1
|
Shahid S, Balka M, Lundin D, Daley DO, Sjöberg BM, Rozman Grinberg I. NrdR in Streptococcus and Listeria spp.: DNA Helix Phase Dependence of the Bacterial Ribonucleotide Reductase Repressor. Mol Microbiol 2025. [PMID: 39967291 DOI: 10.1111/mmi.15349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
NrdR is a universal transcriptional repressor of bacterial genes coding for ribonucleotide reductases (RNRs), essential enzymes that provide DNA building blocks in all living cells. Despite its bacterial prevalence, the NrdR mechanism has been scarcely studied. We report the biochemical, biophysical, and bioinformatical characterization of NrdR and its binding sites from two major bacterial pathogens of the phylum Bacillota Listeria monocytogenes and Streptococcus pneumoniae. NrdR consists of a Zn-ribbon domain followed by an ATP-cone domain. We show that it forms tetramers that bind to DNA when loaded with ATP and dATP, but if loaded with only ATP, NrdR forms various oligomeric complexes unable to bind DNA. The DNA-binding site in L. monocytogenes is a pair of NrdR boxes separated by 15-16 bp, whereas in S. pneumoniae, the NrdR boxes are separated by unusually long spacers of 25-26 bp. This observation triggered a comprehensive binding study of four NrdRs from L. monocytogenes, S. pneumoniae, Escherichia coli, and Streptomyces coelicolor to a series of dsDNA fragments where the NrdR boxes were separated by 12-27 bp. The in vitro results were confirmed in vivo in E. coli and revealed that NrdR binds most efficiently when there is an integer number of DNA turns between the center of the two NrdR boxes. The study facilitates the prediction of NrdR binding sites in bacterial genomes and suggests that the NrdR mechanism is conserved throughout the bacterial domain. It sheds light on RNR regulation in Listeria and Streptococcus, and since NrdR does not occur in eukaryotes, opens a way to the development of novel antibiotics.
Collapse
Affiliation(s)
- Saher Shahid
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mateusz Balka
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Inna Rozman Grinberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Yang J, Son Y, Kang M, Park W. AamA-mediated epigenetic control of genome-wide gene expression and phenotypic traits in Acinetobacter baumannii ATCC 17978. Microb Genom 2023; 9:mgen001093. [PMID: 37589545 PMCID: PMC10483419 DOI: 10.1099/mgen.0.001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Individual deletions of three genes encoding orphan DNA methyltransferases resulted in the occurrence of growth defect only in the aamA (encoding AcinetobacterAdenine Methylase A) mutant of A. baumannii strain ATCC 17978. Our single-molecule real-time sequencing-based methylome analysis revealed multiple AamA-mediated DNA methylation sites and proposed a potent census target motif (TTTRAATTYAAA). Loss of Dam led to modulation of genome-wide gene expression, and several Dam-target sites including the promoter region of the trmD operon (rpsP, rimM, trmD, and rplS) were identified through our methylome and transcriptome analyses. AamA methylation also appeared to control the expression of many genes linked to membrane functions (lolAB, lpxO), replication (dnaA) and protein synthesis (trmD operon) in the strain ATCC 17978. Interestingly, cellular resistance against several antibiotics and ethidium bromide through functions of efflux pumps diminished in the absence of the aamA gene, and the complementation of aamA gene restored the wild-type phenotypes. Other tested phenotypic traits such as outer-membrane vesicle production, biofilm formation and virulence were also affected in the aamA mutant. Collectively, our data indicated that epigenetic regulation through AamA-mediated DNA methylation of novel target sites mostly in the regulatory regions could contribute significantly to changes in multiple phenotypic traits in A. baumannii ATCC 17978.
Collapse
Affiliation(s)
- Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Rozman Grinberg I, Martínez-Carranza M, Bimai O, Nouaïria G, Shahid S, Lundin D, Logan DT, Sjöberg BM, Stenmark P. A nucleotide-sensing oligomerization mechanism that controls NrdR-dependent transcription of ribonucleotide reductases. Nat Commun 2022; 13:2700. [PMID: 35577776 PMCID: PMC9110341 DOI: 10.1038/s41467-022-30328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme that catalyzes the synthesis of DNA building blocks in virtually all living cells. NrdR, an RNR-specific repressor, controls the transcription of RNR genes and, often, its own, in most bacteria and some archaea. NrdR senses the concentration of nucleotides through its ATP-cone, an evolutionarily mobile domain that also regulates the enzymatic activity of many RNRs, while a Zn-ribbon domain mediates binding to NrdR boxes upstream of and overlapping the transcription start site of RNR genes. Here, we combine biochemical and cryo-EM studies of NrdR from Streptomyces coelicolor to show, at atomic resolution, how NrdR binds to DNA. The suggested mechanism involves an initial dodecamer loaded with two ATP molecules that cannot bind to DNA. When dATP concentrations increase, an octamer forms that is loaded with one molecule each of dATP and ATP per monomer. A tetramer derived from this octamer then binds to DNA and represses transcription of RNR. In many bacteria - including well-known pathogens such as Mycobacterium tuberculosis - NrdR simultaneously controls multiple RNRs and hence DNA synthesis, making it an excellent target for novel antibiotics development.
