1
|
Childhood Brain Tumors: A Review of Strategies to Translate CNS Drug Delivery to Clinical Trials. Cancers (Basel) 2023; 15:cancers15030857. [PMID: 36765816 PMCID: PMC9913389 DOI: 10.3390/cancers15030857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Brain and spinal tumors affect 1 in 1000 people by 25 years of age, and have diverse histological, biological, anatomical and dissemination characteristics. A mortality of 30-40% means the majority are cured, although two-thirds have life-long disability, linked to accumulated brain injury that is acquired prior to diagnosis, and after surgery or chemo-radiotherapy. Only four drugs have been licensed globally for brain tumors in 40 years and only one for children. Most new cancer drugs in clinical trials do not cross the blood-brain barrier (BBB). Techniques to enhance brain tumor drug delivery are explored in this review, and cover those that augment penetration of the BBB, and those that bypass the BBB. Developing appropriate delivery techniques could improve patient outcomes by ensuring efficacious drug exposure to tumors (including those that are drug-resistant), reducing systemic toxicities and targeting leptomeningeal metastases. Together, this drug delivery strategy seeks to enhance the efficacy of new drugs and enable re-evaluation of existing drugs that might have previously failed because of inadequate delivery. A literature review of repurposed drugs is reported, and a range of preclinical brain tumor models available for translational development are explored.
Collapse
|
2
|
Pathania AS, Ren X, Mahdi MY, Shackleford GM, Erdreich-Epstein A. GRK2 promotes growth of medulloblastoma cells and protects them from chemotherapy-induced apoptosis. Sci Rep 2019; 9:13902. [PMID: 31554835 PMCID: PMC6761358 DOI: 10.1038/s41598-019-50157-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptor kinase 2 (GRK2; ADRBK1, BARK1) is most known as a regulator of G-protein coupled receptors. However, GRK2 also has other functions. Medulloblastomas are the most common malignant brain cancers in children. GRK2 has not been implicated in medulloblastoma biology. Here we report that GRK2 knockdown slowed cell growth, diminished proliferation, and enhanced cisplatin- and etoposide-induced apoptosis in medulloblastoma cell lines UW228-2 and Daoy. Reciprocally, GRK2 overexpression attenuated apoptosis induced by these chemotherapy drugs. Cisplatin and etoposide increased phosphorylation of AKT (S473) and GRK2 knockdown mitigated this increase. Cisplatin and etoposide attenuated ERK phosphorylation, but GRK2 knockdown did not alter this effect. Wildtype GRK2 reversed the increase in cisplatin- and etoposide-induced apoptosis caused by GRK2 knockdown. GRK2-K220R (kinase dead) and GRK2-S670A (unphosphorylated, constitutively active) conferred protection from cisplatin that was similar to wildtype GRK2, suggesting that this protection may be mediated though a kinase-independent activity of GRK2. These data demonstrate that GRK2 contributes to proliferation and survival of these medulloblastoma cell lines and to their protection from cisplatin- and etoposide-induced apoptosis.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiuhai Ren
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Min Y Mahdi
- Department of Radiology, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Gregory M Shackleford
- Department of Radiology, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Anat Erdreich-Epstein
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles and Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
- Department of Pathology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
3
|
Shackleford GM, Mahdi MY, Moats RA, Hawes D, Tran HC, Finlay JL, Hoang TQ, Meng EF, Erdreich-Epstein A. Continuous and bolus intraventricular topotecan prolong survival in a mouse model of leptomeningeal medulloblastoma. PLoS One 2019; 14:e0206394. [PMID: 30608927 PMCID: PMC6319703 DOI: 10.1371/journal.pone.0206394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023] Open
Abstract
Leptomeningeal metastasis remains a difficult clinical challenge. Some success has been achieved by direct administration of therapeutics into the cerebrospinal fluid (CSF) circumventing limitations imposed by the blood brain barrier. Here we investigated continuous infusion versus bolus injection of therapy into the CSF in a preclinical model of human Group 3 medulloblastoma, the molecular subgroup with the highest incidence of leptomeningeal disease. Initial tests of selected Group 3 human medulloblastoma cell lines in culture showed that D283 Med and D425 Med were resistant to cytosine arabinoside and methotrexate. D283 Med cells were also resistant to topotecan, whereas 1 μM topotecan killed over 99% of D425 Med cells. We therefore introduced D425 Med cells, modified to express firefly luciferase, into the CSF of immunodeficient mice. Mice were then treated with topotecan or saline in five groups: continuous intraventricular (IVT) topotecan via osmotic pump (5.28 μg/day), daily bolus IVT topotecan injections with a similar daily dose (6 μg/day), systemic intraperitoneal injections of a higher daily dose of topotecan (15 μg/day), daily IVT pumped saline and daily intraperitoneal injections of saline. Bioluminescence analyses revealed that both IVT topotecan treatments effectively slowed leptomeningeal tumor growth in the brains. Histological analysis showed that they were associated with localized brain necrosis, possibly due to backtracking of topotecan around the catheter. In the spines, bolus IVT topotecan showed a trend towards slower tumor growth compared to continuous (pump) IVT topotecan, as measured by bioluminescence. Both continuous and bolus topotecan IVT showed longer survival compared to other groups. Thus, both direct IVT topotecan CSF delivery methods produced better anti-medulloblastoma effect compared to systemic therapy at the dosages used here.
