1
|
Zhang Y, Chen X, Wang X, Chen J, Du C, Wang J, Liao W. Insights into ionizing radiation-induced bone marrow hematopoietic stem cell injury. Stem Cell Res Ther 2024; 15:222. [PMID: 39039566 PMCID: PMC11265359 DOI: 10.1186/s13287-024-03853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024] Open
Abstract
With the widespread application of nuclear technology across various fields, ionizing radiation-induced injuries are becoming increasingly common. The bone marrow (BM) hematopoietic tissue is a primary target organ of radiation injury. Recent researches have confirmed that ionizing radiation-induced hematopoietic dysfunction mainly results from BM hematopoietic stem cells (HSCs) injury. Additionally, disrupting and reshaping BM microenvironment is a critical factor impacting both the injury and regeneration of HSCs post radiation. However, the regulatory mechanisms of ionizing radiation injury to BM HSCs and their microenvironment remain poorly understood, and prevention and treatment of radiation injury remain the focus and difficulty in radiation medicine research. In this review, we aim to summarize the effects and mechanisms of ionizing radiation-induced injury to BM HSCs and microenvironment, thereby enhancing our understanding of ionizing radiation-induced hematopoietic injury and providing insights for its prevention and treatment in the future.
Collapse
Affiliation(s)
- Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu, 610008, Sichuan, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
2
|
Chappell LJ, Rahill KM, Elgart SR. Of Men and Mice: Using Terrestrial Radiation Epidemiology Methods to Inform Analysis of Animal Models for Space Radiation Risk Assessment. Radiat Res 2023; 200:116-126. [PMID: 37212725 DOI: 10.1667/rade-22-00176.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Prediction of cancer risk from space radiation exposure is critical to ensure spaceflight crewmembers are adequately informed of the risks they face when accepting assignments to ambitious long-duration exploratory missions. Although epidemiological studies have assessed the effects of exposure to terrestrial radiation, no robust epidemiological studies of humans exposed to space radiation exist to support estimates of the risk from space radiation exposure. Mouse data derived from recent irradiation experiments provides valuable information to successfully develop mouse-based excess risks models for assessing relative biological effectiveness for heavy ions that can provide information to scale unique space radiation exposures so that excess risks estimated for terrestrial radiation can be adjusted for space radiation risk assessment. Bayesian analyses were used to simulate linear slopes for excess risk models with several different effect modifiers for attained age and sex. Relative biological effectiveness values for all-solid cancer mortality were calculated from the ratio of the heavy-ion linear slope to the gamma linear slope using the full posterior distribution and resulted in values that were substantially lower than what is currently applied in risk assessment. These analyses provide an opportunity to improve characterization of parameters used in the current NASA Space Cancer Risk (NSCR) model and generate new hypotheses for future animal experiments using out-bred mouse populations.
