1
|
Dietrich A, Heim L, Hubbuch J. Dual-Stage Cross-Flow Filtration: Integrated Capture and Purification of Virus-Like Particles. Biotechnol Bioeng 2024. [PMID: 39723534 DOI: 10.1002/bit.28914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Virus-like particles (VLPs) are a versatile technology for the targeted delivery of genetic material through packaging and potential surface modifications for directed delivery or immunological issues. Although VLP production is relatively simple as they can be recombinantly produced using microorganisms such as Escherichia coli, their current downstream processing often relies on individually developed purification strategies. Integrating size-selective separation techniques may allow standardized platform processing across VLP purification. This study presents an innovative dual-stage cross-flow filtration (CFF) set-up for integrated capture and purification of VLPs, enabling processing solely based on the size-selective separation techniques precipitation and filtration. The 2 μm/300 kDa MWCO membrane configuration allows the seamless integration of selective VLP precipitation, two consecutive diafiltration steps-first, for washing the VLP precipitates in the first membrane stage, and second, for isolating the re-dissolved VLPs by continuously removing precipitant and contaminants in the second membrane stage-and ultrafiltration for setting a target VLP concentration. Compared to a single-stage CFF set-up, this dual-stage CFF set-up with its integrative, automated design demonstrated the capabilities of product accumulation and contaminant handling while maintaining high productivity. Overall, this study represents a significant advancement toward standardized platform processing of protein nanoparticles through precipitation and filtration, and underscores the potential to expand its applicability to diverse biological molecules, unique process conditions, other phase behavior-dependent processes, and continuous processing.
Collapse
Affiliation(s)
- Annabelle Dietrich
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Luca Heim
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
2
|
Shen K, Xia L, Gao X, Li C, Sun P, Liu Y, Fan H, Li X, Han L, Lu C, Jiao K, Xia C, Wang Z, Deng B, Pan F, Sun T. Tobacco as bioenergy and medical plant for biofuels and bioproduction. Heliyon 2024; 10:e33920. [PMID: 39055830 PMCID: PMC11269859 DOI: 10.1016/j.heliyon.2024.e33920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco, a widely cultivated crop, has been extensively utilized by humans for an extended period. However, the tobacco industry generates a significant amount of organic waste, and the effective utilization of this tobacco waste has been limited. Currently, most tobacco waste is either recycled as reconstituted tobacco sheets or disposed of in landfills. However, tobacco possesses far more potential value than just these applications. This article provides an overview of the diverse uses of tobacco waste in agriculture, medicine, chemical engineering, and energy sectors. In the realm of agriculture, tobacco waste finds primary application as fertilizers and pesticides. In medical applications, the bioactive compounds present in tobacco are fully harnessed, resulting in the production of phenols, solanesol, polysaccharides, proteins, and even alkaloids. These bioactive compounds exhibit beneficial effects on human health. Additionally, the applications of tobacco waste in chemical engineering and energy sectors are centered around the utilization of lignocellulosic compounds and certain fuels. Chemical platform compounds derived from tobacco waste, as well as selected fuel sources, play a significant role in these areas. The rational utilization of tobacco waste represents a promising prospect, particularly in the present era when sustainable development is widely advocated. Moreover, this approach holds significant importance for enhancing energy utilization.