Collapse
Affiliation(s)
- Gregory M. Shackleford
- Department of Radiology, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United states of America
| | - Min Y. Mahdi
- Department of Radiology, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United states of America
| | - Rex A. Moats
- Department of Radiology, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United states of America
| | - Debra Hawes
- Department of Pathology, Children’s Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, United states of America
| | - Hung C. Tran
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United states of America
| | - Jonathan L. Finlay
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United states of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United states of America
| | - Tuan Q. Hoang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United states of America
| | - Ellis F. Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United states of America
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, United states of America
| | - Anat Erdreich-Epstein
- Department of Pathology, Children’s Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, United states of America
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United states of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United states of America
| |
Collapse
|
4
|
Martirosian V, Neman J. Medulloblastoma: Challenges and advances in treatment and research. Cancer Rep (Hoboken) 2018; 2:e1146. [PMCID: PMC7941576 DOI: 10.1002/cnr2.1146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/03/2023] Open
Abstract
Background Medulloblastoma (MB) is a pediatric brain tumor occurring in the posterior fossa. MB is a highly heterogeneous tumor, which can be grouped into four main subgroups: WNT, SHH, Group 3, and Group 4. Each subgroup is different both in its implicated pathways and pathology, as well as how they are treated in the clinic. Recent Findings Standard protocol for MB treatment consists of maximal safe resection, followed by craniospinal radiation (in patients 3 years and older) and adjuvant chemotherapy. Advances in clinical stratification of this tumor have allowed establishment of treatment de‐escalation trials aimed at reducing long‐term side effects. However, there have been few advances in identifying novel therapeutic strategies for MB patients due to difficulties in creating chemotherapeutics that can bypass the blood‐brain‐barrier—among other factors. On the other hand, with the help of whole genome sequencing technologies, molecular pathways involved in MB pathogenesis have become clearer and have helped drive MB research. Regardless, this advance in research has yet to translate to the clinic, which may be due to the inability of current in vivo and in vitro models to accurately recapitulate this heterogeneous tumor in humans. Conclusions There have been significant advances in knowledge and treatment of medulloblastoma over the last few decades. Whole genome sequencing has helped elucidate clear differences between the subgroups of MB, allowing physicians to better tailor treatments to each patient in an effort to reduce long‐term sequelae. However, there are still many more obstacles to overcome, including less cytotoxic therapies in the clinic and better modeling systems to accurately replicate this disease in the laboratory. Scientists and physicians must work in a more cohesive manner to create translatable results from the laboratory to the clinic—helping improve therapies for medulloblastoma patients.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Josh Neman
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Developmental stage-specific proliferation and retinoblastoma genesis in RB-deficient human but not mouse cone precursors. Proc Natl Acad Sci U S A 2018; 115:E9391-E9400. [PMID: 30213853 DOI: 10.1073/pnas.1808903115] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Most retinoblastomas initiate in response to the inactivation of the RB1 gene and loss of functional RB protein. The tumors may form with few additional genomic changes and develop after a premalignant retinoma phase. Despite this seemingly straightforward etiology, mouse models have not recapitulated the genetic, cellular, and stage-specific features of human retinoblastoma genesis. For example, whereas human retinoblastomas appear to derive from cone photoreceptor precursors, current mouse models develop tumors that derive from other retinal cell types. To investigate the basis of the human cone-specific oncogenesis, we compared developmental stage-specific cone precursor responses to RB loss in human and murine retina cultures and in cone-specific Rb1-knockout mice. We report that RB-depleted maturing (ARR3+) but not immature (ARR3-) human cone precursors enter the cell cycle, proliferate, and form retinoblastoma-like lesions with Flexner-Wintersteiner rosettes, then form low or nonproliferative premalignant retinoma-like lesions with fleurettes and p16INK4A and p130 expression, and finally form highly proliferative retinoblastoma-like masses. In contrast, in murine retina, only RB-depleted immature (Arr3-) cone precursors entered the cell cycle, and they failed to progress from S to M phase. Moreover, whereas intrinsically highly expressed MDM2 and MYCN contribute to RB-depleted maturing (ARR3+) human cone precursor proliferation, ectopic MDM2 and Mycn promoted only immature (Arr3-) murine cone precursor cell-cycle entry. These findings demonstrate that developmental stage-specific as well as species- and cell type-specific features sensitize to RB1 inactivation and reveal the human cone precursors' capacity to model retinoblastoma initiation, proliferation, premalignant arrest, and tumor growth.
Collapse
|