1
|
Shen J, Yu Z, Li W, Zhou X. Oocytes Vitrification Using Automated Equipment Based on Microfluidic Chip. Ann Biomed Eng 2024:10.1007/s10439-024-03623-9. [PMID: 39320573 DOI: 10.1007/s10439-024-03623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Oocyte vitrification has a wide range of applications in assisted reproduction and fertility preservation. It requires precise cryoprotectant agents (CPAs) loading and removal sequences to alleviate osmotic shock, which requires manual manipulation by an embryologist. In this study, a microfluidic system was developed to facilitate the precise adjustment of the CPA concentration around the oocyte by linear loading and removal of CPA. In addition, the microfluidic-based automated vitrification (MAV) device combines CPA loading/removal process, with vitrification process, thereby achieving automated oocyte vitrification. Oocytes were vitrified by Cryotop/QC manual method and MAV method. The results showed that the survival, cleavage, and blastocyst rates of oocytes were 80.44, 54.17, and 32.95% for the MAV method, which were significantly higher than Cryotop manual method (73.35, 43.73, and 23.67%) (p < 0.05). In MAV, solution injection rate during CPA loading/removal process was designed as a 1-segment, 2-segment, and 4-segment function. Accordingly, three concave loading and convex removal protocols were adopted to vitrify oocytes. Oocytes vitrified using the 4-segment function group exhibited increased survival (86.18%), cleavage (63.29%), and blastocyst (45.58%) rates compared to those vitrified using the 1-segment and 2-segment groups. The oocytes vitrification with the highest concentration of CPA, denoted as VS1-TS1, exhibited the highest survival rate after rewarming (86.18%). In contrast, the VS3-TS3 group, characterized by a CPA concentration half that of VS1-TS1, exhibited lower survival (74.14%) and cleavage (59.31%) rates, but displayed the higher blastocyst rate (50.79%) following oocyte activation. Our study demonstrates potential of the MAV device for oocyte or embryo vitrification.
Collapse
Affiliation(s)
- Jing Shen
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Zixuan Yu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weijie Li
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China
| | - Xinli Zhou
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China.
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, 200093, China.
| |
Collapse
|
2
|
Święciło A, Januś E, Krzepiłko A, Skowrońska M. The effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status. Sci Rep 2024; 14:21974. [PMID: 39304697 DOI: 10.1038/s41598-024-72400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
We studied the effect of dimethyl sulfoxide (DMSO) on the biochemical and physiological parameters of S. cerevisiae yeast cells with varied energy metabolism and antioxidant status. The wild-type cells of varied genetic backgrounds and their isogenic mutants with impaired antioxidant defences (Δsod mutants) or response to environmental stress (ESR) (Δmsn2, Δmsn4 and double Δmsn2msn4 mutants) were used. Short-term exposure to DMSO even at a wide range of concentrations (2-20%) had little effect on the metabolic activity of the yeast cells and the stability of their cell membranes, but induced free radicals production and clearly altered their proliferative activity. Cells of the Δsod1 mutant showed greater sensitivity to DMSO in these conditions. DMSO at concentrations from 4 to 10-14% (depending on the strain and genetic background) activated the ESR programme. The effects of long-term exposure to DMSO were mainly depended on the type of energy metabolism and antioxidant system efficiency. Yeast cells with reduced antioxidant system efficiency and/or aerobic respiration were more susceptible to the toxic effects of DMSO than cells with a wild-type phenotype and respiro-fermentative or fully fermentative metabolism. These studies suggest a key role of stress response programs in both the processes of cell adaptation to small doses of this xenobiotic and the processes related to its toxicity resulting from large doses or chronic exposure to DMSO.
Collapse
Affiliation(s)
- Agata Święciło
- Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Poland.
| | - Ewa Januś
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Anna Krzepiłko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Monika Skowrońska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| |
Collapse
|
3
|
Aslantürk ÖS. Cytotoxic and genotoxic effects of triphenyl phosphate on root tip cells of Allium cepa L. Toxicol In Vitro 2024; 94:105734. [PMID: 37981031 DOI: 10.1016/j.tiv.2023.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Triphenyl phosphate (TPhP) is a tri-ester of phosphoric acid and phenol. It is used in products such as polyvinyl chloride, hydraulic fluids, polymers, photographic films and printed circuit cards as a flame retardant. It is also widely used in consumer products like electric and electronic devices, textiles and building necessaries. TPhP can diffuse into its surrounding environment easily, because it does not form a chemical bond with polymeric materials. Therefore, bio-monitoring of such compounds is needed for possible environmental and human health effects. In this study, we evaluated genotoxicity and cytotoxicity of TPhP on Allium cepa on the cells of root tips. A 10 mg/mL stock solution of TPhP was dissolved in DMSO and dilutions of 2, 4, 6, 8 and 10 mg/mL was made in distilled water. Onion bulbs, rooted in test tubes, were exposed to these concentrations of TPhP for 24 h. Distilled water was used as a negative control, 0.7% hydrogen peroxide was used as positive control, and 0.5% DMSO was used as solvent control. Significant inhibition of onion root growth was observed following treatment with the 6, 8 and 10 mg/mL TPhP ranges in comparison with the negative and solvent control groups (p < 0.05). Furthermore, in the TPhP treatment groups, total chromosome aberration ratios were significantly high in comparison with the controls (p < 0.05). These results suggest that TPhP have cytotoxic and genotoxic effects on A. cepa root tips.
Collapse
Affiliation(s)
- Özlem Sultan Aslantürk
- Aydın Adnan Menderes University, Faculty of Science, Department of Biology, Central Campus, 09010 Aydın, Turkey.
| |
Collapse
|
4
|
Wiltshire A, Schaal R, Wang F, Tsou T, McKerrow W, Keefe D. Vitrification with Dimethyl Sulfoxide Induces Transcriptomic Alteration of Gene and Transposable Element Expression in Immature Human Oocytes. Genes (Basel) 2023; 14:1232. [PMID: 37372413 DOI: 10.3390/genes14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes. Additionally, few studies investigate the effects of DMSO on transposable elements (TE), the control of which is essential for the maintenance of genomic instability. The objective of this study was to investigate the impact of vitrification with DMSO-containing cryoprotectant on the transcriptome, including on TEs, of human oocytes. Twenty-four oocytes at the GV stage were donated by four healthy women undergoing elective oocyte cryopreservation. Oocytes were paired such that half from each patient were vitrified with DMSO-containing cryoprotectant (Vitrified Cohort), while the other half were snap frozen in phosphate buffer, unexposed to DMSO (Non-Vitrified Cohort). All oocytes underwent RNA sequencing via a method with high fidelity for single cell analysis, and which allows for the analysis of TE expression through Switching Mechanism at the 5'-end of the RNA Transcript sequencing 2 (SMARTseq2), followed by functional enrichment analysis. Of the 27,837 genes identified by SMARTseq2, 7331 (26.3%) were differentially expressed (p < 0.05). There was a significant dysregulation of genes involved in chromatin and histone modification. Mitochondrial function, as well as the Wnt, insulin, mTOR, HIPPO, and MAPK signaling pathways were also altered. The expression of TEs was positively correlated with the expression of PIWIL2, DNMT3A, and DNMT3B, and negatively correlated with age. These findings suggest that the current standard process of oocyte vitrification, involving DMSO-containing cryoprotectant, induces significant transcriptome changes, including those involving TEs.
