1
|
Florez MA, Thatavarty A, Le DT, Hill HA, Jeong Y, Ho BM, Kus P, Wathan TK, Kain BN, Huang S, Park D, King KY. BST2 facilitates activation of hematopoietic stem cells through ERK signaling. Exp Hematol 2024; 140:104653. [PMID: 39362577 DOI: 10.1016/j.exphem.2024.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
The proinflammatory cytokine interferon gamma (IFNγ) is upregulated in a variety of infections and contributes to bone marrow failure through hematopoietic stem cell (HSC) activation and subsequent exhaustion. The cell-surface protein, bone marrow stromal antigen 2 (BST2), is a key mediator of this process, because it is induced upon IFN stimulation and required for IFN-dependent HSC activation. To identify the mechanism by which BST2 promotes IFN-dependent HSC activation, we evaluated its role in niche localization, immune cell function, lipid raft formation, and intracellular signaling. Our studies indicated that knockout (KO) of BST2 in a murine model does not disrupt immune cell responses to IFN-inducing mycobacterial infection. Furthermore, intravital imaging studies indicate that BST2 KO does not disrupt localization of HSCs relative to endothelial or osteoblastic niches in the bone marrow. However, using imaging-based flow cytometry, we found that IFNγ treatment shifts the lipid raft polarity of wild-type (WT) but not Bst2-/- hematopoietic stem and progenitor cells (HSPCs). Furthermore, RNAseq analysis, reverse-phase protein array and western blot analysis of HSPCs indicate that BST2 promotes ERK1/2 phosphorylation during IFNγ-mediated stress. Overall, we find that BST2 facilitates HSC division by promoting cell polarization and ERK activation, thus elucidating a key mechanism of IFN-dependent HSPC activation. These findings inform future approaches in the treatment of cancer and bone marrow failure.
Collapse
Affiliation(s)
- Marcus A Florez
- Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences (GSBS) and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Apoorva Thatavarty
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Program in Genetics and Genomics, GSBS, and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Duy T Le
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Program in Immunology, GSBS, Baylor College of Medicine, Houston, TX
| | - Holly A Hill
- Department of Statistics, School of Engineering, Rice University, Houston, TX
| | - Youngjae Jeong
- Program in Genetics and Genomics, GSBS, and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Brian M Ho
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX
| | - Pawel Kus
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Trisha K Wathan
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Bailee N Kain
- Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences (GSBS) and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Shixia Huang
- Advanced Technology Cores, Department of Molecular and Cellular Biology, Department of Education, Innovation & Technology, Houston, TX; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Dongsu Park
- Program in Genetics and Genomics, GSBS, and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Katherine Y King
- Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences (GSBS) and Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Program in Immunology, GSBS, Baylor College of Medicine, Houston, TX; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
2
|
Wu X, Chen P, Huang D, Pan Y, Chen S. Bone and periosteum protein analysis via tandem mass tag quantitative proteomics in pediatric patients with osteomyelitis. Biomed Chromatogr 2024; 38:e5999. [PMID: 39380190 DOI: 10.1002/bmc.5999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/10/2024]
Abstract
Bone healing is crucial in managing osteomyelitis after fracture fixation. Understanding the mechanism of extensive callus formation in pediatric osteomyelitis is highly important. This study aims to analyze bone and periosteum samples from pediatric patients to elucidate the essential processes involved in callus formation during osteomyelitis. The study included eight patients from our hospital: four with positive microbial culture who underwent osteomyelitis debridement and four who had osteotomy surgery as contral. We used tandem mass tag quantitative proteomics to investigate proteomic changes in bone and periosteum tissues obtained from these patients. Differential expression proteins were analyzed for their pathways through Gene Ontology (GO) annotation, GO enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction networks. A total of 4737 proteins were successfully identified. About 2224 differentially expressed proteins were detected in the bone tissues group and periosteum tissues group. Among the differentially expressed proteins, 10 protein genes in the bone group were associated with inflammation and osteogenesis, while in the periosteum group were nine. Cytochrome b-245, beta polypeptide (CYBB), nicotinamide phosphoribosyltransferase (NAMPT), tissue inhibitor of metalloproteinases 1 (TIMP-1), Raf-1 proto-oncogene, serine/threonine kinase (RAF-1), RELA proto-oncogene, NF-KB subunit (RELA), and sphingomyelin synthase 2 (SGMS2) may play an important role in callus formation in patients with osteomyelitis. This study provides novel clues for understanding callus formation in pediatric patients with osteomyelitis.