Collapse
Affiliation(s)
- Inna Rozman Grinberg
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Markel Martínez-Carranza
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Experimental Medical Science, Lund University, Box 118, SE-22100, Lund, Sweden
| | - Ornella Bimai
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ghada Nouaïria
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Saher Shahid
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Derek T Logan
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-22100, Lund, Sweden.
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Box 118, SE-22100, Lund, Sweden.
| |
Collapse
|
4
|
Baig MA, Turner MS, Liu SQ, Al-Nabulsi AA, Shah NP, Ayyash MM. Potential Probiotic Pediococcus pentosaceus M41 Modulates Its Proteome Differentially for Tolerances Against Heat, Cold, Acid, and Bile Stresses. Front Microbiol 2021; 12:731410. [PMID: 34721329 PMCID: PMC8548654 DOI: 10.3389/fmicb.2021.731410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Probiotics containing functional food confer health benefits in addition to their nutritional properties. In this study, we have evaluated the differential proteomic responses of a potential novel probiotic Pediococcus pentosaceus M41 under heat, cold, acid, and bile stress conditions. We identified stress response proteins that could provide tolerances against these stresses and could be used as probiotic markers for evaluating stress tolerance. Pediococcus pentosaceus M41 was exposed for 2 h to each condition: 50°C (heat stress), 4°C (cold stress), pH 3.0 (acid stress) and 0.05% bile (bile stress). Proteomic analysis was carried out using 2D-IEF SDS PAGE and LC-MS/MS. Out of 60 identified proteins, 14 upregulated and 6 downregulated proteins were common among all the stress conditions. These proteins were involved in different biological functions such as translation-related proteins, carbohydrate metabolism (phosphoenolpyruvate phosphotransferase), histidine biosynthesis (imidazole glycerol phosphate synthase) and cell wall synthesis (tyrosine-protein kinase CapB). Proteins such as polysaccharide deacetylase, lactate oxidase, transcription repressor NrdR, dihydroxyacetone kinase were upregulated under three out of the four stress conditions. The differential expression of these proteins might be responsible for tolerance and protection of P. pentosaceus M41 against different stress conditions.
Collapse
Affiliation(s)
- Mohd Affan Baig
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mark S. Turner
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
6
|
Flores-Bautista E, Hernandez-Guerrero R, Huerta-Saquero A, Tenorio-Salgado S, Rivera-Gomez N, Romero A, Ibarra JA, Perez-Rueda E. Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms. PLoS One 2020; 15:e0237135. [PMID: 32822422 PMCID: PMC7446807 DOI: 10.1371/journal.pone.0237135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
DNA-binding Transcription Factors (TFs) play a central role in regulation of gene expression in prokaryotic organisms, and similarities at the sequence level have been reported. These proteins are predicted with different abundances as a consequence of genome size, where small organisms contain a low proportion of TFs and large genomes contain a high proportion of TFs. In this work, we analyzed a collection of 668 experimentally validated TFs across 30 different species from diverse taxonomical classes, including Escherichia coli K-12, Bacillus subtilis 168, Corynebacterium glutamicum, and Streptomyces coelicolor, among others. This collection of TFs, together with 111 hidden Markov model profiles associated with DNA-binding TFs collected from diverse databases such as PFAM and DBD, was used to identify the repertoire of proteins putatively devoted to gene regulation in 1321 representative genomes of Archaea and Bacteria. The predicted regulatory proteins were posteriorly analyzed in terms of their genomic context, allowing the prediction of functions for TFs and their neighbor genes, such as genes involved in virulence, enzymatic functions, phosphorylation mechanisms, and antibiotic resistance. The functional analysis associated with PFAM groups showed diverse functional categories were significantly enriched in the collection of TFs and the proteins encoded by the neighbor genes, in particular, small-molecule binding and amino acid transmembrane transporter activities associated with the LysR family and proteins devoted to cellular aromatic compound metabolic processes or responses to drugs, stress, or abiotic stimuli in the MarR family. We consider that with the increasing data derived from new technologies, novel TFs can be identified and help improve the predictions for this class of proteins in complete genomes. The complete collection of experimentally characterized and predicted TFs is available at http://web.pcyt.unam.mx/EntrafDB/.