Collapse
Affiliation(s)
- Ashley Wiltshire
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Renata Schaal
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Fang Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Tiffany Tsou
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - David Keefe
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
5
|
Tanga BM, Fang X, Bang S, Seo C, Kang H, Cha D, Qamar AY, Shim J, Choi K, Saadeldin IM, Lee S, Cho J. The combination of rolipram and cilostamide improved the developmental competence of cloned porcine embryos. Sci Rep 2023; 13:5733. [PMID: 37029228 PMCID: PMC10081996 DOI: 10.1038/s41598-023-32677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
In vitro maturation of porcine oocytes is characterized by asynchronous cytoplasmic and nuclear maturation, leading to less competent oocytes supporting embryo development. The purpose of this study was to evaluate the combined effect of rolipram and cilostamide as cyclic Adenine monophosphate (cAMP) modulators to find the maximum cAMP levels that temporarily arrest meiosis. We determined the optimal time to maintain functional gap junction communication during pre-in vitro maturation to be four hours. Oocyte competence was evaluated by the level of glutathione, reactive oxygen species, meiotic progression, and gene expression. We evaluated embryonic developmental competence after parthenogenetic activation and somatic cell nuclear transfer. The combined treatment group showed significantly higher glutathione and lower reactive oxygen species levels and a higher maturation rate than the control and single treatment groups. Cleavage and blastocyst formation rates in parthenogenetic activation and somatic cell nuclear transfer embryos were higher in two-phase in vitro maturation than in the other groups. The relative levels of BMP15and GDF9 expression were increased in two-phase in vitro maturation. Somatic cell nuclear transfer blastocysts from two-phase in vitro maturation oocytes showed a lower level of expression of apoptotic genes than the control, indicating better pre-implantation developmental competence. The combination of rolipram and cilostamide resulted in optimal synchrony of cytoplasmic and nuclear maturation in porcine in vitro matured oocytes and there by enhanced the developmental competence of pre-implantation embryos.
Collapse
Affiliation(s)
- Bereket Molla Tanga
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- School of Veterinary Medicine, Hawassa University, Hawassa, Ethiopia
| | - Xun Fang
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Seonggyu Bang
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Chaerim Seo
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Heejae Kang
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Dabin Cha
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Ahmad Yar Qamar
- College of Veterinary & Animal Science, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, Republic of Korea
| | - Islam M Saadeldin
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Lee
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- Lab of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
6
|
Wang R, Chen J, Cui Z, Li Y, Gao Q, Miao Y, Wang H, Xiong B. Exposure to diisononyl phthalate deteriorates the quality of porcine oocytes by inducing the apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114768. [PMID: 36917878 DOI: 10.1016/j.ecoenv.2023.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Diisononyl phthalate (DINP), a mixture of chemical compounds composed of diverse isononyl esters of phthalic acid, is commonly applied as a plasticizer to substitute for di (2-ethylhexyl) phthalate (DEHP). It has been demonstrated that DINP exposure impairs the functions of kidney and liver in animals. However, the effects and potential mechanisms of DINP exposure on the female reproduction, especially the oocyte quality are still poorly understood. Here, we discovered that DINP exposure weakened the porcine oocyte meiotic competency (78.9% vs 53.6%, P < 0.001) and fertilization ability (78.5% vs 34.1%, P < 0.0001) during in vitro maturation. Specifically, DINP exposure induced the persistent spindle assembly checkpoint (SAC) activation caused by the disorganized spindle/chromosome apparatus (spindle: 20.0% vs 83.3%, P < 0.001; chromosome: 20.0% vs 80.0%, P < 0.01) to arrest meiotic progression of oocytes at metaphase I stage. In addition, DINP exposure disturbed the dynamics of sperm binding (146.7 vs 58.6, P < 0.0001) and fusion proteins (19.5 vs 11.6, P < 0.0001) in oocytes to compromise their fertilization ability. In particular, transcriptome data uncovered that the action mechanism of DINP on the oocyte maturation was associated with oxidative phosphorylation, apoptosis and autophagy pathways. Lastly, we validated that DINP exposure resulted in the mitochondrial dysfunction (27.2 vs 19.8, P < 0.0001) and elevated levels of reactive oxygen species (ROS; 8.9 vs 19.9, P < 0.0001) to trigger the occurrence of apoptosis (7.2 vs 13.1, P < 0.0001) and protective autophagy (68.6 vs 139.3, P < 0.01). Altogether, our findings not only testify that DINP has a potentially adverse impact on the mammalian oocyte quality, but also provide a scientific reference regarding how environment pollutants act on the female germ cell development.
Collapse
Affiliation(s)
- Rui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyue Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institue of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huili Wang
- Institue of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Mishima K, Okabe YT, Mizuno M, Ohno K, Kitoh H, Imagama S. Efficacy of soluble lansoprazole-impregnated beta-tricalcium phosphate for bone regeneration. Sci Rep 2022; 12:20550. [PMID: 36446942 PMCID: PMC9708645 DOI: 10.1038/s41598-022-25184-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
The proton pump inhibitor lansoprazole has been previously identified to upregulate the expression and transcriptional activity of runt-related transcription factor 2 (Runx2) that promotes lineage commitment and differentiation of osteoprogenitor cells. We could not elicit the expected efficacy of insoluble lansoprazole in enhancing osteogenesis when combined with beta-tricalcium phosphate (β-TCP) bone substitutes. This study aimed to evaluate the effects of soluble lansoprazole on in vitro osteoblastogenesis and new bone formation in vivo. Commercially available human mesenchymal stem cells or patient-derived bone marrow-derived stromal cells were treated with 20 µM of soluble lansoprazole at the beginning of osteogenic induction. Soluble lansoprazole-impregnated β-TCP materials were embedded in the cortical bone defect model of rabbits. Rabbits were sacrificed four weeks postoperatively and undecalcified bone specimens were prepared for evaluation of intra-material new bone formation. Only a 1-day treatment with soluble lansoprazole facilitated osteoblastic differentiation and matrix calcium deposition when added to undifferentiated human mesenchymal stromal cells at the beginning of the osteogenic differentiation. Soluble lansoprazole dose-dependently accelerated intra-material new bone formation when being impregnated with porous β-TCP artificial bones. Local use of soluble lansoprazole can be applicable for fracture and bone defect repair when combined with porous β-TCP scaffolds.