Collapse
|
3
|
More efficient induction of genotoxicity by high-LET Fe-particle radiation than low-LET X-ray radiation at low doses. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
4
|
Krukowski K, Grue K, Becker M, Elizarraras E, Frias ES, Halvorsen A, Koenig-Zanoff M, Frattini V, Nimmagadda H, Feng X, Jones T, Nelson G, Ferguson AR, Rosi S. The impact of deep space radiation on cognitive performance: From biological sex to biomarkers to countermeasures. SCIENCE ADVANCES 2021; 7:eabg6702. [PMID: 34652936 PMCID: PMC8519563 DOI: 10.1126/sciadv.abg6702] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
In the coming decade, astronauts will travel back to the moon in preparation for future Mars missions. Exposure to galactic cosmic radiation (GCR) is a major obstacle for deep space travel. Using multivariate principal components analysis, we found sex-dimorphic responses in mice exposed to accelerated charged particles to simulate GCR (GCRsim); males displayed impaired spatial learning, whereas females did not. Mechanistically, these GCRsim-induced learning impairments corresponded with chronic microglia activation and synaptic alterations in the hippocampus. Temporary microglia depletion shortly after GCRsim exposure mitigated GCRsim-induced deficits measured months after the radiation exposure. Furthermore, blood monocyte levels measured early after GCRsim exposure were predictive of the late learning deficits and microglia activation measured in the male mice. Our findings (i) advance our understanding of charged particle–induced cognitive challenges, (ii) provide evidence for early peripheral biomarkers for identifying late cognitive deficits, and (iii) offer potential therapeutic strategies for mitigating GCR-induced cognitive loss.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - McKenna Becker
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Edward Elizarraras
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Elma S. Frias
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Halvorsen
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - McKensie Koenig-Zanoff
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Valentina Frattini
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hasitha Nimmagadda
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Xi Feng
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Gregory Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, USA
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Girgis M, Li Y, Jayatilake M, Gill K, Wang S, Makambi K, Sridharan V, Cheema AK. Short-term metabolic disruptions in urine of mouse models following exposure to low doses of oxygen ion radiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:234-249. [PMID: 33902388 PMCID: PMC9757021 DOI: 10.1080/26896583.2020.1868866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Molecular alterations as a result of exposure to low doses of high linear energy transfer (LET) radiation can have deleterious short- and long-term consequences on crew members embarking on long distance space missions. Oxygen ions (16O) are among the high LET charged particles that make up the radiation environment inside a vehicle in deep space. We used mass spectrometry-based metabolomics to characterize urinary metabolic profiles of male C57BL/6J mice exposed to a single dose of 0.1, 0.25 and 1.0 Gy of 16O (600 MeV/n) at 10 and 30 days post-exposure to delineate radiation-induced metabolic alterations. We recognized a significant down regulation of several classes of metabolites including cresols and tryptophan metabolites, ketoacids and their derivatives upon exposure to 0.1 and 0.25 Gy after 10 days. While some of these changes reverted to near normal by 30 days, some metabolites including p-Cresol sulfate, oxalosuccinic acid, and indoxylsulfate remained dysregulated at 30 days, suggesting long term prognosis on metabolism. Pathway analysis revealed a long-term dysregulation in multiple pathways including tryptophan and porphyrin metabolism. These results suggest that low doses of high-LET charged particle irradiation may have long-term implications on metabolic imbalance.
Collapse
Affiliation(s)
- Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kirandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sirao Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kepher Makambi
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
6
|
Nia AM, Khanipov K, Barnette BL, Ullrich RL, Golovko G, Emmett MR. Comparative RNA-Seq transcriptome analyses reveal dynamic time-dependent effects of 56Fe, 16O, and 28Si irradiation on the induction of murine hepatocellular carcinoma. BMC Genomics 2020; 21:453. [PMID: 32611366 PMCID: PMC7329445 DOI: 10.1186/s12864-020-06869-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023] Open
Abstract
Background One of the health risks posed to astronauts during deep space flights is exposure to high charge, high-energy (HZE) ions (Z > 13), which can lead to the induction of hepatocellular carcinoma (HCC). However, little is known on the molecular mechanisms of HZE irradiation-induced HCC. Results We performed comparative RNA-Seq transcriptomic analyses to assess the carcinogenic effects of 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), and 350 MeV/n 28Si (0.2 Gy) ions in a mouse model for irradiation-induced HCC. C3H/HeNCrl mice were subjected to total body irradiation to simulate space environment HZE-irradiation, and liver tissues were extracted at five different time points post-irradiation to investigate the time-dependent carcinogenic response at the transcriptomic level. Our data demonstrated a clear difference in the biological effects of these HZE ions, particularly immunological, such as Acute Phase Response Signaling, B Cell Receptor Signaling, IL-8 Signaling, and ROS Production in Macrophages. Also seen in this study were novel unannotated transcripts that were significantly affected by HZE. To investigate the biological functions of these novel transcripts, we used a machine learning technique known as self-organizing maps (SOMs) to characterize the transcriptome expression profiles of 60 samples (45 HZE-irradiated, 15 non-irradiated control) from liver tissues. A handful of localized modules in the maps emerged as groups of co-regulated and co-expressed transcripts. The functional context of these modules was discovered using overrepresentation analysis. We found that these spots typically contained enriched populations of transcripts related to specific immunological molecular processes (e.g., Acute Phase Response Signaling, B Cell Receptor Signaling, IL-3 Signaling), and RNA Transcription/Expression. Conclusions A large number of transcripts were found differentially expressed post-HZE irradiation. These results provide valuable information for uncovering the differences in molecular mechanisms underlying HZE specific induced HCC carcinogenesis. Additionally, a handful of novel differentially expressed unannotated transcripts were discovered for each HZE ion. Taken together, these findings may provide a better understanding of biological mechanisms underlying risks for HCC after HZE irradiation and may also have important implications for the discovery of potential countermeasures against and identification of biomarkers for HZE-induced HCC.