Collapse
Affiliation(s)
- Emanuel Flores-Bautista
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Silvia Tenorio-Salgado
- Tecnológico Nacional de México, Instituto Tecnológico de Mérida, Mérida, Yucatán, México
| | | | - Alba Romero
- Microbiota Host Interactions and Clostridia Research Group, Universidad Nacional Andrés Bello, Santiago de Chile, Chile
| | - Jose Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- * E-mail:
| |
Collapse
|
7
|
Liao YT, Lin SS, Lin SJ, Sun WT, Shen BN, Cheng HP, Lin CP, Ko TP, Chen YF, Wang HC. Structural insights into the interaction between phytoplasmal effector causing phyllody 1 and MADS transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:706-719. [PMID: 31323156 DOI: 10.1111/tpj.14463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 05/21/2023]
Abstract
Phytoplasmas are bacterial plant pathogens which can induce severe symptoms including dwarfism, phyllody and virescence in an infected plant. Because phytoplasmas infect many important crops such as peanut and papaya they have caused serious agricultural losses. The phytoplasmal effector causing phyllody 1 (PHYL1) is an important phytoplasmal pathogenic factor which affects the biological function of MADS transcription factors by interacting with their K (keratin-like) domain, thus resulting in abnormal plant developments such as phyllody. Until now, lack of information on the structure of PHYL1 has prevented a detailed understanding of the binding mechanism between PHYL1 and the MADS transcription factors. Here, we present the crystal structure of PHYL1 from peanut witches'-broom phytoplasma (PHYL1PnWB ). This protein was found to fold into a unique α-helical hairpin with exposed hydrophobic residues on its surface that may play an important role in its biological function. Using proteomics approaches, we propose a binding mode of PHYL1PnWB with the K domain of the MADS transcription factor SEPALLATA3 (SEP3_K) and identify the residues of PHYL1PnWB that are important for this interaction. Furthermore, using surface plasmon resonance we measure the binding strength of PHYL1PnWB proteins to SEP3_K. Lastly, based on confocal images, we found that α-helix 2 of PHYL1PnWB plays an important role in PHYL1-mediated degradation of SEP3. Taken together, these results provide a structural understanding of the specific binding mechanism between PHYL1PnWB and SEP3_K.
Collapse
Affiliation(s)
- Yi-Ting Liao
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Center of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Shin-Jen Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wan-Ting Sun
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Bing-Nan Shen
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Pin Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Chan-Pin Lin
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Fan Chen
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Hao-Ching Wang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Lin SJ, Chen YF, Hsu KC, Chen YL, Ko TP, Lo CF, Wang HC, Wang HC. Structural Insights to the Heterotetrameric Interaction between the Vibrio parahaemolyticus PirA vp and PirB vp Toxins and Activation of the Cry-Like Pore-Forming Domain. Toxins (Basel) 2019; 11:toxins11040233. [PMID: 31013623 PMCID: PMC6520838 DOI: 10.3390/toxins11040233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a newly emergent penaeid shrimp disease which can cause 70-100% mortality in Penaeus vannamei and Penaeus monodon, and has resulted in enormous economic losses since its appearance. AHPND is caused by the specific strains of Vibrio parahaemolyticus that harbor the pVA1 plasmid and express PirAvp and PirBvp toxins. These two toxins have been reported to form a binary complex. When both are present, they lead to the death of shrimp epithelial cells in the hepatopancreas and cause the typical histological symptoms of AHPND. However, the binding mode of PirAvp and PirBvp has not yet been determined. Here, we used isothermal titration calorimetry (ITC) to measure the binding affinity of PirAvp and PirBvp. Since the dissociation constant (Kd = 7.33 ± 1.20 μM) was considered too low to form a sufficiently stable complex for X-ray crystallographic analysis, we used alternative methods to investigate PirAvp-PirBvp interaction, first by using gel filtration to evaluate the molecular weight of the PirAvp/PirBvp complex, and then by using cross-linking and hydrogen-deuterium exchange (HDX) mass spectrometry to further understand the interaction interface between PirAvp and PirBvp. Based on these results, we propose a heterotetrameric interaction model of this binary toxin complex. This model provides insight of how conformational changes might activate the PirBvp N-terminal pore-forming domain and should be helpful for devising effective anti-AHPND strategies in the future.