Collapse
Affiliation(s)
- Kenichi Mishima
- grid.27476.300000 0001 0943 978XDepartment of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi 466-8550 Japan
| | - Yuka Tsukagoshi Okabe
- grid.437848.40000 0004 0569 8970Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi 466-8550 Japan
| | - Masaaki Mizuno
- grid.437848.40000 0004 0569 8970Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi 466-8550 Japan
| | - Kinji Ohno
- grid.27476.300000 0001 0943 978XDivision of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Aichi Children’s Health and Medical Center, 7-426 Morioka-cho, Obu, Aichi 474-8710 Japan
| | - Shiro Imagama
- grid.27476.300000 0001 0943 978XDepartment of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi 466-8550 Japan
| |
Collapse
|
8
|
Passos JRS, Guerreiro DD, Otávio KS, Dos Santos-Neto PC, Souza-Neves M, Cuadro F, Nuñez-Olivera R, Crispo M, Vasconcelos FR, Bezerra MJB, Silva RF, Lima LF, Figueiredo JR, Bustamante-Filho IC, Menchaca A, Moura AA. How in vitro maturation changes the proteome of ovine cumulus-oocyte complexes? Mol Reprod Dev 2022; 89:459-470. [PMID: 35901249 DOI: 10.1002/mrd.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
The present study evaluated the effects of in vitro maturation (IVM) on the proteome of cumulus-oocyte complexes (COCs) from ewes. Extracted COC proteins were analyzed by LC-MS/MS. Differences in protein abundances (p < 0.05) and functional enrichments in immature versus in vitro-matured COCs were evaluated using bioinformatics tools. There were 2550 proteins identified in the COCs, with 89 and 87 proteins exclusive to immature and mature COCs, respectively. IVM caused downregulation of 84 and upregulation of 34 proteins. Major upregulated proteins in mature COCs were dopey_N domain-containing protein, structural maintenance of chromosomes protein, ubiquitin-like modifier-activating enzyme 2. Main downregulated proteins in mature COCs were immunoglobulin heavy constant mu, inter-alpha-trypsin inhibitor heavy chain 2, alpha-2-macroglobulin. Proteins exclusive to mature COCs and upregulated after IVM related to immune response, complement cascade, vesicle-mediated transport, cell cycle, and extracellular matrix organization. Proteins of immature COCs and downregulated after IVM were linked to metabolic processes, immune response, and complement cascade. KEGG pathways and miRNA-regulated genes attributed to downregulated and mature COC proteins related to complement and coagulation cascades, metabolism, humoral response, and B cell-mediated immunity. Thus, IVM influenced the ovine COC proteome. This knowledge supports the future development of efficient IVM protocols for Ovis aries.
Collapse
Affiliation(s)
- José Renato S Passos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Denise D Guerreiro
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Kamila S Otávio
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marcela Souza-Neves
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - Federico Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | | | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fábio R Vasconcelos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Julia B Bezerra
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Renato F Silva
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | | | - Alejo Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay.,Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | - Arlindo A Moura
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
9
|
Cheng H, Han Y, Zhang J, Zhang S, Zhai Y, An X, Li Q, Duan J, Zhang X, Li Z, Tang B, Shen H. Effects of dimethyl sulfoxide (DMSO) on DNA methylation and histone modification in parthenogenetically activated porcine embryos. Reprod Fertil Dev 2022; 34:598-607. [PMID: 35397781 DOI: 10.1071/rd21083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic mechanisms play an important role in oogenesis and early embryo development in mammals. Dimethyl sulfoxide (DMSO) is frequently used as a solvent in biological studies and as a vehicle for drug therapy. Recent studies suggest that DMSO detrimentally affects porcine embryonic development, yet the mechanism of the process in parthenogenetically activated porcine embryos has not been reported. In this study, we found that treatment of embryos with 1.5% DMSO significantly decreased the cleavage and blastocyst rates, total cell number of blastocysts and the anti-apoptotic gene BCL-2 transcription level; however, the percentage of apoptotic cells and the expression levels of the pro-apoptotic gene BAX were not changed. Treatment with DMSO significantly decreased the expression levels of DNMT1 , DNMT3a , DNMT3b , TET1 , TET2 , TET3 , KMT2C , MLL2 and SETD3 in most of the stages of embryonic development and increased 5-mC signals, while the staining intensity for 5-hmC had no change in porcine preimplantation embryos from 2-cell to the blastocyst stages. Meanwhile, DMSO decreased the level of H3K4me3 during the development of parthenogenetically activated porcine embryos. After treatment with DMSO, expression levels of the pluripotency-related genes POU5F1 and NANOG decreased significantly (P <0.01), whereas the imprinted gene H19 did not change (P >0.05). In conclusion, these results suggest that DMSO can affect genome-wide DNA methylation and histone modification by regulating the expression of epigenetic modification enzymes, and DMSO also influences the expression level of pluripotent genes. These dysregulations lead to defects in embryonic development.