Collapse
Affiliation(s)
- Anna M Nia
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Kamil Khanipov
- Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Brooke L Barnette
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Robert L Ullrich
- The Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - George Golovko
- Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Mark R Emmett
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA. .,Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA.
| |
Collapse
|
7
|
Miousse IR, Skinner CM, Sridharan V, Seawright JW, Singh P, Landes RD, Cheema AK, Hauer-Jensen M, Boerma M, Koturbash I. Changes in one-carbon metabolism and DNA methylation in the hearts of mice exposed to space environment-relevant doses of oxygen ions ( 16O). LIFE SCIENCES IN SPACE RESEARCH 2019; 22:8-15. [PMID: 31421852 PMCID: PMC6703167 DOI: 10.1016/j.lssr.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 05/13/2023]
Abstract
Cardiovascular disease constitutes an important threat to humans after space missions beyond the Earth's magnetosphere. Epigenetic alterations have an important role in the etiology and pathogenesis of cardiovascular disease. Previous research in animal models has shown that protons and 56Fe ions cause long-term changes in DNA methylation and expression of repetitive elements in the heart. However, astronauts will be exposed to a variety of ions, including the smaller fragmented products of heavy ions after they interact with the walls of the space craft. Here, we investigated the effects of 16O on the cardiac methylome and one-carbon metabolism in male C57BL/6 J mice. Left ventricles were examined 14 and 90 days after exposure to space-relevant doses of 0.1, 0.25, or 1 Gy of 16O (600 MeV/n). At 14 days, the two higher radiation doses elicited global DNA hypomethylation in the 5'-UTR of Long Interspersed Nuclear Elements 1 (LINE-1) compared to unirradiated, sham-treated mice, whereas specific LINE-1 elements exhibited hypermethylation at day 90. The pericentromeric major satellites were affected both at the DNA methylation and expression levels at the lowest radiation dose. DNA methylation was elevated, particularly after 90 days, while expression showed first a decrease followed by an increase in transcript abundance. Metabolomics analysis revealed that metabolites involved in homocysteine remethylation, central to DNA methylation, were unaffected by radiation, but the transsulfuration pathway was impacted after 90 days, with a large increase in cystathione levels at the lowest dose. In summary, we observed dynamic changes in the cardiac epigenome and metabolome three months after exposure to a single low dose of oxygen ions.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Charles M Skinner
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John W Seawright
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Preeti Singh
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amrita K Cheema
- Georgetown University Medical Center, Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Washington, DC, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
8
|
Yi L, Hu N, Mu H, Sun J, Yin J, Dai K, Xu F, Yang N, Ding D. Identification of Cofilin-1 and Destrin as Potential Early-warning Biomarkers for Gamma Radiation in Mouse Liver Tissues. HEALTH PHYSICS 2019; 116:749-759. [PMID: 30913056 DOI: 10.1097/hp.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gamma radiation causes cell injury and leads to an increased risk of cancer, so it is of practical significance to identify biomarkers for gamma radiation. We used proteomic analysis to identify differentially expressed proteins in liver tissues of C57BL/6J mice treated with gamma radiation from Cs for 360 d. We confirmed obvious pathological changes in mouse liver tissues after irradiation. Compared with the control group, 74 proteins showed a fold change of ≥1.5 in the irradiated groups. We selected 24 proteins for bioinformatics analysis and peptide mass fingerprinting and found that 20 of the identified proteins were meaningful. These proteins were associated with tumorigenesis, tumor suppression, catalysis, cell apoptosis, cytoskeleton, metabolism, gene transcription, T-cell response, and other pathways. We confirmed that both cofilin-1 and destrin were up regulated in the irradiated groups by western blot and real-time polymerase chain reaction. Our findings indicate that cofilin-1 and destrin are sensitive to gamma radiation and may be potential biomarkers for gamma radiation. Whether these proteins are involved in radiation-induced tumorigenesis requires further investigation.