Collapse
Affiliation(s)
- Shin-Jen Lin
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Biomedical Commercialization Center, Taipei Medical University, Taipei 110, Taiwan.
| | - Yun-Ling Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Chu-Fang Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan.
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan.
| | - Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
9
|
Transcriptional profiling of the mutualistic bacterium Vibrio fischeri and an hfq mutant under modeled microgravity. NPJ Microgravity 2018; 4:25. [PMID: 30588486 PMCID: PMC6299092 DOI: 10.1038/s41526-018-0060-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
For long-duration space missions, it is critical to maintain health-associated homeostasis between astronauts and their microbiome. To achieve this goal it is important to more fully understand the host–symbiont relationship under the physiological stress conditions of spaceflight. To address this issue we examined the impact of a spaceflight analog, low-shear-modeled microgravity (LSMMG), on the transcriptome of the mutualistic bacterium Vibrio fischeri. Cultures of V. fischeri and a mutant defective in the global regulator Hfq (∆hfq) were exposed to either LSMMG or gravity conditions for 12 h (exponential growth) and 24 h (stationary phase growth). Comparative transcriptomic analysis revealed few to no significant differentially expressed genes between gravity and the LSMMG conditions in the wild type or mutant V. fischeri at exponential or stationary phase. There was, however, a pronounced change in transcriptomic profiles during the transition between exponential and stationary phase growth in both V. fischeri cultures including an overall decrease in gene expression associated with translational activity and an increase in stress response. There were also several upregulated stress genes specific to the LSMMG condition during the transition to stationary phase growth. The ∆hfq mutants exhibited a distinctive transcriptome profile with a significant increase in transcripts associated with flagellar synthesis and transcriptional regulators under LSMMG conditions compared to gravity controls. These results indicate the loss of Hfq significantly influences gene expression under LSMMG conditions in a bacterial symbiont. Together, these results improve our understanding of the mechanisms by which microgravity alters the physiology of beneficial host-associated microbes.
Collapse
|
10
|
Chignell JF, Schlegel C, Ulber R, Reardon KF. Quantitative proteomic analysis of
Lactobacillus delbrueckii
ssp.
lactis
biofilms. AIChE J 2018. [DOI: 10.1002/aic.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jeremy F. Chignell
- Dept. of Chemical and Biological Engineering Colorado State University Fort Collins CO, 80523
| | - Christin Schlegel
- Institute of Bioprocess Engineering University of Kaiserslautern Kaiserslautern, D‐67663 Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering University of Kaiserslautern Kaiserslautern, D‐67663 Germany
| | - Kenneth F. Reardon
- Dept. of Chemical and Biological Engineering Colorado State University Fort Collins CO, 80523
- Cell and Molecular Biology Graduate Program Colorado State University Fort Collins CO, 80523
| |
Collapse
|
11
|
Huang MF, Lin SJ, Ko TP, Liao YT, Hsu KC, Wang HC. The monomeric form of Neisseria DNA mimic protein DMP19 prevents DNA from binding to the histone-like HU protein. PLoS One 2017; 12:e0189461. [PMID: 29220372 PMCID: PMC5722371 DOI: 10.1371/journal.pone.0189461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
DNA mimicry is a direct and effective strategy by which the mimic competes with DNA for the DNA binding sites on other proteins. Until now, only about a dozen proteins have been shown to function via this strategy, including the DNA mimic protein DMP19 from Neisseria meningitides. We have shown previously that DMP19 dimer prevents the operator DNA from binding to the transcription factor NHTF. Here, we provide new evidence that DMP19 monomer can also interact with the Neisseria nucleoid-associated protein HU. Using BS3 crosslinking, gel filtration and isothermal titration calorimetry assays, we found that DMP19 uses its monomeric form to interact with the Neisseria HU dimer. Crosslinking conjugated mass spectrometry was used to investigate the binding mode of DMP19 monomer and HU dimer. Finally, an electrophoretic mobility shift assay (EMSA) confirmed that the DNA binding affinity of HU is affected by DMP19. These results showed that DMP19 is bifunctional in the gene regulation of Neisseria through its variable oligomeric forms.