Collapse
Affiliation(s)
- Kai Shen
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Liwei Xia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaoyuan Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Cuiyu Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ping Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yikuan Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hu Fan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Xu Li
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Leyuan Han
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chengfei Lu
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Kaixuan Jiao
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Chen Xia
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Zhi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bin Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co. Ltd., Hangzhou, 310024, Zhejiang, China
| | - Tulai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
3
|
Dietrich A, Schiemer R, Kurmann J, Zhang S, Hubbuch J. Raman-based PAT for VLP precipitation: systematic data diversification and preprocessing pipeline identification. Front Bioeng Biotechnol 2024; 12:1399938. [PMID: 38882637 PMCID: PMC11177211 DOI: 10.3389/fbioe.2024.1399938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Virus-like particles (VLPs) are a promising class of biopharmaceuticals for vaccines and targeted delivery. Starting from clarified lysate, VLPs are typically captured by selective precipitation. While VLP precipitation is induced by step-wise or continuous precipitant addition, current monitoring approaches do not support the direct product quantification, and analytical methods usually require various, time-consuming processing and sample preparation steps. Here, the application of Raman spectroscopy combined with chemometric methods may allow the simultaneous quantification of the precipitated VLPs and precipitant owing to its demonstrated advantages in analyzing crude, complex mixtures. In this study, we present a Raman spectroscopy-based Process Analytical Technology (PAT) tool developed on batch and fed-batch precipitation experiments of Hepatitis B core Antigen VLPs. We conducted small-scale precipitation experiments providing a diversified data set with varying precipitation dynamics and backgrounds induced by initial dilution or spiking of clarified Escherichia coli-derived lysates. For the Raman spectroscopy data, various preprocessing operations were systematically combined allowing the identification of a preprocessing pipeline, which proved to effectively eliminate initial lysate composition variations as well as most interferences attributed to precipitates and the precipitant present in solution. The calibrated partial least squares models seamlessly predicted the precipitant concentration with R 2 of 0.98 and 0.97 in batch and fed-batch experiments, respectively, and captured the observed precipitation trends with R 2 of 0.74 and 0.64. Although the resolution of fine differences between experiments was limited due to the observed non-linear relationship between spectral data and the VLP concentration, this study provides a foundation for employing Raman spectroscopy as a PAT sensor for monitoring VLP precipitation processes with the potential to extend its applicability to other phase-behavior dependent processes or molecules.
Collapse
Affiliation(s)
- Annabelle Dietrich
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Robin Schiemer
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jasper Kurmann
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Shiqi Zhang
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
4
|
Chen CW, Saubi N, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24098060. [PMID: 37175776 PMCID: PMC10179162 DOI: 10.3390/ijms24098060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Narcís Saubi
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
5
|
Muthamilselvan T, Khan MRI, Hwang I. Assembly of Human Papillomavirus 16 L1 Protein in Nicotiana benthamiana Chloroplasts into Highly Immunogenic Virus-Like Particles. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2023; 66:1-10. [PMID: 37360984 PMCID: PMC10078042 DOI: 10.1007/s12374-023-09393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 06/28/2023]
Abstract
Infection with human papillomavirus (HPV) can cause cervical cancers in women, and vaccination against the virus is one of most effective ways to prevent these cancers. Two vaccines made of virus-like particles (VLPs) of HPV L1 proteins are currently commercially available. However, these HPV vaccines are highly expensive, and thus not affordable for women living in developing countries. Therefore, great demand exists to produce a cost-effective vaccine. Here, we investigate the production of self-assembled HPV16 VLPs in plants. We generated a chimeric protein composed of N-terminal 79 amino acid residues of RbcS as a long-transit peptide to target chloroplasts, the SUMO domain, and HPV16 L1 proteins. The chimeric gene was expressed in plants with chloroplast-targeted bdSENP1, a protein that specifically recognizes the SUMO domain and cleaves its cleavage site. This co-expression of bdSENP1 led to the release of HPV16 L1 from the chimeric proteins without any extra amino acid residues. HPV16 L1 purified by heparin chromatography formed VLPs that mimicked native virions. Moreover, the plant-produced HPV16 L1 VLPs elicited strong immune responses in mice without adjuvants. Thus, we demonstrated the cost-effective production of HPV16 VLPs in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s12374-023-09393-6.
Collapse
Affiliation(s)
| | - Md Rezaul Islam Khan
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673 Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673 Korea
| |
Collapse
|
6
|
Chen CW, Saubi N, Kilpeläinen A, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines (Basel) 2022; 11:vaccines11010015. [PMID: 36679860 PMCID: PMC9861546 DOI: 10.3390/vaccines11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Athina Kilpeläinen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
7
|
Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer. Vaccines (Basel) 2022; 10:vaccines10122064. [PMID: 36560473 PMCID: PMC9782824 DOI: 10.3390/vaccines10122064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cervical cancer is the most common gynecological malignant tumor worldwide, and it remains a major health problem among women, especially in developing countries. Despite the significant research efforts employed for tumor prevention, cervical cancer ranks as the leading cause of cancer death. Human papillomavirus (HPV) is the most important risk factor for cervical cancer. Cervical cancer is a preventable disease, for which early detection could increase survival rates. Immunotherapies represent a promising approach in the treatment of cancer, and several potential candidates are in clinical trials, while some are available in the market. However, equal access to available HPV vaccines is limited due to their high cost, which remains a global challenge for cervical cancer prevention. The implementation of screening programs, disease control systems, and medical advancement in developed countries reduce the serious complications associated with the disease somewhat; however, the incidence and prevalence of cervical cancer in low-income and middle-income countries continues to gradually increase, making it the leading cause of mortality, largely due to the unaffordable and inaccessible anti-cancer therapeutic options. In recent years, plants have been considered as a cost-effective production system for the development of vaccines, therapeutics, and other biopharmaceuticals. Several proof-of-concept studies showed the possibility of producing recombinant biopharmaceuticals for cancer immunotherapy in a plant platform. This review summarizes the current knowledge and therapeutic options for the prevention of cervical cancer and discusses the potential of the plant expression platform to produce affordable HPV vaccines.