Collapse
Affiliation(s)
- Xinwu Wu
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Peisheng Chen
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Dianhua Huang
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Yuchen Pan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shunyou Chen
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| |
Collapse
|
3
|
Sumague TS, Niazy AA, Lambarte RNA, Nafisah IA, Gusnanto A. Influence of budesonide and fluticasone propionate in the anti-osteoporotic potential in human bone marrow-derived mesenchymal stem cells via stimulation of osteogenic differentiation. Heliyon 2024; 10:e39475. [PMID: 39497989 PMCID: PMC11532851 DOI: 10.1016/j.heliyon.2024.e39475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Osteoporosis is a prevalent bone condition with adverse effects observed in patients undergoing long-term glucocorticoid therapy, resulting in bone demineralization and tissue loss. There has been limited studies on the global response to dexamethasone in terms of comparing its expression profile to other common glucocorticoids during osteogenic differentiation. This study focused on the downregulated gene expression profile of glucocorticoid compounds; dexamethasone, budesonide, and fluticasone propionate, during osteogenic differentiation to elucidate the related target genes and pathways associated with the anti-osteoporotic potential of telomerase-immortalized human bone marrow-derived mesenchymal stem cells using a bioinformatics approach. Based on gene expression microarrays experiments and bioinformatics analysis, several key genes involved in the regulation of osteogenic differentiation and osteoporosis development in mesenchymal stem cells that were targeted by these specific glucocorticoids were determined. Network analysis using GeneCards, OMIM, and CTD databases were performed and osteoporosis-related genes were identified. LIMMA and moderated Welch test R packages were performed to determine significant downregulated differentially expressed genes for each glucocorticoid treatment. A total of 479 (dexamethasone), 84 (budesonide), and 889 (fluticasone propionate) differentially expressed genes were identified for each glucocorticoid, of which 35 common genes overlapped. Enrichment pathway analysis was conducted using Metascape, and protein-protein interaction networks were constructed using the STRING database and Cytoscape software to determine potential target genes involved with osteoporosis. Enrichment pathway analysis revealed genes involved in 3 Reactome pathways namely cytokine signaling in immune system, immune system and the interferon alpha/beta signaling pathways and identified 10 hub genes based on the PPI network to determine potential target pathways associated with osteoporosis. These findings provide preliminary insights into the relationship between the key target genes of dexamethasone, budesonide, and fluticasone propionate, and the pathways associated with regulated osteoporosis metabolism during osteogenic differentiation.
Collapse
Affiliation(s)
- Terrence Suministrado Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Abdurahman A. Niazy
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Ibrahim A. Nafisah
- Department of Statistics and Operations Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Küppers O, Ahmad M, Haffner-Luntzer M, Scharffetter-Kochanek K, Ignatius A, Fischer V. Inflammatory priming of human mesenchymal stem cells induces osteogenic differentiation via the early response gene IER3. FASEB J 2024; 38:e70076. [PMID: 39373973 DOI: 10.1096/fj.202401344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
Mesenchymal stem cells (MSCs) have gained tremendous interest due to their overall potent pro-regenerative and immunomodulatory properties. In recent years, various in vitro and preclinical studies have investigated different priming ("licensing") approaches to enhance MSC functions for specific therapeutic purposes. In this study, we primed bone marrow-derived human MSCs (hMSCs) with an inflammation cocktail designed to mimic the elevated levels of inflammatory mediators found in serum of patients with severe injuries, such as bone fractures. We observed a significantly enhanced osteogenic differentiation potential of primed hMSCs compared to untreated controls. By RNA-sequencing analysis, we identified the immediate early response 3 (IER3) gene as one of the top-regulated genes upon inflammatory priming. Small interfering RNA knockdown experiments established IER3 as a novel positive regulator of osteogenic differentiation. Mechanistic analysis further revealed that IER3 deletion significantly downregulated bone marrow stromal cell antigen 2 (BST2) expression and extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation in hMSCs, suggesting that IER3 regulates osteogenic differentiation through BST2 and ERK1/2 signaling pathway activation. On the basis of these findings, we propose IER3 as a novel therapeutic target to promote hMSC osteoblastogenesis, which might be of high clinical relevance, for example, in patients with osteoporosis or compromised fracture healing.
Collapse
Affiliation(s)
- Oliver Küppers
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
5
|
Yamazaki M, Onodera K, Iijima K. Surface modification of silica nonwoven fabrics for osteogenesis of bone marrow-derived mesenchymal stem cells. J Biosci Bioeng 2022; 134:541-548. [PMID: 36171160 DOI: 10.1016/j.jbiosc.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Silica nonwoven fabrics (SNFs) with high mechanical strength and porosity are known to exhibit high cell proliferation and osteogenic differentiation potential of mesenchymal stem cells (MSCs) by morphologically mimicking the extracellular matrix (ECM). To further improve the osteoinductive ability of SNFs, it could be effective to increase the interaction between MSCs and ECM components because exogenous ECM components seem to modulate the fate of MSCs differentiation. In this study, we developed immobilization methods for ECM components, such as collagen, fibronectin, and chondroitin sulphate C on SNFs, to improve cell-matrix interactions and examined their suitability for bone tissue regeneration. Collagen and fibronectin were immobilized via physical adsorption and chondroitin sulphate C was also immobilized by the layer-by-layer method combined with chitosan on SNF surfaces to maintain the high porosity of SNFs. The treated SNFs were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. In osteogenic differentiation culture, modified SNFs showed significantly increased expression of osteogenic differentiation marker genes compared to unmodified SNFs. These results suggest that the present methods improve cell-matrix interactions and enhance the cellular functions of MSCs. We are convinced that these simple modification techniques for ECM components are effective in functionalizing various 3D fabric scaffolds possessing hydrophilic groups.
