1
|
Li L, Wang X, Hu K, Liu X, Qiu L, Bai C, Cui Y, Wang B, Wang Z, Wang H, Cheng R, Hua J, Hai L, Wang M, Liu M, Song Z, Xiao C, Li B. ZNF133 is a potent suppressor in breast carcinogenesis through dampening L1CAM, a driver for tumor progression. Oncogene 2023:10.1038/s41388-023-02731-5. [PMID: 37221223 DOI: 10.1038/s41388-023-02731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
Due to the complexity and heterogeneity of breast cancer, the therapeutic effects of breast cancer treatment vary between subtypes. Breast cancer subtypes are classified based on the presence of molecular markers for estrogen or progesterone receptors and human epidermal growth factor 2. Thus, novel, comprehensive, and precise molecular indicators in breast carcinogenesis are urgently needed. Here, we report that ZNF133, a zinc-finger protein, is negatively associated with poor survival and advanced pathological staging of breast carcinomas. Moreover, ZNF133 is a transcription repressor physically associated with the KAP1 complex. It transcriptionally represses a cohort of genes, including L1CAM, that are critically involved in cell proliferation and motility. We also demonstrate that the ZNF133/KAP1 complex inhibits the proliferation and invasion of breast cancer cells in vitro and suppresses breast cancer growth and metastasis in vivo by dampening the transcription of L1CAM. Taken together, the findings of our study confirm the value of ZNF133 and L1CAM levels in the diagnosis and prognosis of breast cancer, contribute to a deeper understanding of the regulation mechanism of ZNF133 for the first time, and provide a new therapeutic strategy and precise intervention target for breast cancer.
Collapse
Affiliation(s)
- Lifang Li
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China.
| | - Xuefei Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Kai Hu
- Department of Pathology, School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Li Qiu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Yanfen Cui
- Public Laboratory, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Biyun Wang
- Laboratory Animal Center, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Zhaosong Wang
- Laboratory Animal Center, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Hailong Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Runfen Cheng
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Jialei Hua
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Linyue Hai
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Mengdie Wang
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Miao Liu
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Zian Song
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China
| | - Chunhua Xiao
- First Surgical Department of Breast Cancer, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China.
| | - Binghui Li
- Department of Cancer Cell Biology, Tianjin's Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, PR China.
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
2
|
González-Reymúndez A, Vázquez AI. Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin. Sci Rep 2020; 10:8341. [PMID: 32433524 PMCID: PMC7239905 DOI: 10.1038/s41598-020-65119-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
Despite recent advances in treatment, cancer continues to be one of the most lethal human maladies. One of the challenges of cancer treatment is the diversity among similar tumors that exhibit different clinical outcomes. Most of this variability comes from wide-spread molecular alterations that can be summarized by omic integration. Here, we have identified eight novel tumor groups (C1-8) via omic integration, characterized by unique cancer signatures and clinical characteristics. C3 had the best clinical outcomes, while C2 and C5 had poorest. C1, C7, and C8 were upregulated for cellular and mitochondrial translation, and relatively low proliferation. C6 and C4 were also downregulated for cellular and mitochondrial translation, and had high proliferation rates. C4 was represented by copy losses on chromosome 6, and had the highest number of metastatic samples. C8 was characterized by copy losses on chromosome 11, having also the lowest lymphocytic infiltration rate. C6 had the lowest natural killer infiltration rate and was represented by copy gains of genes in chromosome 11. C7 was represented by copy gains on chromosome 6, and had the highest upregulation in mitochondrial translation. We believe that, since molecularly alike tumors could respond similarly to treatment, our results could inform therapeutic action.