Collapse
|
8
|
Rozov SM, Deineko EV. Increasing the Efficiency of the Accumulation of Recombinant Proteins in Plant Cells: The Role of Transport Signal Peptides. PLANTS (BASEL, SWITZERLAND) 2022; 11:2561. [PMID: 36235427 PMCID: PMC9572730 DOI: 10.3390/plants11192561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The problem with increasing the yield of recombinant proteins is resolvable using different approaches, including the transport of a target protein to cell compartments with a low protease activity. In the cell, protein targeting involves short-signal peptide sequences recognized by intracellular protein transport systems. The main systems of the protein transport across membranes of the endoplasmic reticulum and endosymbiotic organelles are reviewed here, as are the major types and structure of the signal sequences targeting proteins to the endoplasmic reticulum and its derivatives, to plastids, and to mitochondria. The role of protein targeting to certain cell organelles depending on specific features of recombinant proteins and the effect of this targeting on the protein yield are discussed, in addition to the main directions of the search for signal sequences based on their primary structure. This knowledge makes it possible not only to predict a protein localization in the cell but also to reveal the most efficient sequences with potential biotechnological utility.
Collapse
|
9
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
10
|
Zhang B, Yin S, Wang Y, Su Z, Bi J. Cost-effective purification process development for chimeric hepatitis B core (HBc) virus-like particles assisted by molecular dynamic simulation. Eng Life Sci 2021; 21:438-452. [PMID: 34140854 PMCID: PMC8182290 DOI: 10.1002/elsc.202000104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Inserting foreign epitopes to hepatitis B core (HBc) virus-like particles (VLPs) could influence the molecular conformation and therefore vary the purification process. In this study, a cost-effective purification process was developed for two chimeric HBc VLPs displaying Epstein-Barr nuclear antigens 1 (EBNA1), and hepatitis C virus (HCV) core. Both chimeric VLPs were expressed in soluble form with high production yields in Escherichia coli. Molecular dynamic (MD) simulation was employed to predict the stability of chimeric VLPs. HCV core-HBc was found to be less stable in water environment compared with EBNA1-HBc, indicating its higher hydrophobicity. Assisting with MD simulation, ammonium sulfate precipitation was optimized to remove host cell proteins with high target protein recovery yields. Moreover, 99% DNA impurities were removed using POROS 50 HQ chromatography. In characterization measurement, we found that inserting HCV core epitope would reduce the ratio of α-helix of HCV core-HBc. This could be another reason on the top of its higher hydrophobicity predicted by MD simulation, causing its less stability. Tertiary structure, transmission electron microscopy, and immunogenicity results indicate that two chimeric VLPs maintained correct VLP structure ensuring its bioactivity after being processed by the developed cost-effective purification approach.
Collapse
Affiliation(s)
- Bingyang Zhang
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Shuang Yin
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Yingli Wang
- School of Chinese Medicine and Food EngineeringShanxi University of Traditional Chinese MedicineJinzhongShanxi ProvinceP. R. China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Jingxiu Bi
- School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and Mathematical SciencesUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
11
|
Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. ACTA ACUST UNITED AC 2021; 29:e00605. [PMID: 33732633 PMCID: PMC7937989 DOI: 10.1016/j.btre.2021.e00605] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of foreign epitopes to the immune system and have been used to develop vaccines against, for example, influenza A and Foot-and-mouth disease. Plant expression systems are rapid, scalable and safe, and are capable of providing correct post-translational modifications and reducing upstream production costs. The production of HBc-based virus-like particles in plants would thus greatly increase the efficiency of vaccine production. This review investigates the application of plant-based HBc VLP as a platform for vaccine production.