Collapse
Affiliation(s)
- Hui Cheng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Yu Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jian Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Sheng Zhang
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yanhui Zhai
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xinglan An
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Qi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Jiahui Duan
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Haiqing Shen
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
10
|
López A, Betancourt M, Ducolomb Y, Rodríguez JJ, Casas E, Bonilla E, Bahena I, Retana-Márquez S, Juárez-Rojas L, Casillas F. DNA damage in cumulus cells generated after the vitrification of in vitro matured porcine oocytes and its impact on fertilization and embryo development. Porcine Health Manag 2021; 7:56. [PMID: 34663451 PMCID: PMC8522150 DOI: 10.1186/s40813-021-00235-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Background The evaluation of the DNA damage generated in cumulus cells after mature cumulus-oocyte complexes vitrification can be considered as an indicator of oocyte quality since these cells play important roles in oocyte developmental competence. Therefore, the aim of this study was to determine if matured cumulus-oocyte complexes exposure to cryoprotectants (CPAs) or vitrification affects oocytes and cumulus cells viability, but also if DNA damage is generated in cumulus cells, affecting fertilization and embryo development. Results The DNA damage in cumulus cells was measured using the alkaline comet assay and expressed as Comet Tail Length (CTL) and Olive Tail Moment (OTM). Results demonstrate that oocyte exposure to CPAs or vitrification reduced oocyte (75.5 ± 3.69%, Toxicity; 66.7 ± 4.57%, Vitrification) and cumulus cells viability (32.7 ± 5.85%, Toxicity; 7.7 ± 2.21%, Vitrification) compared to control (95.5 ± 4.04%, oocytes; 89 ± 4.24%, cumulus cells). Also, significantly higher DNA damage expressed as OTM was generated in the cumulus cells after exposure to CPAs and vitrification (39 ± 17.41, 33.6 ± 16.69, respectively) compared to control (7.4 ± 4.22). In addition, fertilization and embryo development rates also decreased after exposure to CPAs (35.3 ± 16.65%, 22.6 ± 3.05%, respectively) and vitrification (32.3 ± 9.29%, 20 ± 1%, respectively). It was also found that fertilization and embryo development rates in granulose-intact oocytes were significantly higher compared to denuded oocytes in the control groups. However, a decline in embryo development to the blastocyst stage was observed after CPAs exposure (1.66 ± 0.57%) or vitrification (2 ± 1%) compared to control (22.3 ± 2.51%). This could be attributed to the reduction in both cell types viability, and the generation of DNA damage in the cumulus cells. Conclusion This study demonstrates that oocyte exposure to CPAs or vitrification reduced viability in oocytes and cumulus cells, and generated DNA damage in the cumulus cells, affecting fertilization and embryo development rates. These findings will allow to understand some of the mechanisms of oocyte damage after vitrification that compromise their developmental capacity, as well as the search for new vitrification strategies to increase fertilization and embryo development rates by preserving the integrity of the cumulus cells.
Collapse
Affiliation(s)
- Alma López
- Biological and Health Sciences Program, Metropolitan Autonomous University, Mexico City, Mexico.,Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Yvonne Ducolomb
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Juan José Rodríguez
- Genetic and Environmental Toxicology Research Unit, FES-Zaragoza-UMIEZ Campus II, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Eduardo Casas
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Edmundo Bonilla
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Iván Bahena
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, 09340, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Mexico City, Mexico
| | - Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Mexico City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Mexico City, Mexico.
| |
Collapse
|
11
|
Lucas CG, Redel BK, Chen PR, Spate LD, Prather RS, Wells KD. Effects of RAD51-stimulatory compound 1 (RS-1) and its vehicle, DMSO, on pig embryo culture. Reprod Toxicol 2021; 105:44-52. [PMID: 34407461 DOI: 10.1016/j.reprotox.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Pigs have become an important model for agricultural and biomedical purposes. The advent of genomic engineering tools, such as the CRISPR/Cas9 system, has facilitated the production of livestock models with desired modifications. However, precise site-specific modifications in pigs through the homology-directed repair (HDR) pathway remains a challenge. In mammalian embryos, the use of small molecules to inhibit non-homologous end joining (NHEJ) or to improve HDR have been tested, but little is known about their toxicity. The compound RS-1 stimulates the activity of the RAD51 protein, which plays a key role in the HDR mechanism, demonstrating enhancement of HDR events in rabbit and bovine zygotes. Thus, in this study, we evaluated the dosage and temporal effects of RS-1 on porcine embryo development and viability. Additionally, we assessed the effects of its vehicle, DMSO, during embryo in vitro culture. Transient exposure to 7.5 μM of RS-1 did not adversely affect early embryo development and was compatible with subsequent development to term. Additionally, low concentrations of its vehicle, DMSO, did not show any toxicity to in vitro produced embryos. The transient use of RS-1 at 7.5 μM during in vitro culture seems to be the best protocol of choice to reduce the potentially toxic effects of RS-1 while attempting to improve HDR in the pig. Direct injection of the CRISPR/Cas9 system, combined with strategies to increase the frequency of targeted modifications via HDR, have become an important tool to simplify and accelerate the production of genetically modified livestock models.
Collapse
Affiliation(s)
- C G Lucas
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA.
| | - B K Redel
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; USDA-ARS, Plant Genetics Unit, Columbia, MO, USA
| | - P R Chen
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - L D Spate
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - R S Prather
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - K D Wells
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA; Division of Animal Science, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Yodrug T, Parnpai R, Hirao Y, Somfai T. Effect of vitrification at different meiotic stages on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Anim Sci J 2021; 92:e13596. [PMID: 34309122 DOI: 10.1111/asj.13596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Vitrification by the Cryotop method is frequently used for bovine oocyte cryopreservation. Nevertheless, vitrified oocytes still have reduced developmental competency compared with fresh counterparts. The objective of this study was to compare the effect of vitrification either at the germinal vesicle (GV) stage or at the metaphase II (MII) stage on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Our results demonstrated that vitrification of oocytes at each meiotic stage significantly reduced blastocyst development after in vitro fertilization (IVF). However, vitrification at the GV stage resulted in higher blastocyst development than did vitrification at the MII stage. Irrespective of the meiotic stage, oocyte vitrification did not affect 5-methylcytosine (5mC) immunostaining intensity in oocyte DNA. However, at both stages, it caused a similar reduction of 5mC levels in DNA of subsequently developing blastocysts. Oocyte vitrification had no effect on the intensity of H3K9me3 and acH3K9 immunostaining in oocytes and subsequent blastocysts. The results suggest that irrespective of meiotic stage, oocyte vitrification alters global methylation in resultant embryos although such alteration in the oocytes was not detected. Oocyte vitrification might not influence histone acetylation and methylation in oocytes and resultant embryos. Vitrification at the immature stage was more advantageous for blastocyst development than at the mature stage.