Collapse
Affiliation(s)
- Lan Yi
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
| | - Hongxiang Mu
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Jing Sun
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Jie Yin
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Keren Dai
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Fanghui Xu
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Nanyang Yang
- Institute of Cytology and Genetics, College of Pharmaceutical and Biological Science, University of South China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China
| |
Collapse
|
9
|
Seawright JW, Sridharan V, Landes RD, Cao M, Singh P, Koturbash I, Mao XW, Miousse IR, Singh SP, Nelson GA, Hauer-Jensen M, Boerma M. Effects of low-dose oxygen ions and protons on cardiac function and structure in male C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:72-84. [PMID: 30797436 PMCID: PMC6391741 DOI: 10.1016/j.lssr.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 05/07/2023]
Abstract
PURPOSE Astronauts traveling beyond low-Earth orbit will be exposed to high linear-energy transfer charged particles. Because there is concern about the adverse effects of space radiation on the cardiovascular system, this study assessed cardiac function and structure and immune cell infiltration in a mouse model of charged-particle irradiation. MATERIALS AND METHODS Male C57BL/6 J mice were exposed to oxygen ions (16O, 600 MeV/n at 0.25-0.26 Gy/min to a total dose of 0, 0.05, 0.1, 0.25, or 1 Gy), protons (150 MeV, 0.35-0.55 Gy/min to 0, 0.5, or 1 Gy), or protons (150 MeV, 0.5 Gy) followed by 16O (600 MeV/n, 0.1 Gy). Separate groups of mice received 137Cs γ-rays (1 Gy/min to 0, 0.5, 1, or 3 Gy) as a reference. Cardiac function and blood velocity were measured with ultrasonography at 3, 5, 7, and 9 months after irradiation. At 2 weeks, 3 months, and 9 months, cardiac tissue was collected to assess apoptosis, tissue remodeling, and markers of immune cells. RESULTS Ejection fraction and fractional shortening decreased at 3 and 7 months after 16O. These parameters did not change in mice exposed to γ-rays, protons, or protons followed by 16O. Each of the radiation exposures caused only small increases in cleaved caspase-3 and numbers of apoptotic nuclei. Changes in the levels of α-smooth muscle cell actin and a 75-kDa peptide of collagen type III in the left ventricle suggested tissue remodeling, but there was no significant change in total collagen deposition at 2 weeks, 3 months, and 9 months. Increases in protein amounts of cluster of differentiation (CD)2, CD68, and CD45 as measured with immunoblots at 2 weeks, 3 months, and 9 months after exposure to protons or 16O alone suggested immune cell infiltration. For type III collagen, CD2 and CD68, the efficacy in inducing protein abundance of CD2, CD68, and CD45 was 16O > protons > γ-rays > protons followed by 16O. CONCLUSIONS Low-dose, high-energy charged-particle irradiation caused mild changes in cardiac function and tissue remodeling in the mouse.