Collapse
|
12
|
Park SH, Ji KY, Kim HM, Ma SH, Park SY, Do JH, Oh DB, Kang HS, Shim JS, Joung YH. Optimization of the human colorectal carcinoma antigen GA733-2 production in tobacco plants. PLANT BIOTECHNOLOGY REPORTS 2021; 15:55-67. [PMID: 33520002 PMCID: PMC7825390 DOI: 10.1007/s11816-020-00657-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 05/02/2023]
Abstract
The colorectal carcinoma-associated protein GA733-2 is one of the representative candidate protein for the development of plant-derived colorectal cancer vaccine. Despite of its significant importance for colorectal vaccine development, low efficiency of GA733-2 production limits its wide applications. To improve productivity of GA733-2 in plants, we here tested multiple factors that affect expression of recombinant GA733-2 (rGA733-2) and rGA733 fused to fragment crystallizable (Fc) domain (rGA733-Fc) protein. The rGA733-2 and rGA733-Fc proteins were highly expressed when the pBINPLUS vector system was used for transient expression in tobacco plants. In addition, the length of interval between rGA733-2 and left border of T-DNA affected the expression of rGA733 protein. Transient expression analysis using various combinations of Agrobacterium tumefaciens strains (C58C1, LBA4404, and GV3101) and tobacco species (Nicotiana tabacum cv. Xanthi nc and Nicotiana benthamiana) revealed that higher accumulation of rGA733-2 and rGA733-Fc proteins were obtained by combination of A. tumefaciens LBA4404 and Nicotiana benthamiana. Transgenic plants generated by introduction of the rGA733-2 and rGA733-Fc expression cassettes also significantly accumulated corresponding recombinant proteins. Bioactivity and stability of the plant-derived rGA733 and rGA733-Fc were evaluated by further in vitro assay, western blot and N-glycosylation analysis. Collectively, we here suggest the optimal condition for efficient production of functional rGA733-2 protein in tobacco system.
Collapse
Affiliation(s)
- Se Hee Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054 Korea
| | - Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Doo-Byoung Oh
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon, 34113 Korea
| | - Hyung Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| |
Collapse
|
13
|
Naupu PN, van Zyl AR, Rybicki EP, Hitzeroth II. Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs). Vaccines (Basel) 2020; 8:vaccines8040740. [PMID: 33291259 PMCID: PMC7762164 DOI: 10.3390/vaccines8040740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is ranked fourth among the top cancers in women and is the second most common cancer in low- and middle-income regions, with ~570,000 new cases reported in 2018, which attributed to 84% of worldwide cervical cancer cases. Three commercially available prophylactic Human papillomavirus (HPV) vaccines are effective at preventing HPV infections. However, these vaccines are expensive due to their complex production systems, therefore limiting their use in developing countries. Recently, the use of plants to produce vaccines has emerged as a cost-effective alternative to conventionally used expression systems. Here, L1 proteins of eight high-risk (HPV 16, 18, 31, 33, 35, 45, 52, and 58) and two low risk (HPV 6 and 34) HPV types were successfully expressed in Nicotiana benthamiana, and transmission electron microscopy (TEM) analysis showed the presence of VLPs and/or capsomeres. Immunogenicity studies were conducted in mice utilizing HPV 35, 52, and 58 and showed that type-specific L1-specific antibodies were produced which were able to successfully neutralize homologous HPV pseudovirions in pseudovirion-based neutralization assays (PBNAs). This work demonstrated the potential for using plant-based transient expression systems to produce affordable and immunogenic HPV vaccines, particularly for developing countries.