Collapse
Affiliation(s)
- Makoto Yamazaki
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kodai Onodera
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazutoshi Iijima
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
6
|
Jiawei Yanghe Decoction Regulates Bone-Lipid Balance through the BMP-SMAD Signaling Pathway to Promote Osteogenic Differentiation of Bone Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885419. [PMID: 35769158 PMCID: PMC9236768 DOI: 10.1155/2022/2885419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Background The Jiawei Yanghe decoction (JWYHD) is a traditional Chinese medicine formula for the treatment of osteoporosis, but its therapeutic mechanism has not been fully elucidated, and the therapeutic target of the intervention disease needs to be further verified. The dysfunction of bone mesenchymal stem cells (BMSCs) is considered to be an important pathogenesis of postmenopausal osteoporosis (PMOP). The purpose of this study was to explore how JWYHD regulates BMSC differentiation through the BMP-SMAD signal pathway. Methods In the in vivo study, we used an ovariectomized PMOP rat (n = 36, 2-month-old, 200 ± 20 g) model and femur micro-CT analysis to study the effect of JWYHD on bone loss in rats. By immunofluorescence, the translocation expression of BMP2, a key protein in the pathway, was detected. Serum bone metabolism was detected by an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase (ALP) activity was detected by alkaline phosphatase staining (ALPS), osteogenesis and matrix mineralization were detected by alizarin red staining (ARS), the adipogenic ability of BMSCs was detected by oil red staining (ORS), and CFU is used to detect the ability of cells to form colonies. The expression of related proteins was detected by western blotting. Results In vivo and in vitro, the OP phenotypes of SD rats induced by ovariectomy (OVX) included impaired bone mineral density and microstructure, abnormal bone metabolism, and impaired MSC differentiation potential. JWYHD treatment reversed this trend and restored the differentiation potential of MSCs. JWYHD medicated serum and direct intervention of drugs activated the BMP-SMAD signaling pathway, promoted the osteogenic differentiation of BMSCs, and inhibited their adipogenic differentiation. Conclusions Our data identified that JWYHD is an effective alternative drug for the treatment of PMOP that functions to stimulate the differentiation of BMSCs into osteoblasts in the BMP-SMAD signaling-dependent mechanism.
Collapse
|
7
|
Lee SH, Park NR, Kim JE. Bioinformatics of Differentially Expressed Genes in Phorbol 12-Myristate 13-Acetate-Induced Megakaryocytic Differentiation of K562 Cells by Microarray Analysis. Int J Mol Sci 2022; 23:ijms23084221. [PMID: 35457039 PMCID: PMC9031040 DOI: 10.3390/ijms23084221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes are large hematopoietic cells present in the bone marrow cavity, comprising less than 0.1% of all bone marrow cells. Despite their small number, megakaryocytes play important roles in blood coagulation, inflammatory responses, and platelet production. However, little is known about changes in gene expression during megakaryocyte maturation. Here we identified the genes whose expression was changed during K562 leukemia cell differentiation into megakaryocytes using an Affymetrix GeneChip microarray to determine the multifunctionality of megakaryocytes. K562 cells were differentiated into mature megakaryocytes by treatment for 7 days with phorbol 12-myristate 13-acetate, and a microarray was performed using RNA obtained from both types of cells. The expression of 44,629 genes was compared between K562 cells and mature megakaryocytes, and 954 differentially expressed genes (DEGs) were selected based on a p-value < 0.05 and a fold change >2. The DEGs was further functionally classified using five major megakaryocyte function-associated clusters—inflammatory response, angiogenesis, cell migration, extracellular matrix, and secretion. Furthermore, interaction analysis based on the STRING database was used to generate interactions between the proteins translated from the DEGs. This study provides information on the bioinformatics of the DEGs in mature megakaryocytes after K562 cell differentiation.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Na Rae Park
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4949
| |
Collapse
|
8
|
Zhou Z, Zhao D, Zhang P, Zhang M, Leng X, Yao B. The enzymatic hydrolysates from deer sinew promote MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. BMC Complement Med Ther 2021; 21:59. [PMID: 33568122 PMCID: PMC7877118 DOI: 10.1186/s12906-021-03240-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background Deer Sinew serves as a medicinal food, and has been used for treating skeletal diseases, especially bone diseases in a long history. Thus, it could become an alternative option for the prevention and therapeutic remedy of bone-related diseases. In our previous study, we established an optimal extraction process of the enzymatic hydrolysates from Chinese Sika deer sinews (DSEH), and we demonstrated that DSEH significantly promoted the proliferation of MC3T3-E1 cells (an osteoblast-like cell line) with a certain dose-effect relationship. However, the precise molecular mechanism of deer sinew in regulating bone strength is still largely unknown. The aim of this study was to explore the underlying molecular mechanism of DSEH on MC3T3-E1 cells proliferation and extracellular matrix synthesis. Methods Preparation and quality control were performed as previously described. The effect of DSEH at different administrated concentrations on cell proliferation was measured using both CCK-8 and MTT assays, and the capacity of DSEH on extracellular matrix synthesis was detected by Alizarin red staining and quantification. The gene expression pattern change of MC3T3-E1 cells under the treatment of DSEH was investigated by RNA-seq analysis accompanied with validation