Collapse
Affiliation(s)
- Thatawat Yodrug
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yuji Hirao
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science (NILGS), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tamas Somfai
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science (NILGS), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
13
|
Cantatore C, George JS, Depalo R, D'Amato G, Moravek M, Smith GD. Mouse oocyte vitrification with and without dimethyl sulfoxide: influence on cryo-survival, development, and maternal imprinted gene expression. J Assist Reprod Genet 2021; 38:2129-2138. [PMID: 34021463 DOI: 10.1007/s10815-021-02221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Oocytes and embryos can be vitrified with and without dimethyl sulfoxide (DMSO). Objectives were to compare no vitrification (No-Vitr), vitrification with DMSO (Vitr + DMSO), and vitrification without DMSO (Vitr - DMSO) on fresh/warmed oocyte survival, induced parthenogenetic activation, parthenogenetic embryo development, and embryonic maternal imprinted gene expression. METHODS In this prospective controlled laboratory study, mature B6C3F1 female mouse metaphase II oocytes were treated as: i) No-Vitr, ii) Vitr + DMSO/warmed, and iii) Vitr - DMSO/warmed with subsequent parthenogenetic activation and culture to the blastocyst stage. Oocyte cryo-survival, parthenogenetic activation and embryo development, parthenogenetic embryo maternal imprinted gene expression were outcome measures. RESULTS Oocyte cryo-survival was significantly improved in Vitr + DMSO versus Vitr - DMSO at initial warming and 2 h after warming. Induced parthenogenetic activation was similar between all three intervention groups. While early preimplantation parthenogenetic embryo development was similar between control, Vitr + DMSO, Vitr - DMSO oocytes, the development to blastocysts was significantly inferior in the Vitr - DMSO oocytes group compared to the control and Vitr + DMSO oocyte groups. Finally, maternal imprinted gene expression was similar between intervention groups at both the 2-cell and blastocyst parthenogenetic embryo stage. CONCLUSION(S) Inclusion of DMSO in oocyte vitrification solutions improved cryo-survival and developmental potential of parthenogenetic embryos to the blastocyst stage without significantly altering maternal imprinted gene expression.
Collapse
Affiliation(s)
- Clementina Cantatore
- Department of Maternal and Child Health, Reproductive and IVF Unit, Asl Bari, Conversano (BA), Italy
| | - Jenny S George
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA
| | - Raffaella Depalo
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giuseppe D'Amato
- Department of Maternal and Child Health, Reproductive and IVF Unit, Asl Bari, Conversano (BA), Italy
| | - Molly Moravek
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA
| | - Gary D Smith
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA. .,Departments of Physiology and Urology and Reproductive Sciences Program, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Effects of DMSO on the Pluripotency of Cultured Mouse Embryonic Stem Cells (mESCs). Stem Cells Int 2020; 2020:8835353. [PMID: 33123203 PMCID: PMC7584961 DOI: 10.1155/2020/8835353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
DMSO is a commonly used solvent in biological studies, as it is an amphipathic molecule soluble in both aqueous and organic media. For that reason, it is the vehicle of choice for several water-insoluble substances used in research. At the molecular and cellular level, DMSO is a hydrogen-bound disrupter, an intercellular electrical uncoupler, and a cryoprotectant, among other properties. Importantly, DMSO often has overlooked side effects. In stem cell research, the literature is scarce, but there are reports on the effect of DMSO in human embryoid body differentiation and on human pluripotent stem cell priming towards differentiation, via modulation of cell cycle. However, in mouse embryonic stem cell (mESC) culture, there is almost no available information. Taking into consideration the almost ubiquitous use of DMSO in experiments involving mESCs, we aimed to understand the effect of very low doses of DMSO (0.0001%-0.2%), usually used to introduce pharmacological inhibitors/modulators, in mESCs cultured in two different media (2i and FBS-based media). Our results show that in the E14Tg2a mESC line used in this study, even the smallest concentration of DMSO had minor effects on the total number of cells in serum-cultured mESCs. However, these effects could not be explained by alterations in cell cycle or apoptosis. Furthermore, DMSO did not affect pluripotency or differentiation potential. All things considered, and although control experiments should be carried out in each cell line that is used, it is reasonable to conclude that DMSO at the concentrations used here has a minimal effect on this particular mESC line.
Collapse
|
15
|
CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology 2020; 159:77-86. [PMID: 33113448 DOI: 10.1016/j.theriogenology.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme Q10 (CoQ10) is essential to many fundamental biological processes. However, the effect of CoQ10 on meiotic maturation of pig oocytes still remains elusive. In the present study we aimed to understand the effects of CoQ10 on porcine oocyte maturation, by supplementing different concentrations of CoQ10 (25, 50 and 100 μM) into the maturation medium. We showed that CoQ10 at 50 μM had better capacity to promote the nuclear maturation of pig oocytes derived from both small and large antral follicles. Though the cleavage and blastocyst rates of parthenotes stayed stable, 50 μM CoQ10 treatment could accelerate the development of parthenotes to blastocyst stage, and increase the average cell number of blastocyst. For cumulus-oocyte complexes from large antral follicles categorized by the brilliant cresyl blue (BCB) test, 50 μM CoQ10 treatment could specifically promote the nuclear maturation of poor-quality oocytes in the BCB-negative group. Mitochondrial function of oocytes treated by 50 μM CoQ10 could be boosted, through increasing the levels of mitochondrial membrane potential, ATP production and CoQ6, and changing the pattern of mitochondrial distribution as well. Moreover, 50 μM CoQ10 treatment suppressed the level of reactive oxygen species and reduced the percentage of oocytes with early apoptosis signal. Taken together, CoQ10 could improve the meiotic maturation of pig oocytes, especially for poor-quality oocytes, mainly through enhancing mitochondrial function and suppressing oxidative stress to reduce apoptosis.
Collapse
|
16
|
Gulevskyy OK. Influence of cryoprotective agents on protein biosynthesis in Krebs-2 ascites carcinoma and wheat germ cell-free systems. Cryobiology 2020; 96:55-60. [PMID: 32827498 DOI: 10.1016/j.cryobiol.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Currently, the cell and tissue storage using the cryoprotective agents are quite common, in particular in reproductive technologies. Meanwhile the issue of safety when applying the CPAs remains open, since even in residual amounts after washing, they can affect the functioning of the most critical metabolic processes of a cell, in particular transcription and translation, which can be of great importance for further life and development of organs, tissues, cells. The goal was to study the effect of penetrating cryoprotective agents glycerol, ME2SO, ethylene glycol, and non-penetrating PEG-400 on protein synthesizing activity in cell-free systems of Krebs-2 ascites carcinoma and wheat germ. In this study, we compared the effects of ME2SO, PEG-400, glycerol, and ethylene glycol on protein biosynthesis in cell-free systems according to the incorporation of 14C-amino acids in total proteins. A reversible suppression of protein biosynthesis in Krebs-2 ascites carcinoma cells and wheat germ cell-free systems by CPAs PEG-400, ethylene glycol, glycerol and ME2SO was found. This effect is shown to be stipulated by a direct influence of the studied CPAs on translation processes. ME2SO, glycerol, ethylene glycol and PEG-400 were established to cause the Mg-dependent inhibition of protein biosynthesis in cell-free system of Krebs-2 ascites carcinoma cells in endogenous matrices and wheat germ ones in exogenous matrices. It has been shown that the mechanism of inhibiting action of CPAs on protein biosynthesis in cell-free systems is related to Mg2+-dependent inhibition of tRNA aminoacylation, which when penetrating Me2SO, glycerol and ethylene glycol CPAs are used, has a reversible character, and when PEG-400 being a hardly penetrating CPA is applied it is just partially recovered.