Collapse
Affiliation(s)
- Agustín González-Reymúndez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
| | - Ana I Vázquez
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Shen AL, Moran SM, Glover EA, Teixeira LB, Bradfield CA. Retinal pathology in the PPCD1 mouse. PLoS One 2017; 12:e0185094. [PMID: 28981549 PMCID: PMC5628829 DOI: 10.1371/journal.pone.0185094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 09/06/2017] [Indexed: 12/30/2022] Open
Abstract
Retinal phenotypes of the PPCD1 mouse, a mouse model of posterior polymorphous corneal dystrophy, have been characterized. PPCD1 mice on the DBA/2J background (D2.Ppcd1) have previously been reported to develop an enlarged anterior chamber due to epithelialization and proliferation of the corneal endothelium and subsequent blockage of the iridocorneal angle. Results presented here show that D2.Ppcd1 mice develop increased intraocular pressure (IOP), with measurements at three months of age revealing significant increases in IOP. Significant retinal ganglion cell layer cell loss is observed at five months of age. D2.Ppcd1 animals also exhibit marked degeneration of the outer nuclear layer in association with hyperplasia of the retinal pigment epithelium. Evidence of retinal detachment is present as early as three weeks of age. By 3.5 months of age, focal areas of outer nuclear layer loss are observed. Although the GpnmbR150X mutation leads to increased IOP and glaucoma in DBA/2J mice, development of anterior segment and retinal defects in D2.Ppcd1 animals does not depend upon presence of the GpnmbR150X mutation.
Collapse
Affiliation(s)
- Anna L. Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAB); (ALS)
| | - Susan M. Moran
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Edward A. Glover
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Leandro B. Teixeira
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christopher A. Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAB); (ALS)
| |
Collapse
|
4
|
Chung DD, Frausto RF, Cervantes AE, Gee KM, Zakharevich M, Hanser EM, Stone EM, Heon E, Aldave AJ. Confirmation of the OVOL2 Promoter Mutation c.-307T>C in Posterior Polymorphous Corneal Dystrophy 1. PLoS One 2017; 12:e0169215. [PMID: 28046031 PMCID: PMC5207508 DOI: 10.1371/journal.pone.0169215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023] Open
Abstract
Purpose To identify the genetic basis of posterior polymorphous corneal dystrophy (PPCD) in families mapped to the PPCD1 locus and in affected individuals without ZEB1 coding region mutations. Methods The promoter, 5’ UTR, and coding regions of OVOL2 was screened in the PPCD family in which linkage analysis established the PPCD1 locus and in 26 PPCD probands who did not harbor a ZEB1 mutation. Copy number variation (CNV) analysis in the PPCD1 and PPCD3 intervals was performed on DNA samples from eight probands using aCGH. Luciferase reporter assays were performed in human corneal endothelial cells to determine the impact of the identified potentially pathogenic variants on OVOL2 promoter activity. Results OVOL2 mutation analysis in the first PPCD1-linked family demonstrated segregation of the c.-307T>C variant with the affected phenotype. In the other 26 probands screened, one heterozygous coding region variant and five promoter region heterozygous variants were identified, though none are likely pathogenic based on allele frequency. Array CGH in the PPCD1 and PPCD3 loci excluded the presence of CNV involving either OVOL2 or ZEB1, respectively. The c.-307T>C variant demonstrated increased promoter activity in corneal endothelial cells when compared to the wild-type sequence as has been demonstrated previously in another cell type. Conclusions Previously identified as the cause of PPCD1, the OVOL2 promoter variant c.-307T>C was herein identified in the original family that established the PPCD1 locus. However, the failure to identify presumed pathogenic coding or non-coding OVOL2 or ZEB1 variants, or CNV involving the PPCD1 and PPCD3 loci in 26 other PPCD probands suggests that other genetic loci may be involved in the pathogenesis of PPCD.
Collapse
Affiliation(s)
- Doug D. Chung
- Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Ricardo F. Frausto
- Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Aleck E. Cervantes
- Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Katherine M. Gee
- Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Marina Zakharevich
- Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Evelyn M. Hanser
- Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
| | - Edwin M. Stone
- Department of Ophthalmology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Anthony J. Aldave
- Stein Eye Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|