methods. Results We demonstrated that DSEH promoted MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. DSEH significantly increased the expression levels of genes that promoted cell proliferation such as Gstp1, Timp1, Serpine1, Cyr61, Crlf1, Thbs1, Ctgf, P4ha2, Sod3 and Nqo1. However, DSEH significantly decreased the expression levels of genes that inhibited cell proliferation such as Mt1, Cdc20, Gas1, Nrp2, Cmtm3, Dlk2, Sema3a, Rbm25 and Hspb6. Furthermore, DSEH mildly increased the expression levels of osteoblast gene markers. Conclusions Our findings suggest that DSEH facilitate MC3T3-E1 cell proliferation and extracellular matrix synthesis to consolidate bone formation and stability, but prevent MC3T3-E1 cells from oxidative stress-induced damage, apoptosis and further differentiation. These findings deepened the current understanding of DSEH on regulating bone development, and provided theoretical support for the discovery of optional prevention and treatment for bone-related diseases.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengcheng Zhang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
9
|
Scariot R, Olsson B, da Silva M, Lago C, Calixto R, Ramazzotto L, Barbosa Rebellato N, Kirschneck C, Garcia Paula-Silva F, Küchler E. Single nucleotide polymorphisms in runt-related transcription factor 2 and bone morphogenetic protein 2 impact on their maxillary and mandibular gene expression in different craniofacial patterns - A comparative study. Ann Maxillofac Surg 2021; 11:222-228. [PMID: 35265489 PMCID: PMC8848693 DOI: 10.4103/ams.ams_40_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: This study aimed to evaluate if single nucleotide polymorphisms (SNPs) in runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP2) are associated with different craniofacial patterns. Furthermore, we also investigated if RUNX2 and BMP2 expression in the maxilla and mandible are differently expressed according to facial phenotypes and influenced by the SNPs in their encoding genes. Orthognathic patients were included. Materials and Methods: Lateral cephalometric radiographs were used to classify facial phenotypes based on Steiner's ANB and Ricketts’ NBa-PtGn angles. Bone samples from 21 patients collected during orthognathic surgery were used for the gene expression assays. DNA from 129 patients was used for genotyping the SNPs rs59983488 and rs1200425 in RUNX2 and rs235768 and rs1005464 in BMP2. The established alpha was 5%. Results: A statistically significant difference was observed in the relative BMP2 expression in the mandible between Class I and III participants (P = 0.042). Homozygous GG (rs59983488) had higher RUNX2 expression (P = 0.036) in the mandible. In maxilla, GG (rs1200425) had a higher BMP2 expression (P = 0.038). Discussion: In conclusion, BMP2 is expressed differently in the mandible of Class I and Class III participants. Genetic polymorphisms in RUNX2 and BMP2 are associated with their relative gene expression.
Collapse
|
10
|
Olsson B, Calixto RD, da Silva Machado NC, Meger MN, Paula-Silva FWG, Rebellato NLB, da Costa DJ, Küchler EC, Scariot R. MSX1 is differentially expressed in the deepest impacted maxillary third molars. Br J Oral Maxillofac Surg 2020; 58:789-794. [PMID: 32381388 DOI: 10.1016/j.bjoms.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
An impacted third molar is one of the most common dental abnormalities. Among the reasons for impaction the most common are: insufficient space, time of eruption, improper position of the tooth bud, and genetic disruptions. To investigate if runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), and msh homeobox 1 (MSX1) are differently expressed depending on the position of the molar, we studied 32 patients who had been referred for surgical removal. An orthopantomogram was used to separate them according to Winter's, and Pell & Gregory's, classifications. Bone samples were harvested during the operation for gene expression assay. The Kruskal-Wallis, Dunn's post hoc, and Spearman's correlation, tests were used to assess the significance of differences. No correlations were found in expression of the genes, and no differences between expression in maxillary and mandibular third molars, nor were they expressed differently according to Winter's or Pell and Gregory's classifications or in relation to impaction of the mandibular ramus. However, MSX1 was expressed differently when account was taken of the depth of impaction in maxillary third molars (p = 0.029), but there was no difference in expression of RUNX2, BMP2, and MSX1 for the Pell and Gregory classification of depth of impaction (p > 0.05). We conclude that MSX1 is expressed differently depending on the depth of maxillary impaction phenotypes.
Collapse
Affiliation(s)
- B Olsson
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - R D Calixto
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - N C da Silva Machado
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - M N Meger
- School of Health Sciences, Department of Oral and Maxillofacial Surgery, Positivo University, Professor Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280330, Brazil.
| | - F W G Paula-Silva
- Department of Pediatric Dentistry, University of São Paulo, Av. do Café, Subsetor Oeste-11 (N-11), Ribeirão Preto, SP, 14040-904, Brazil.
| | - N L B Rebellato
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - D J da Costa
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
| | - E C Küchler
- Department of Pediatric Dentistry, University of São Paulo, Av. do Café, Subsetor Oeste-11 (N-11), Ribeirão Preto, SP, 14040-904, Brazil.
| | - R Scariot
- Department of Stomatology, Department of Oral and Maxillofacial Surgery, Federal University of Paraná, Av. Prefeito Lothário Meissner, 632, Jardim Botânico, Curitiba, PR, 80210-170, Brazil; School of Health Sciences, Department of Oral and Maxillofacial Surgery, Positivo University, Professor Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280330, Brazil.
