A Selective, Dual Emission β-Alanine Aminopeptidase Activated Fluorescent Probe for the Detection of
Pseudomonas aeruginosa,
Burkholderia cepacia, and
Serratia marcescens.
Molecules 2019;
24:molecules24193550. [PMID:
31575027 PMCID:
PMC6804094 DOI:
10.3390/molecules24193550]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022] Open
Abstract
Selective detection of β-alanyl aminopeptidase (BAP)-producing Pseudomonas aeruginosa, Serratia marcescens, and Burkholderia cepacia was achieved by employing the blue-to-yellow fluorescent transition of a BAP-specific enzyme substrate, 3-hydroxy-2-(p-dimethylaminophenyl)flavone derivative, incorporating a self-immolative linker to β-alanine. Upon cellular uptake and accumulation of the substrate by viable bacterial colonies, blue fluorescence was generated, while hydrolysis of the N-terminal peptide bond by BAP resulted in the elimination of the self-immolative linker and the restoration of the original fluorescence of the flavone derivative.
Collapse