1
|
Liu P, Li Z, Zhang H, Wang Y, Liao Y, Guo Y, Wang C, Zou Y, Zou R, Niu L. Mild heat stress promotes the differentiation of odontoblast-like MDPC-23 cells via yes-associated protein. Int J Hyperthermia 2024; 41:2369749. [PMID: 38925872 DOI: 10.1080/02656736.2024.2369749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE Dentin hypersensitivity (DH) is a prevalent condition, but long-term effective treatments are scarce. Differentiation of odontoblast-like cells is promising for inducing tertiary dentinogenesis and ensuring sustained therapeutic efficacy against DH. This study examined the effects and mechanism of action of mild heat stress (MHS) on the differentiation of odontoblast-like MDPC-23 cells. METHODS We used a heating device to accurately control the temperature and duration, mimicking the thermal microenvironment of odontoblast-like cells. Using this device, the effects of MHS on cell viability and differentiation were examined. Cell viability was assessed using the MTT assay. The expression and nucleoplasmic ratio of the yes-associated protein (YAP) were examined by western blotting and immunofluorescence. The gene expression levels of heat shock proteins (HSPs) and dentin matrix protein-1 (DMP1) were measured using qPCR. Dentin sialophosphoprotein (DSPP) expression was evaluated using immunofluorescence and immunoblotting. Verteporfin was used to inhibit YAP activity. RESULTS Mild heat stress (MHS) enhanced the odontoblast differentiation of MDPC-23 cells while maintaining cell viability. MHS also increased YAP activity, as well as the levels of HSP25 mRNA, HSP70 mRNA, HSP90α mRNA, DMP1 mRNA, and DSPP protein. However, after YAP inhibition, both cell viability and the levels of HSP90α mRNA, DMP1 mRNA, and DSPP protein were reduced. CONCLUSION YAP plays a crucial role in maintaining cell viability and promoting odontoblast differentiation of MDPC-23 cells under MHS. Consequently, MHS is a potential therapeutic strategy for DH, and boosting YAP activity could be beneficial for maintaining cell viability and promoting odontoblast differentiation.
Collapse
Affiliation(s)
- Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chenxu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuanwu Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Kincses D, Jordáki D, Szebeni D, Kunsági-Máté S, Szalma J, Lempel E. Effect of Ceramic and Dentin Thicknesses and Type of Resin-Based Luting Agents on Intrapulpal Temperature Changes during Luting of Ceramic Inlays. Int J Mol Sci 2023; 24:ijms24065466. [PMID: 36982546 PMCID: PMC10057599 DOI: 10.3390/ijms24065466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The adhesive cementation of ceramic inlays may increase pulpal temperature (PT) and induce pulpal damage due to heat generated by the curing unit and the exothermic reaction of the luting agent (LA). The aim was to measure the PT rise during ceramic inlay cementation by testing different combinations of dentin and ceramic thicknesses and LAs. The PT changes were detected using a thermocouple sensor positioned in the pulp chamber of a mandibular molar. Gradual occlusal reduction obtained dentin thicknesses of 2.5, 2.0, 1.5, and 1.0 mm. Light-cured (LC) and dual-cured (DC) adhesive cements and preheated restorative resin-based composite (RBC) were applied to luting of 2.0, 2.5, 3.0, and 3.5 mm lithium disilicate ceramic blocks. Differential scanning calorimetry was used to compare the thermal conductivity of dentin and ceramic slices. Although ceramic reduced heat delivered by the curing unit, the exothermic reaction of the LAs significantly increased it in each investigated combination (5.4–7.9 °C). Temperature changes were predominantly influenced by dentin thickness followed by LA and ceramic thickness. Thermal conductivity of dentin was 24% lower than that of ceramic, and its thermal capacity was 86% higher. Regardless of the ceramic thickness, adhesive inlay cementation can significantly increase the PT, especially when the remaining dentin thickness is <2 mm.