| |
Collapse
|
11
|
Rajapakse D, Peterson K, Mishra S, Fan J, Lerner J, Campos M, Wistow G. Amelotin is expressed in retinal pigment epithelium and localizes to hydroxyapatite deposits in dry age-related macular degeneration. Transl Res 2020; 219:45-62. [PMID: 32160961 PMCID: PMC7197213 DOI: 10.1016/j.trsl.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
Deposition of hydroxyapatite (HAP) basal to the retinal pigment epithelium (RPE) is linked to the progression of age-related macular degeneration (AMD). Serum-deprivation of RPE cells in culture mimics some features of AMD. We now show that serum-deprivation also leads to the induction of amelotin (AMTN), a protein involved in hydroxyapatite mineralization in enamel. HAP is formed in our culture model and is blocked by siRNA inhibition of AMTN expression. In situ hybridization and immunofluorescence imaging of human eye tissue show that AMTN is expressed in RPE of donor eyes with geographic atrophy ("dry" AMD) in regions with soft drusen containing HAP spherules or nodules. AMTN is not found in hard drusen, normal RPE, or donor eyes diagnosed with wet AMD. These findings suggest that AMTN is involved in formation of HAP spherules or nodules in AMD, and as such provides a new therapeutic target for slowing disease progression.
Collapse
Affiliation(s)
- Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sanghamitra Mishra
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua Lerner
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Campos
- Histopathology Core Facility, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
12
|
Hong W, Zhang W. Hesperidin promotes differentiation of alveolar osteoblasts via Wnt/β-Catenin signaling pathway. J Recept Signal Transduct Res 2020; 40:442-448. [PMID: 32308087 DOI: 10.1080/10799893.2020.1752718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Hong
- Department of Stomatology, Jingmen No.1 People’s Hospital, Jingmen, China
| | - Wenjie Zhang
- Department of Stomatology, Jingmen No.1 People’s Hospital, Jingmen, China
| |
Collapse
|
13
|
Chen L, Wu C, Chen S, Zhang Y, Liu A, Ding J, Wei D, Guo Z, Sun J, Fan H. Biomimetic mineralizable collagen hydrogels for dynamic bone matrix formation to promote osteogenesis. J Mater Chem B 2020; 8:3064-3075. [PMID: 32202266 DOI: 10.1039/c9tb02633a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The simulation of the native bone matrix formation process is crucial for the construction of the cellular microenvironment for bone regeneration. However, it is still challenging to design bioactive materials that simultaneously mimic the composition and dynamic mineralization process of the bone matrix, let alone realize osteoinduction by a biomimetic dynamic microenvironment. In this study, we prepared a biomimetic mineralizable collagen hydrogel (CAV) and explored the effects of a dynamic mineralized matrix on the osteogenesis of stem cells both in vitro and in vivo. We showed the feasibility of the biomimetic CAV hydrogel to induce mineralization in simulated media including simulated body fluid (SBF), glycerol phosphate calcium salt hydrate (CaGP) solution and cell co-cultured systems. The participation of cells in the mineralization process is more likely to induce matrix remodeling due to the synergistic effects of CAV mineralization and cellular secretion, resulting in higher matrix strength. We also demonstrated that the biomimetic mineralized hydrogel could up-regulate osteogenic genes and protein expression of bone marrow mesenchymal stem cells (BMSCs), thus enhancing osteogenesis in vivo. The interactions between the mineralizable hydrogel and cells play an important role in regulating dynamic matrix mineralization and osteogenesis. Our findings prove that the biomimetic mineralizable hydrogel is a promising candidate for implantable orthopedic applications and provides essential implications for the future design of materials for bone regeneration.
Collapse
Affiliation(s)
- Lu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
El-Jawhari JJ, Kleftouris G, El-Sherbiny Y, Saleeb H, West RM, Jones E, Giannoudis PV. Defective Proliferation and Osteogenic Potential with Altered Immunoregulatory phenotype of Native Bone marrow-Multipotential Stromal Cells in Atrophic Fracture Non-Union. Sci Rep 2019; 9:17340. [PMID: 31758052 PMCID: PMC6874596 DOI: 10.1038/s41598-019-53927-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Bone marrow-Multipotential stromal cells (BM-MSCs) are increasingly used to treat complicated fracture healing e.g., non-union. Though, the quality of these autologous cells is not well characterized. We aimed to evaluate bone healing-related capacities of non-union BM-MSCs. Iliac crest-BM was aspirated from long-bone fracture patients with normal healing (U) or non-united (NU). Uncultured (native) CD271highCD45low cells or passage-zero cultured BM-MSCs were analyzed for gene expression levels, and functional assays were conducted using culture-expanded BM-MSCs. Blood samples were analyzed for serum cytokine levels. Uncultured NU-CD271highCD45low cells significantly expressed fewer transcripts of growth factor receptors, EGFR, FGFR1, and FGRF2 than U cells. Significant fewer transcripts of alkaline phosphatase (ALPL), osteocalcin (BGLAP), osteonectin (SPARC) and osteopontin (SPP1) were detected in NU-CD271highCD45low cells. Additionally, immunoregulation-related markers were differentially expressed between NU- and U-CD271highCD45low cells. Interestingly, passage-zero NU BM-MSCs showed low expression of immunosuppressive mediators. However, culture-expanded NU and U BM-MSCs exhibited comparable proliferation, osteogenesis, and immunosuppression. Serum cytokine levels were found similar for NU and U groups. Collectively, native NU-BM-MSCs seemed to have low proliferative and osteogenic capacities; therefore, enhancing their quality should be considered for regenerative therapies. Further research on distorted immunoregulatory molecules expression in BM-MSCs could potentially benefit the prediction of complicated fracture healing.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK. .,Clinical pathology department, Mansoura University, Mansoura, Egypt.