Collapse
Affiliation(s)
- Oleksandr K Gulevskyy
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| |
Collapse
|
17
|
Yang CX, Wang PC, Liu S, Miao JK, Liu XM, Miao YL, Du ZQ. Long noncoding RNA 2193 regulates meiosis through global epigenetic modification and cytoskeleton organization in pig oocytes. J Cell Physiol 2020; 235:8304-8318. [PMID: 32239703 DOI: 10.1002/jcp.29675] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) regulate a variety of physiological and pathological processes. However, the biological function of lncRNAs in mammalian germ cells remains largely unexplored. Here we identified one novel lncRNA (lncRNA2193) from single-cell RNA sequencing performed on porcine oocytes and investigated its function in oocyte meiosis. During in vitro maturation (IVM), from germinal vesicle (GV, 0 hr), GV breakdown (GVBD, 24 hr), to metaphase II stage (MII, 44 hr), the transcriptional abundance of lncRNA2193 remained stable and high. LncRNA2193 interference by small interfering RNA microinjection into porcine GV oocytes could significantly inhibit rates of GVBD and the first polar body extrusion, but enhance the rates of oocytes with a nuclear abnormality. Moreover, lncRNA2193 knockdown disturbed cytoskeletal organization (F-actin and spindle), and decreased DNA 5-methylcytosine (5mC) and histone trimethylation (H3K4me3, H3K9me3, H3K27me3, and H3K36me3) levels. The lncRNA2193 downregulation induced a decrease of 5mC level could be partially due to the reduction of DNA methyltransferase 3A and 3B, and the elevation of 5mC-hydroxylase ten-11 translocation 2 (TET2). After parthenogenetic activation of MII oocytes, parthenotes exhibited higher fragmentation but lower cleavage rates in the lncRNA2193 downregulated group. However, lncRNA2193 interference performed on mature MII oocytes and parthenotes at 1-cell stage did not affect the cleavage and blasctocyst rates of pathenotes. Taken together, lncRNA2193 plays an important role in porcine oocyte maturation, providing more insights for relevant investigations on mammalian germ cells.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
18
|
Emami S, Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm Dev Technol 2020; 25:779-796. [DOI: 10.1080/10837450.2020.1735414] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shahram Emami
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Kang MH, You SY, Hong K, Kim JH. DMSO impairs the transcriptional program for maternal-to-embryonic transition by altering histone acetylation. Biomaterials 2019; 230:119604. [PMID: 31761489 DOI: 10.1016/j.biomaterials.2019.119604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
Dimethyl sulfoxide (DMSO) is widely used in basic and clinical research, yet its toxicity and biocompatibility properties remain elusive. Here, we report that exposure of mouse zygotes to 2% DMSO perturbed the transcriptional program, critical for maternal-to-embryonic transition and provoked developmental arrest at the 2- or 4-cell stage. Mechanistically, DMSO decreased total protein acetylation in the 2-cell embryos but increased histone H3 and H4 acetylations, as well as p53, H3K9, and H3K27 acetylations. The epigenetic changes led to an altered expression pattern of 16.26% of total valid genes in DMSO-exposed embryos. Among the affected genes, expression of maternal and minor zygotic gene activation (ZGA) genes was enhanced, whereas the ubiquitin-proteasome system, major ZGA transcripts, embryonic gene activation, the cell cycle, and ribosomal biogenesis genes were suppressed. Therefore, we conclude that DMSO causes developmental arrest by disrupting maternal-to-embryonic transition; hence, caution should be exerted when using it as a solvent.
Collapse
Affiliation(s)
- Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, South Korea
| | - Seong-Yeob You
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, South Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, South Korea.
| |
Collapse
|
20
|
Verheijen M, Lienhard M, Schrooders Y, Clayton O, Nudischer R, Boerno S, Timmermann B, Selevsek N, Schlapbach R, Gmuender H, Gotta S, Geraedts J, Herwig R, Kleinjans J, Caiment F. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep 2019; 9:4641. [PMID: 30874586 PMCID: PMC6420634 DOI: 10.1038/s41598-019-40660-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Though clinical trials for medical applications of dimethyl sulfoxide (DMSO) reported toxicity in the 1960s, later, the FDA classified DMSO in the safest solvent category. DMSO became widely used in many biomedical fields and biological effects were overlooked. Meanwhile, biomedical science has evolved towards sensitive high-throughput techniques and new research areas, including epigenomics and microRNAs. Considering its wide use, especially for cryopreservation and in vitro assays, we evaluated biological effect of DMSO using these technological innovations. We exposed 3D cardiac and hepatic microtissues to medium with or without 0.1% DMSO and analyzed the transcriptome, proteome and DNA methylation profiles. In both tissue types, transcriptome analysis detected >2000 differentially expressed genes affecting similar biological processes, thereby indicating consistent cross-organ actions of DMSO. Furthermore, microRNA analysis revealed large-scale deregulations of cardiac microRNAs and smaller, though still massive, effects in hepatic microtissues. Genome-wide methylation patterns also revealed tissue-specificity. While hepatic microtissues demonstrated non-significant changes, findings from cardiac microtissues suggested disruption of DNA methylation mechanisms leading to genome-wide changes. The extreme changes in microRNAs and alterations in the epigenetic landscape indicate that DMSO is not inert. Its use should be reconsidered, especially for cryopreservation of embryos and oocytes, since it may impact embryonic development.