Collapse
Affiliation(s)
- Dóra Kincses
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, University of Pécs Medical School, PTüzér Street 1, 7623 Pécs, Hungary
| | - Dóra Jordáki
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, University of Pécs Medical School, PTüzér Street 1, 7623 Pécs, Hungary
| | - Donát Szebeni
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, University of Pécs Medical School, PTüzér Street 1, 7623 Pécs, Hungary
| | - Sándor Kunsági-Máté
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, 7624 Pécs, Hungary
- János Szentágothai Research Center, Ifjúság Street 20, 7624 Pécs, Hungary
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Pécs Medical School, Tüzér Street 1, 7623 Pécs, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, University of Pécs Medical School, PTüzér Street 1, 7623 Pécs, Hungary
- Correspondence: ; Tel.: +36-(72)-536402
| |
Collapse
|
3
|
Elgezawi M, Haridy R, Abdalla MA, Heck K, Draenert M, Kaisarly D. Current Strategies to Control Recurrent and Residual Caries with Resin Composite Restorations: Operator- and Material-Related Factors. J Clin Med 2022; 11:jcm11216591. [PMID: 36362817 PMCID: PMC9657252 DOI: 10.3390/jcm11216591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
This review addresses the rationale of recurrent and/or residual caries associated with resin composite restorations alongside current strategies and evidence-based recommendations to arrest residual caries and restrain recurrent caries. The PubMed and MEDLINE databases were searched for composite-associated recurrent/residual caries focusing on predisposing factors related to materials and operator’s skills; patient-related factors were out of scope. Recurrent caries and fractures are the main reasons for the failure of resin composites. Recurrent and residual caries are evaluated differently with no exact distinguishment, especially for wall lesions. Recurrent caries correlates to patient factors, the operator’s skills of cavity preparation, and material selection and insertion. Material-related factors are significant. Strong evidence validates the minimally invasive management of deep caries, with concerns regarding residual infected dentin. Promising technologies promote resin composites with antibacterial and remineralizing potentials. Insertion techniques influence adaptation, marginal seal, and proximal contact tightness. A reliable diagnostic method for recurrent or residual caries is urgently required. Ongoing endeavors cannot eliminate recurrent caries or precisely validate residual caries. The operator’s responsibility to precisely diagnose original caries and remaining tooth structure, consider oral environmental conditions, accurately prepare cavities, and select and apply restorative materials are integral aspects. Recurrent caries around composites requires a triad of attention where the operator’s skills are cornerstones.
Collapse
Affiliation(s)
- Moataz Elgezawi
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (M.E.); (D.K.); Tel.: +49-89-4400-59452 (D.K.); Fax: +49-89-4400-59302 (D.K.)
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Department of Conservative Dentistry, Faculty of Dentistry, Cairo University, Cairo 4240310, Egypt
| | - Moamen A. Abdalla
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Katrin Heck
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
| | - Miriam Draenert
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Goethe Str. 70, 80336 Munich, Germany
- Correspondence: (M.E.); (D.K.); Tel.: +49-89-4400-59452 (D.K.); Fax: +49-89-4400-59302 (D.K.)
| |
Collapse
|
4
|
Anagnostaki E, Mylona V, Kosma K, Parker S, Chala M, Cronshaw M, Dimitriou V, Tatarakis M, Papadogiannis N, Lynch E, Grootveld M. A Spectrophotometric Study on Light Attenuation Properties of Dental Bleaching Gels: Potential Relevance to Irradiation Parameters. Dent J (Basel) 2020; 8:dj8040137. [PMID: 33339162 PMCID: PMC7765600 DOI: 10.3390/dj8040137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background: During in-office bleaching, appropriate light sources are applied in order to enhance the activity of the bleaching gels applied onto teeth. For this method to be effective, a high absorption of light within the gel is necessary. Variation in the light attenuation capability of the gel, the duration of application and light activation can contribute towards safety hazards associated with this procedure. Methods: In this study, seven different gels and hydrogen peroxide have been evaluated for their optical properties by means of spectrophotometry (440–1000 nm). The transmitted light spectrum was used to estimate the intensity loss for each gel. The mean intensity decreases observed were statistically analysed using an analysis of variance (ANOVA). Results: The five more-pigmented gels tested indicated a very similar intensity loss of around 80%, whereas the remaining two gels showed significantly less attenuation (predominantly, p < 10−6). Conclusions: Throughout the spectrum of wavelengths examined, and according to the underlying studies evaluated, five of the gels assessed demonstrated an attenuation high enough to possibly avoid overheating of the underlying enamel dentine and pulp. An evaluation of appropriate irradiation parameters is proposed.
Collapse
Affiliation(s)
- Eugenia Anagnostaki
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK; (V.M.); (S.P.); (M.C.); (E.L.); (M.G.)
- Correspondence:
| | - Valina Mylona
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK; (V.M.); (S.P.); (M.C.); (E.L.); (M.G.)
| | - Kyriaki Kosma
- Institute of Plasma Physics and Lasers, Hellenic Mediterranean University, Tria Monastiria, 74100 Rethymno, Greece; (K.K.); (V.D.); (M.T.); (N.P.)
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK; (V.M.); (S.P.); (M.C.); (E.L.); (M.G.)
| | - Marianna Chala
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy;
| | - Mark Cronshaw
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK; (V.M.); (S.P.); (M.C.); (E.L.); (M.G.)
| | - Vasilis Dimitriou
- Institute of Plasma Physics and Lasers, Hellenic Mediterranean University, Tria Monastiria, 74100 Rethymno, Greece; (K.K.); (V.D.); (M.T.); (N.P.)
| | - Michael Tatarakis
- Institute of Plasma Physics and Lasers, Hellenic Mediterranean University, Tria Monastiria, 74100 Rethymno, Greece; (K.K.); (V.D.); (M.T.); (N.P.)
| | - Nektarios Papadogiannis
- Institute of Plasma Physics and Lasers, Hellenic Mediterranean University, Tria Monastiria, 74100 Rethymno, Greece; (K.K.); (V.D.); (M.T.); (N.P.)
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK; (V.M.); (S.P.); (M.C.); (E.L.); (M.G.)
- School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, Gateway House, Leicester LE1 9BH, UK; (V.M.); (S.P.); (M.C.); (E.L.); (M.G.)
- School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|