| | - George Kleftouris
- Academic Department of Trauma and Orthopaedic, Leeds General Infirmary, School of Medicine, University of Leeds, Leeds, UK
| | - Yasser El-Sherbiny
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.,Clinical pathology department, Mansoura University, Mansoura, Egypt.,Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hany Saleeb
- Academic Department of Trauma and Orthopaedic, Leeds General Infirmary, School of Medicine, University of Leeds, Leeds, UK
| | - Robert M West
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK.,Academic Department of Trauma and Orthopaedic, Leeds General Infirmary, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Dong X, Wang X, Xing M, Zhao C, Guo B, Cao J, Chang J. Inhibition of the negative effect of high glucose on osteogenic differentiation of bone marrow stromal cells by silicon ions from calcium silicate bioceramics. Regen Biomater 2019; 7:9-17. [PMID: 32440357 PMCID: PMC7233608 DOI: 10.1093/rb/rbz030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Human bone marrow stem cells (hBMSCs) are exploited for miscellaneous applications in bone tissue engineering where they are mainly used as seed cells. However, high glucose (HG) environment has negative impacts on the proliferation and osteogenic differentiation of hBMSCs, thus reducing the bone formation in diabetic patients. In our former research works, we discovered that silicon (Si) ions extracted from silicate-based bioceramics are able to stimulate the proliferation and osteogenic differentiation of hBMSCs under normal culture condition. This study aimed to investigate if Si ions could prevent HG-induced inhibition of proliferation and osteogenesis of hBMSCs. We found that 2.59 ppm concentration of Si ions promoted the proliferation of hBMSCs under HG condition. The results from alkaline phosphatase (ALP) activity assay, Alizarin red S staining and quantitative real-time PCR analysis of osteogenic genes (BMP2, RUNX2, ALP, COL1 and OCN) demonstrated that the 15.92 ppm concentration of Si ions prevented HG-induced inhibition of the osteogenic differentiation of hBMSCs. Moreover, application of Si ions reduced the level of reactive oxygen species in HG-treated hBMSCs. In HG-treated hBMSCs following 15.92 ppm Si ions treatment, activation of BMP2/SMAD signaling pathway was detected, as indicated by the increased expression of BMP2 receptors and its downstream genes such as SMAD1, SMAD4 and SMAD5. Taken together, we provide evidence that the specific concentration of Si ions compensated HG-induced inhibition of proliferation and osteogenic differentiation of hBMSCs through antioxidant effect and modulation of BMP2/SMAD pathway. The results suggest that silicate-based bioceramics might be good scaffold biomaterials for bone engineering applications in diabetes patients.
Collapse
Affiliation(s)
- Xixi Dong
- Stomatology Department, General Hospital of Chinese PLA, 28 Fu Xing Road, Beijing 100853, PR China
| | - Xiaoya Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Min Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Bin Guo
- Stomatology Department, General Hospital of Chinese PLA, 28 Fu Xing Road, Beijing 100853, PR China
| | - Junkai Cao
- Stomatology Department, General Hospital of Chinese PLA, 28 Fu Xing Road, Beijing 100853, PR China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| |
Collapse
|
16
|
Zhang H, Zheng L, Yuan Z. Lycium barbarum
polysaccharides promoted proliferation and differentiation in osteoblasts. J Cell Biochem 2018; 120:5018-5023. [PMID: 30417412 DOI: 10.1002/jcb.27777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Huiying Zhang
- School of Health Science, Wuhan University Wuhan China
| | - Lei Zheng
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Taiyuan China
| | - Zhanpeng Yuan
- School of Health Science, Wuhan University Wuhan China
| |
Collapse
|
17
|
Lo Sicco C, Reverberi D, Villa F, Pfeffer U, Quarto R, Cancedda R, Tasso R. Circulating healing (CH) cells expressing BST2 are functionally activated by the injury-regulated systemic factor HGFA. Stem Cell Res Ther 2018; 9:300. [PMID: 30409222 PMCID: PMC6225669 DOI: 10.1186/s13287-018-1056-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/10/2018] [Accepted: 10/21/2018] [Indexed: 01/18/2023] Open
Abstract
Background Restoration of damaged tissues through the activation of endogenous progenitors is an attractive therapeutic option. A deep evaluation of the intrinsic stem/progenitor cell properties as well as the reciprocal interactions with injured environments is of critical importance. Methods Here, we show that bone marrow stromal cell antigen 2 (BST2) allows the isolation of a population of circulating progenitors, the circulating healing (CH) cells, characterized by a distinctive core signature. The bone marrow (BM) origin of BST2pos CH cells has been strengthened by the co-expression of leptin receptor, the hallmark of a subpopulation of BM-skeletal stem cells. Results BST2pos CH cells retained the capacity to (i) respond to injury signals generated by a bone fracture, (ii) modify the expression of cell motility genes following damage, and (iii) react to hepatocyte growth factor-activator (HGFA), an injury-related stimulus sufficient to induce their transition into GALERT, a state in which cells are functionally activated and participate in tissue repair. Conclusions Taken together, these results could pave the way for the identification of new strategies to enhance and potentiate endogenous regenerative mechanisms for future therapies. Electronic supplementary material The online version of this article (10.1186/s13287-018-1056-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia Lo Sicco
- Cellular Oncology Laboratory, Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Daniele Reverberi
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Federico Villa
