitary morph type. This result implies that the high-density-driven inducible morphology of an individual is governed by a common integration rule during the development of dimorphism under the control of the cannibalism reaction norm. Phenotypic expression under the cannibalism reaction norm is driven not only by population density but also by social interactions among the members of a population: variation in the populational expression of dimorphism is associated with contingent social interaction events among population members. The induced cannibalistic morph thus reflects not only by contest-type exploitative competition but also interference competition.
Collapse
Affiliation(s)
- Kinya Nishimura
- Graduate School of Fisheries SciencesHokkaido UniversityJapan
| |
Collapse
|