Collapse
Affiliation(s)
- Ming-Fen Huang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shin-Jen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Liao
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
12
|
LC-MS/MS proteomic analysis of starved Bacillus subtilis cells overexpressing ribonucleotide reductase (nrdEF): implications in stress-associated mutagenesis. Curr Genet 2017. [PMID: 28624879 DOI: 10.1007/s00294-017-0722-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The non-appropriate conditions faced by nutritionally stressed bacteria propitiate error-prone repair events underlying stationary-phase- or stress-associated mutagenesis (SPM). The genetic and molecular mechanisms involved in SPM have been deeply studied but the biochemical aspects of this process have so far been less explored. Previous evidence showed that under conditions of nutritional stress, non-dividing cells of strain B. subtilis YB955 overexpressing ribonucleotide reductase (RNR) exhibited a strong propensity to generate true reversions in the hisC952 (amber), metB5 (ochre) and leuC425 (missense) mutant alleles. To further advance our knowledge on the metabolic conditions underlying this hypermutagenic phenotype, a high-throughput LC-MS/MS proteomic analysis was performed in non-dividing cells of an amino acid-starved strain, deficient for NrdR, the RNR repressor. Compared with the parental strain, the level of 57 proteins was found to increase and of 80 decreases in the NrdR-deficient strain. The proteomic analysis revealed an altered content in proteins associated with the stringent response, nucleotide metabolism, DNA repair, and cell signaling in amino acid-starved cells of the ∆nrdR strain. Overall, our results revealed that amino acid-starved cells of strain B. subtilis ∆nrdR that escape from growth-limiting conditions exhibit a complex proteomic pattern reminiscent of a disturbed metabolism. Future experiments aimed to understand the consequences of disrupting the cell signaling pathways unveiled in this study, will advance our knowledge on the genetic adaptations deployed by bacteria to escape from growth-limiting environments.
Collapse
|
13
|
Cisternas IS, Torres A, Flores AF, Angulo VAG. Differential regulation of riboflavin supply genes in Vibrio cholerae. Gut Pathog 2017; 9:10. [PMID: 28239422 PMCID: PMC5312566 DOI: 10.1186/s13099-017-0159-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/09/2017] [Indexed: 12/01/2022] Open
Abstract
Background Riboflavin is the precursor of important redox cofactors such as flavin mononucleotide (FMN) and flavin adenine dinucleotide, required for several biological processes. Vibrio cholerae, a pathogenic bacterium responsible for the cholera disease, possesses the ability to biosynthesize de novo as well as to uptake riboflavin through the riboflavin biosynthetic pathway (RBP) and the RibN importer, respectively. The intra-organism relationship between riboflavin biosynthesis and uptake functions has not been studied. Results This work determined the transcriptional organization of RBP genes and ribN in V. cholerae through reverse transcription polymerase chain reaction and analyzed their expression when growing with or without extracellular riboflavin using real time PCR. The RBP is organized in three transcriptional units, the major one containing ribD, ribE, ribA and ribH together with genes involved in functions not directly related to riboflavin biosynthesis such as nrdR and nusB. In addition, two independent monocistronic units contain ribA2 and ribB, the later conserving a putative FMN riboswitch. The ribN gene is encoded in operon with a gene coding for a predicted outer membrane protein and a gene encoding a protein with a glutaredoxin domain. Regulation analysis showed that among these transcriptional units, only ribB is negatively regulated by riboflavin and that its repression depends on the RibN riboflavin importer. Moreover, external riboflavin highly induced ribB transcription in a ΔribN strain. Also, a genomic database search found a negative correlation between the presence of nrdR and nusB and the FMN riboswitch in bacterial RBP operons. Conclusions Growing in the presence of riboflavin downregulates only a single element among the transcriptional units of riboflavin supply pathways. Thus, endogenous riboflavin biosynthesis seems to be negatively regulated by extracellular riboflavin through its specific effect on transcription of ribB in V. cholerae. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0159-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignacio Sepúlveda Cisternas
- Escuela de Biotecnología, Universidad Mayor, Campus Huechuraba, Santiago, Chile.,Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Universidad de Chile, Pabellón L. Independencia, 1027, 8380453 Santiago, Chile
| | - Alexia Torres
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Universidad de Chile, Pabellón L. Independencia, 1027, 8380453 Santiago, Chile
| | - Andrés Fuentes Flores
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Universidad de Chile, Pabellón L. Independencia, 1027, 8380453 Santiago, Chile
| | - Víctor Antonio García Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Norte, Universidad de Chile, Pabellón L. Independencia, 1027, 8380453 Santiago, Chile
| |
Collapse
|