Collapse
Affiliation(s)
- M Verheijen
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - M Lienhard
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Y Schrooders
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - O Clayton
- F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | - S Boerno
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - B Timmermann
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - N Selevsek
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - R Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - S Gotta
- Genedata AG, Basel, Switzerland
| | - J Geraedts
- Genetics and Cell Biology, Maastricht University, Medical Center, Maastricht, Netherlands
| | - R Herwig
- Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - J Kleinjans
- Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - F Caiment
- Toxicogenomics, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
21
|
Bioinformatics Analysis Makes Revelation to Potential Properties on Regulation and Functions of Human Sox2. Pathol Oncol Res 2019; 26:693-706. [PMID: 30712195 DOI: 10.1007/s12253-019-00581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
Sex determining region Y-box 2 (Sox2) is a transcription factor that is essential for maintaining self-renewal or pluripotency of undifferentiated embryonic stem cells. The expression and distribution of Sox2 in tumor tissues have been extensively recorded, which are related to the progression and metastasis of tumor. However, a complete mechanistic understanding of Sox2 regulation and function remains to be studied. Herein, we show new potential properties of Sox2 regulation and functions from bioinformatics analysis. We use numerous algorithms to characterize the Sox2 gene promoter elements and the Sox2 protein structure, physio-chemical, localization properties and its evolutionary relationships. The expression of Sox2 is regulated by a diverse set of transcription factors and associated with the levels of methylation of CpG Islands in promoters. The structural properties of Sox2 indicate that Sox2 expresses as a stem cell marker in a variety of stem cells. Sox2 together with other transcription factors or proteins regulate the expression of downstream target genes, which makes a great difference to the biological function of stem cells. Not only stem cells, Sox2 also play an important role in tumor cells. In conclusion, this information from bioinformatics analysis will help to understand Sox2 regulation and functions better in future attempts.
Collapse
|
22
|
Liu YH, Liu XM, Wang PC, Yu XX, Miao JK, Liu S, Wang YK, Du ZQ, Yang CX. Heat shock protein 90α couples with the MAPK-signaling pathway to determine meiotic maturation of porcine oocytes. J Anim Sci 2018; 96:3358-3369. [PMID: 29800308 DOI: 10.1093/jas/sky213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 (Hsp90) functions as a molecular chaperone in its interaction with clients to influence multiple cellular and physiological processes. However, our current understanding on Hsp90's relationship with mammalian oocyte maturation is still very limited. Here, we aimed to investigate Hsp90's effect on pig oocyte meiotic maturation. Endogenous Hsp90α was constantly expressed at both mRNA and protein levels in porcine maturing oocytes. Addition of 2 µM 17-allylamino-17-demethoxygeldanamycin (17-AAG), the Hsp90 inhibitor, to in vitro mature cumulus-oocyte complexes (COC) significantly decreased Hsp90α protein level (P < 0.05), delayed germinal vesicle breakdown (GVBD) (P < 0.05), and impeded the first polar body (PB1) extrusion (P < 0.01) of porcine oocytes. 2 µM 17-AAG treatment during in vitro maturation also decreased the subsequent development competence as indicated by the lower cleavage (P < 0.001) and higher fragmentation (P < 0.001) rates of parthenotes, whereas no effects on the percentage and average cell number of blastocysts were found. Immunodepletion of Hsp90α by antibody microinjection into porcine oocytes at germinal vesicle and metaphase II stages induced similar defects of meiotic maturation and parthenote development, to that resulted from 2 µM inhibitor 17-AAG. For oocytes treated by 2 µM 17-AAG, the cytoplasm and membrane actin levels were weakened (P < 0.01), and the spindle assembly was disturbed (P < 0.05), due to decreased p-ERK1/2 level (P < 0.05). However, the mitochondrial function and early apoptosis were not affected, as demonstrated by rhodamine 123 staining and Annexin V assays. Our findings indicate that Hsp90α can couple with mitogen-activated protein kinase to regulate cytoskeletal structure and orchestrate meiotic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Xia Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
Lopes KRF, Praxedes ECG, Campos LB, Bezerra MB, Lima GL, Saraiva MVA, Silva AR. Vitrification of ovarian tissue of Brazilian North-eastern donkeys (Equus asinus
) using different cryoprotectants. Reprod Domest Anim 2018; 53:1060-1067. [DOI: 10.1111/rda.13203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 04/04/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Kátia Regina F. Lopes
- Laboratory of Animal Germplasm Conservation-LCGA; Universidade Federal Rural do Semi-Arido-UFERSA; Mossoró RN Brazil
| | - Erica Camila G. Praxedes
- Laboratory of Animal Germplasm Conservation-LCGA; Universidade Federal Rural do Semi-Arido-UFERSA; Mossoró RN Brazil
| | - Livia B. Campos
- Laboratory of Animal Germplasm Conservation-LCGA; Universidade Federal Rural do Semi-Arido-UFERSA; Mossoró RN Brazil
| | - Marcelo B. Bezerra
- Laboratory of Animal Germplasm Conservation-LCGA; Universidade Federal Rural do Semi-Arido-UFERSA; Mossoró RN Brazil
| | - Gabriela L. Lima
- Laboratory of Animal Germplasm Conservation-LCGA; Universidade Federal Rural do Semi-Arido-UFERSA; Mossoró RN Brazil
| | - Márcia Viviane A. Saraiva
- Laboratory of Animal Germplasm Conservation-LCGA; Universidade Federal Rural do Semi-Arido-UFERSA; Mossoró RN Brazil
| | - Alexandre R. Silva
- Laboratory of Animal Germplasm Conservation-LCGA; Universidade Federal Rural do Semi-Arido-UFERSA; Mossoró RN Brazil
| |
Collapse
|
24
|
Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Sci Rep 2018; 8:6132. [PMID: 29666467 PMCID: PMC5904140 DOI: 10.1038/s41598-018-24395-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
L-ascorbic acid (Vitamin C) can enhance the meiotic maturation and developmental competence of porcine oocytes, but the underlying molecular mechanism remains obscure. Here we show the role of ascorbic acid in regulating epigenetic status of both nucleic acids and chromatin to promote oocyte maturation and development in pigs. Supplementation of 250 μM L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AA2P) during in vitro maturation significantly enhanced the nuclear maturation (as indicated by higher rate of first polar body extrusion and increased Bmp15 mRNA level), reduced level of reactive oxygen species, and promoted developmental potency (higher cleavage and blastocyst rates of parthenotes, and decreased Bax and Caspase3 mRNA levels in blastocysts) of pig oocytes. AA2P treatment caused methylation erasure in mature oocytes on nucleic acids (5-methylcytosine (5 mC) and N 6 -methyladenosine (m6A)) and histones (Histone H3 trimethylations at lysines 27, H3K27me3), but establishment of histone H3 trimethylations at lysines 4 (H3K4me3) and 36 (H3K36me3). During the global methylation reprogramming process, levels of TET2 (mRNA and protein) and Dnmt3b (mRNA) were significantly elevated, but simultaneously DNMT3A (mRNA and protein), and also Hif-1α, Hif-2α, Tet3, Mettl14, Kdm5b and Eed (mRNA) were significantly inhibited. Our findings support that ascorbic acid can reprogram the methylation status of not only DNA and histone, but also RNA, to improve pig oocyte maturation and developmental competence.