Collapse
Affiliation(s)
- John W Seawright
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maohua Cao
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Preeti Singh
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiao-Wen Mao
- Department of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sharda P Singh
- Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - Gregory A Nelson
- Department of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA.
| |
Collapse
|
10
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
11
|
Mlh1 deficiency increases the risk of hematopoietic malignancy after simulated space radiation exposure. Leukemia 2018; 33:1135-1147. [PMID: 30275527 PMCID: PMC6443507 DOI: 10.1038/s41375-018-0269-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022]
Abstract
Cancer-causing genome instability is a major concern during space travel due to exposure of astronauts to potent sources of high-linear energy transfer (LET) ionizing radiation. Hematopoietic stem cells (HSCs) are particularly susceptible to genotoxic stress, and accumulation of damage can lead to HSC dysfunction and oncogenesis. Our group recently demonstrated that aging human HSCs accumulate microsatellite instability coincident with loss of MLH1, a DNA Mismatch Repair (MMR) protein, which could reasonably predispose to radiation-induced HSC malignancies. Therefore, in an effort to reduce risk uncertainty for cancer development during deep space travel, we employed an Mlh1+/− mouse model to study the effects high-LET 56Fe ion space-like radiation. Irradiated Mlh1+/− mice showed a significantly higher incidence of lymphomagenesis with 56Fe ions compared to γ-rays and unirradiated mice, and malignancy correlated with increased MSI in the tumors. In addition, whole exome sequencing analysis revealed high SNVs and INDELs in lymphomas being driven by loss of Mlh1 and frequently mutated genes had a strong correlation with human leukemias. Therefore, the data suggest that age-related MMR deficiencies could lead to HSC malignancies after space radiation, and that countermeasure strategies will be required to adequately protect the astronaut population on the journey to Mars.
Collapse
|
12
|
Wang B, Tanaka K, Ninomiya Y, Maruyama K, Varès G, Katsube T, Murakami M, Liu C, Fujimori A, Fujita K, Liu Q, Eguchi-Kasai K, Nenoi M. Increased Hematopoietic Stem Cells/Hematopoietic Progenitor Cells Measured as Endogenous Spleen Colonies in Radiation-Induced Adaptive Response in Mice (Yonezawa Effect). Dose Response 2018; 16:1559325818790152. [PMID: 30150909 PMCID: PMC6104214 DOI: 10.1177/1559325818790152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/03/2022] Open
Abstract
The existence of radiation-induced adaptive response (AR) was reported in varied
biosystems. In mice, the first in vivo AR model was established using X-rays as
both the priming and the challenge doses and rescue of bone marrow death as the
end point. The underlying mechanism was due to the priming radiation-induced
resistance in the blood-forming tissues. In a series of investigations, we
further demonstrated the existence of AR using different types of ionizing
radiation (IR) including low linear energy transfer (LET) X-rays and high LET
heavy ion. In this article, we validated hematopoietic stem cells/hematopoietic
progenitor cells (HSCs/HPCs) measured as endogenous colony-forming units-spleen
(CFU-S) under AR inducible and uninducible conditions using combination of
different types of IR. We confirmed the consistency of increased CFU-S number
change with the AR inducible condition. These findings suggest that AR in mice
induced by different types of IR would share at least in part a common
underlying mechanism, the priming IR-induced resistance in the blood-forming
tissues, which would lead to a protective effect on the HSCs/HPCs and play an
important role in rescuing the animals from bone marrow death. These findings
provide a new insight into the mechanistic study on AR in vivo.