- U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Ulrich Pfeffer
- U.O. Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Rodolfo Quarto
- Cellular Oncology Laboratory, Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy.,U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Ranieri Cancedda
- Cellular Oncology Laboratory, Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy.,Biorigen srl, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Roberta Tasso
- Cellular Oncology Laboratory, Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy. .,U.O. Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
18
|
Shekari F, Han CL, Lee J, Mirzaei M, Gupta V, Haynes PA, Lee B, Baharvand H, Chen YJ, Hosseini Salekdeh G. Surface markers of human embryonic stem cells: a meta analysis of membrane proteomics reports. Expert Rev Proteomics 2018; 15:911-922. [PMID: 30358457 DOI: 10.1080/14789450.2018.1539669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human embryonic stem cells (hESCs) have unique biological features and attributes that make them attractive in various areas of biomedical research. With heightened applications, there is an ever increasing need for advancement of proteome analysis. Membrane proteins are one of the most important subset of hESC proteins as they can be used as surface markers. Areas covered: This review discusses commonly used surface markers of hESCs, and provides in-depth analysis of available hESC membrane proteome reports and the existence of these markers in many other cell types, especially cancer cells. Appreciating, existing ambiguity in the definition of a membrane protein, we have attempted a meta analysis of the published membrane protein reports of hESCs by using a combination of protein databases and prediction tools to find the most confident plasma membrane proteins in hESCs. Furthermore, responsiveness of plasma membrane proteins to differentiation has been discussed based on available transcriptome profiling data bank. Expert commentary: Combined transcriptome and membrane proteome analysis highlighted additional proteins that may eventually find utility as new cell surface markers.
Collapse
Affiliation(s)
- Faezeh Shekari
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran
| | - Chia-Li Han
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Jaesuk Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Mehdi Mirzaei
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia.,f Australian Proteome Analysis Facility , Macquarie University , Sydney , NSW , Australia.,g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Vivek Gupta
- g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Paul A Haynes
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
| | - Bonghee Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Hossein Baharvand
- b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran.,h Department of Stem Cells and Developmental Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Yu-Ju Chen
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Ghasem Hosseini Salekdeh
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran.,e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia.,i Department of Systems and Synthetic biology , Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization , Karaj , Iran
| |
Collapse
|
19
|
Ramírez-Salazar EG, Carrillo-Patiño S, Hidalgo-Bravo A, Rivera-Paredez B, Quiterio M, Ramírez-Palacios P, Patiño N, Valdés-Flores M, Salmerón J, Velázquez-Cruz R. Serum miRNAs miR-140-3p and miR-23b-3p as potential biomarkers for osteoporosis and osteoporotic fracture in postmenopausal Mexican-Mestizo women. Gene 2018; 679:19-27. [PMID: 30171938 DOI: 10.1016/j.gene.2018.08.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a metabolic bone disorder characterized by low bone mineral density and decreased bone strength, leading to an increased risk of fractures with a consequent increase in morbidity and mortality. The current methods to estimate the fracture risk are very limited. microRNAs (miRNAs) have been considered as good biomarkers for many pathological processes, including osteoporosis. Some circulating miRNAs are associated with regulation of bone formation and differentiation of bone cells. The aim of this study, was to analyze the expression of miRNAs in serum of patients with osteoporosis (n = 20) and healthy controls (n = 20). Expression of 754 miRNAs was analyzed through quantitative real time RT-PCR arrays. Seven miRNAs showed significant differences between groups. The microRNAs miR-23b-3p, miR-140-3p and miR-885-5p were selected based on fold change and p-values (40.5, p = 0.038, 20.7, p = 0.045, and 2.2, p = 0.002; respectively) for validation in independent serum samples from patients with osteopenia (n = 28), osteoporosis (n = 26) and osteoporotic hip fracture (n = 21). After validation, we confirm differences across the groups for miR-23b-3p and miR-140-3p. Our data pointed miR-140-3p and miR-23b-3p as potential biomarkers candidates for osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Eric G Ramírez-Salazar
- Consejo Nacional de Ciencia y Tecnología (CONACYT)-Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Sergio Carrillo-Patiño
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Alberto Hidalgo-Bravo
- Laboratorio de Genética, Dirección de Investigación, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Quiterio
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Paula Ramírez-Palacios
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Instituto Mexicano del Seguro Social (IMSS), Cuernavaca, Morelos, Mexico
| | - Nelly Patiño
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Margarita Valdés-Flores
- Laboratorio de Genética, Dirección de Investigación, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Jorge Salmerón
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico.