Collapse
|
25
|
Liu XM, Wang YK, Liu YH, Yu XX, Wang PC, Li X, Du ZQ, Yang CX. Single-cell transcriptome sequencing reveals that cell division cycle 5-like protein is essential for porcine oocyte maturation. J Biol Chem 2017; 293:1767-1780. [PMID: 29222335 DOI: 10.1074/jbc.m117.809608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/03/2017] [Indexed: 02/02/2023] Open
Abstract
The brilliant cresyl blue (BCB) test is used in both basic biological research and assisted reproduction to identify oocytes likely to be developmentally competent. However, the underlying molecular mechanism targeted by the BCB test is still unclear. To explore this question, we first confirmed that BCB-positive porcine oocytes had higher rates of meiotic maturation, better rates of cleavage and development into blastocysts, and lower death rates. Subsequent single-cell transcriptome sequencing on porcine germinal vesicle (GV)-stage oocytes identified 155 genes that were significantly differentially expressed between BCB-negative and BCB-positive oocytes. These included genes such as cdc5l, ldha, spata22, rgs2, paip1, wee1b, and hsp27, which are enriched in functionally important signaling pathways including cell cycle regulation, oocyte meiosis, spliceosome formation, and nucleotide excision repair. In BCB-positive GV oocytes that additionally had a lower frequency of DNA double-strand breaks, the CDC5L protein was significantly more abundant. cdc5l/CDC5L inhibition by short interference (si)RNA or antibody microinjection significantly impaired porcine oocyte meiotic maturation and subsequent parthenote development. Taken together, our single-oocyte sequencing data point to a potential new role for CDC5L in porcine oocyte meiosis and early embryo development, and supports further analysis of this protein in the context of the BCB test.
Collapse
Affiliation(s)
- Xiao-Man Liu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yan-Kui Wang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yun-Hua Liu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Xia Yu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Pei-Chao Wang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Li
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhi-Qiang Du
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Cai-Xia Yang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
26
|
Gastal G, Aguiar F, Alves B, Alves K, de Tarso S, Ishak G, Cavinder C, Feugang J, Gastal E. Equine ovarian tissue viability after cryopreservation and in vitro culture. Theriogenology 2017; 97:139-147. [DOI: 10.1016/j.theriogenology.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/04/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
27
|
DMBA acts on cumulus cells to desynchronize nuclear and cytoplasmic maturation of pig oocytes. Sci Rep 2017; 7:1687. [PMID: 28490774 PMCID: PMC5431913 DOI: 10.1038/s41598-017-01870-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/05/2017] [Indexed: 11/08/2022] Open
Abstract
As an environmental pollutant and carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA) can destroy ovarian follicles at all developmental stages in rodents. However, the underlying molecular mechanism remains obscure. In the present study, we aim to address how DMBA affects the in vitro maturation and development of porcine oocytes. We discovered that for 20 μM DMBA-treated cumulus-oocyte complexes (COCs), the rate of oocyte germinal vesicle breakdown (GVBD) was significantly altered, and the extrusion rate of first polar body was increased. Moreover, oocytes from 20 μM DMBA-treated COCs had significant down-regulation of H3K9me3 and H3K27me3, up-regulation of H3K36me3, higher incidence of DNA double strand breaks (DSBs) and early apoptosis. In striking contrast, none of these changes happened to 20 μM DMBA-treated cumulus-denuded oocytes (CDOs). Furthermore, 20 μM DMBA treatment increased the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (Δ Ψm), and inhibited developmental competence for oocytes from both COC and CDO groups. Collectively, our data indicate DMBA could act on cumulus cells via the gap junction to disturb the synchronization of nuclear and ooplasmic maturation, and reduce the developmental competence of oocytes.
Collapse
|
28
|
Yi X, Liu M, Luo Q, Zhuo H, Cao H, Wang J, Han Y. Toxic effects of dimethyl sulfoxide on red blood cells, platelets, and vascular endothelial cells in vitro. FEBS Open Bio 2017; 7:485-494. [PMID: 28396834 PMCID: PMC5377396 DOI: 10.1002/2211-5463.12193] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/17/2016] [Accepted: 12/29/2016] [Indexed: 01/29/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is widely used in biological studies as a cryoprotective agent for cells and tissues, and also for cryopreserved platelets (PLTs). However, few data on the toxic effects of DMSO following intravenous infusion of cryopreserved PLTs are available. The aim of this study was to explore dose-related effects of DMSO on red blood cells (RBCs), PLTs and vascular endothelial cells in vitro. The results showed that DMSO treatments had significant effects on RBCs, affecting osmotic fragility and increasing hemolysis. Free hemoglobin (FHb) level of RBCs was 0.64 ± 0.19 g L-1 after incubation for 6 h with 0.6% DMSO, and these levels were elevated compared with controls (0.09 ± 0.05 g L-1). Aggregation of PLTs induced by adenosine diphosphate, thrombin (THR), and thrombin receptor activator peptide (TRAP) were inhibited by DMSO treatment because the THR generation capacity was reduced. The intensity of the cytosolic esterase-induced fluorescence response from carboxy dimethyl fluorescein diacetate (CMFDA) in PLTs was decreased about 29% ± 0.04% after treatment with DMSO. DMSO also inhibited the proliferation of the vascular endothelial cell line EAhy926 cells by blocking the G1 phase. Apoptosis of EAhy926 cells with 0.6% DMSO stimulation was increased threefold compared to controls. On the basis of these findings, it was concluded that DMSO was toxic to the hematologic system. This should be taken into account when assessing the infusion effects of cryopreserved PLTs or other blood products requiring DMSO as a vehicle, such as cryopreserved stem cells, in order to avoid adverse therapeutic effects.
Collapse
Affiliation(s)
- Xiaoyang Yi
- Beijing Institute of Transfusion Medicine Beijing China
| | - Minxia Liu
- Beijing Institute of Transfusion Medicine Beijing China
| | - Qun Luo
- Department of Transfusion Affiliated Hospital of Academy of Military Medical Sciences Beijing China
| | - Hailong Zhuo
- Department of Transfusion Affiliated Hospital of Academy of Military Medical Sciences Beijing China
| | - Hui Cao
- Beijing Red Cross Blood Center Beijing China
| | - Jiexi Wang
- Beijing Institute of Transfusion Medicine Beijing China
| | - Ying Han
- Beijing Institute of Transfusion Medicine Beijing China
| |
Collapse
|