Collapse
Affiliation(s)
- Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masahiro Murakami
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Kiyomi Eguchi-Kasai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
13
|
Krukowski K, Jones T, Campbell-Beachler M, Nelson G, Rosi S. Peripheral T Cells as a Biomarker for Oxygen-Ion-Radiation-Induced Social Impairments. Radiat Res 2018; 190:186-193. [DOI: 10.1667/rr15046.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California
| | - Mary Campbell-Beachler
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California
| | - Gregory Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, California
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science
| |
Collapse
|
14
|
Wang Y, Chang J, Li X, Pathak R, Sridharan V, Jones T, Mao XW, Nelson G, Boerma M, Hauer-Jensen M, Zhou D, Shao L. Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice. PLoS One 2017; 12:e0189466. [PMID: 29232383 PMCID: PMC5726652 DOI: 10.1371/journal.pone.0189466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
During deep space missions, astronauts will be exposed to low doses of charged particle irradiation. The long-term health effects of these exposures are largely unknown. We previously showed that low doses of oxygen ion (16O) irradiation induced acute damage to the hematopoietic system, including hematopoietic progenitor and stem cells in a mouse model. However, the chronic effects of low dose 16O irradiation remain undefined. In the current study, we investigated the long-term effects of low dose 16O irradiation on the mouse hematopoietic system. Male C57BL/6J mice were exposed to 0.05 Gy, 0.1 Gy, 0.25 Gy and 1.0 Gy whole body 16O (600 MeV/n) irradiation. The effects of 16O irradiation on bone marrow (BM) hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) were examined three months after the exposure. The results showed that the frequencies and numbers of BM HPCs and HSCs were significantly reduced in 0.1 Gy, 0.25 Gy and 1.0 Gy irradiated mice compared to 0.05 Gy irradiated and non-irradiated mice. Exposure of mice to low dose 16O irradiation also significantly reduced the clongenic function of BM HPCs determined by the colony-forming unit assay. The functional defect of irradiated HSCs was detected by cobblestone area-forming cell assay after exposure of mice to 0.1 Gy, 0.25 Gy and 1.0 Gy of 16O irradiation, while it was not seen at three months after 0.5 Gy and 1.0 Gy of γ-ray irradiation. These adverse effects of 16O irradiation on HSCs coincided with an increased intracellular production of reactive oxygen species (ROS). However, there were comparable levels of cellular apoptosis and DNA damage between irradiated and non-irradiated HPCs and HSCs. These data suggest that exposure to low doses of 16O irradiation induces long-term hematopoietic injury, primarily via increased ROS production in HSCs.
Collapse
Affiliation(s)
- Yingying Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Xin Li
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Tamako Jones
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Gregory Nelson
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chang J, Wang Y, Pathak R, Sridharan V, Jones T, Mao XW, Nelson G, Boerma M, Hauer-Jensen M, Zhou D, Shao L. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice. Int J Radiat Biol 2017; 93:1312-1320. [PMID: 28782442 DOI: 10.1080/09553002.2017.1356941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. MATERIALS AND METHODS We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. RESULTS 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. CONCLUSION Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.
Collapse
Affiliation(s)
- Jianhui Chang
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Yingying Wang
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Rupak Pathak
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Vijayalakshmi Sridharan
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Tamako Jones
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Xiao Wen Mao
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Gregory Nelson
- b Department of Basic Sciences, Division of Radiation Research, School of Medicine , Loma Linda University , Loma Linda , CA , U.S.A
| | - Marjan Boerma
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Martin Hauer-Jensen
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Daohong Zhou
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| | - Lijian Shao
- a Division of Radiation Health, Department of Pharmaceutical Sciences , University of Arkansas for Medical Sciences , Little Rock , AR , U.S.A
| |
Collapse
|
16
|
Chang J, Feng W, Wang Y, Allen AR, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis. LIFE SCIENCES IN SPACE RESEARCH 2017; 13:39-44. [PMID: 28554508 PMCID: PMC6711775 DOI: 10.1016/j.lssr.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6J mice were exposed to 0.3, 0.6 and 0.9Gy 28Si (600MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.
Collapse
Affiliation(s)
- Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wei Feng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yingying Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jennifer Turner
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Blair Stewart
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA; Departments of Neurology, and Radiation Medicine, ONPRC, Oregon Health and Science University, Portland, OR, USA; Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|