| |
Collapse
|
20
|
Moslemi N, Khoshkam V, Rafiei SC, Bahrami N, Aslroosta H. Outcomes of Alveolar Ridge Preservation With Recombinant Human Bone Morphogenetic Protein-2: A Systematic Review. IMPLANT DENT 2018; 27:351-362. [PMID: 29394177 DOI: 10.1097/id.0000000000000722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE The main focused question of this systematic review was as follows: Does the application of recombinant human bone morphogenetic protein-2 (rhBMP-2) placed in extraction sockets reduce the alveolar ridge changes? METHODS A systematic literature search was performed up to February 2017. Clinical studies published in English were included. Outcome variables of interest were as follows: changes in alveolar ridge width and height, the quality of new bone, patient's safety, adverse events, and postoperative complications. RESULTS Seven articles were included. Because of the vast heterogeneity and high risk of bias among the studies, performing a meta-analysis deemed not feasible. Application of rhBMP-2 in the extraction socket was more effective in the reduction of ridge width compared with that of ridge height. The superiority of 1.5 mg/mL rhBMP-2/absorbable collagen sponge over the carrier alone on alveolar ridge width/height remodeling was more significant when it was applied in the sockets with ≥50% buccal bone dehiscence. The limited available data showed that rhBMP-2 did not improve the quality of new bone. Antibodies against rhBMP-2 were detected in the serum in 1 trial. CONCLUSIONS Within the limits of this review, 1.5 mg/mL rhBMP-2 might be beneficial for preserving the alveolar ridge width within extraction sockets given as to whether the cost-effectiveness is justifiable. Studies with lower risk of bias should be performed to confirm the above findings.
Collapse
Affiliation(s)
- Neda Moslemi
- Associate Professor, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khoshkam
- Resident of Periodontology, Post-Doctoral Periodontology Program, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA
| | - Sahar Chokami Rafiei
- Assistant Professor, Department of Periodontology, Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Naghmeh Bahrami
- Assistant Professor, Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoori Aslroosta
- Assistant Professor, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Zhao C, Wang X, Gao L, Jing L, Zhou Q, Chang J. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Acta Biomater 2018; 73:509-521. [PMID: 29678674 DOI: 10.1016/j.actbio.2018.04.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
The micro/nano hybrid structure is considered to be a biomaterial characteristic to stimulate osteogenesis by mimicking the three-dimensional structure of the bone matrix. However, the mechanism of the hybrid structure induced osteogenic differentiation of stem cells is still unknown. For elucidating the mechanisms, one of the challenge is to directly fabricate micro/nano hybrid structure on bioceramics because of its brittleness. In this study, hydroxyapatite (HA) bioceramics with the micro/nano hybrid structure were firstly fabricated via a hydrothermal treatment and template method, and the effect of the different surface structures on the expression of integrins, BMP2 signaling pathways and cell-cell communication was investigated. Interestingly, the results suggested that the osteogenic differentiation induced by micro/nano structures was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, while activated BMP2 could in turn activate integrins and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. STATEMENT OF SIGNIFICANCE The micro/nano hybrid structure has been found to have synergistic bioactivity on osteogenesis. However, it is still a challenge to fabricate the hybrid structure directly on the bioceramics, and the role of micro- and nano-structure, in particular the mechanism of the micro/nano-hybrid structure induced stem cell differentiation is still unknown. In this study, we firstly fabricated hydroxyapatite bioceramics with the micro/nano hybrid structure, and then investigated the effect of different surface structure on expression of integrins, BMP2 signaling pathways and cell-cell communication. Interestingly, we found that the osteogenic differentiation induced by structure was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, and activated BMP2 could in turn activate some integrin subunits and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect.
Collapse
|
22
|
Liu L, Liu M, Li R, Liu H, Du L, Chen H, Zhang Y, Zhang S, Liu D. MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell Biol Int 2016; 41:112-123. [PMID: 27862699 DOI: 10.1002/cbin.10704] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Cyclical stretch-induced bone formation during orthodontic treatment is a complex biological process modulated by various factors including miRNAs and their targeted-gene network. However, the miRNA expression profile and their roles in osteogenic differentiation of bone mesenchymal stem cells (BMSCs) exposed to mechanical stretch remains unclear. Here, we use the miRNA microarray assay to screen for mechano-sensitive miRNAs during stretch-induced osteogenic differentiation of BMSCs and identified that nine miRNAs were differentially expressed between stretched and control BMSCs. Furthermore, miR-503-5p, which was markedly downregulated in both microarray assay and qRT-PCR assay were selected for further functional verification. We found that overexpression of miR-503-5p in BMSCs attenuated stretch-induced osteogenic differentiation while the effect was reversed by miR-503-5p inhibition treatment. In vivo studies, overexpression of miR-503-5p with specific agomir decreased Runx2, ALP mRNA, and protein expression, decreased osteoblast numbers and osteoblastic bone formation in the OTM tension sides. In conclusion, our study revealed that miR-503-5p functions as the mechano-sensitive miRNA and inhibits BMSCs osteogenic differentiation subjected to mechanical stretch and bone formation in OTM tension sides.
Collapse
Affiliation(s)
- Lu Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Mengjun Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Rongrong Li
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Hong Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Liling Du
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Hong Chen
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Shijie Zhang
- Department of Stomatology, School of Dentistry, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Dongxu Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| |
Collapse
|