Collapse
Affiliation(s)
- Paulina N. Naupu
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Correspondence: ; Tel.: +27-21-650-5232
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| |
Collapse
|
14
|
Novel Production of Bovine Papillomavirus Pseudovirions in Tobacco Plants. Pathogens 2020; 9:pathogens9120996. [PMID: 33260725 PMCID: PMC7760623 DOI: 10.3390/pathogens9120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022] Open
Abstract
Vaccine efficacy requires the production of neutralising antibodies which offer protection against the native virus. The current gold standard for determining the presence of neutralising antibodies is the pseudovirion-based neutralisation assay (PBNA). PBNAs utilise pseudovirions (PsVs), structures which mimic native virus capsids, but contain non-viral nucleic material. PsVs are currently produced in expensive cell culture systems, which limits their production, yet plant expression systems may offer cheaper, safer alternatives. Our aim was to determine whether plants could be used for the production of functional PsVs of bovine papillomavirus 1 (BPV1), an important causative agent of economically damaging bovine papillomas in cattle and equine sarcoids in horses and wild equids. BPV1 capsid proteins, L1 and L2, and a self-replicating reporter plasmid were transiently expressed in Nicotiana benthamiana to produce virus-like particles (VLPs) and PsVs. Strategies to enhance particle yields were investigated and optimised protocols were established. The PsVs' ability to infect mammalian cells and express their encapsidated reporter genes in vitro was confirmed, and their functionality as reagents in PBNAs was demonstrated through their neutralisation by several different antibodies. This is the first report of BPV PsVs expressed in plants and demonstrates the potential for the development of therapeutic veterinary vaccines in planta.
Collapse
|
15
|
Saylor K, Waldman A, Gillam F, Zhang C. Multi-epitope insert modulates solubility-based and chromatographic purification of human papilloma virus 16 L1-based vaccine without inhibiting virus-like particle assembly. J Chromatogr A 2020; 1631:461567. [PMID: 32980800 DOI: 10.1016/j.chroma.2020.461567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
The separation of heterogeneous protein mixtures has always been characterized by a trade-off between purity and yield. One way this issue has been addressed in the past is by recombinantly modifying protein to improve separations. Such modifications are mostly employed in the form of tags used specifically for affinity chromatography, though it is also possible to make changes to a protein that will have a sizeable impact on its hydrophobicity and charge/charge distribution. As such, it should also be possible to use protein tags to modulate phase separations and protein-resin binding kinetics when performing ion exchange chromatography. Here, we employed a three-step purification scheme on E. coli expressed, His-tagged, human papilloma virus 16 L1-based recombinant proteins (rHPV 16 L1) that consisted of an inclusion body (IB) wash step, a diethylaminoethyl (DEAE) anion exchange chromatography (AEX) step, and an immobilized metal affinity chromatography (IMAC) polishing step. Purification of the wild type rHPV 16 L1 protein (WT) was characterized by substantial losses during the IB wash but relatively high yield over the DEAE column. In contrast, purification of modified rHPV 16 L1, a chimeric version of the WT protein that had the last 34 amino acids replaced with an MHC class II multi-epitope insert derived from tetanus toxin and diphtheria toxin (WTΔC34-2TEp), was characterized by little to no losses in the IB wash but had a relatively low yield over the DEAE column. Since the fate of these proteins was to be used in vaccine formulations, it is important to note that the modifications made to the WTΔC34-2TEp protein had little to no effect on its ability to assemble into virus-like particles (VLPs). These results demonstrate that modifications of the WT protein via the recombinant insertion of immunofunctional polypeptides can modulate both phase-based separation and charge-based chromatographic processes. Additionally, incorporation of the specific, multi-epitope tag used in this study may prove to be beneficial in recombinant HPV vaccine development due to its potential to improve phase separation yield and vaccine immunogenicity without inhibiting VLP formation.
Collapse
Affiliation(s)
- Kyle Saylor
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
| | - Alison Waldman
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States; Chemical and Biomolecular Engineering, NC State, Raleigh, NC, United States.
| | - Frank Gillam
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States; Locus Biosciences, Morrisville, NC, United States.
| | - Chenming Zhang
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
16
|
Hillebrandt N, Vormittag P, Bluthardt N, Dietrich A, Hubbuch J. Integrated Process for Capture and Purification of Virus-Like Particles: Enhancing Process Performance by Cross-Flow Filtration. Front Bioeng Biotechnol 2020; 8:489. [PMID: 32671023 PMCID: PMC7326125 DOI: 10.3389/fbioe.2020.00489] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 01/22/2023] Open
Abstract
Virus-like particles (VLPs) are emerging nanoscale protein assemblies applied as prophylactic vaccines and in development as therapeutic vaccines or cargo delivery systems. Downstream processing (DSP) of VLPs comes both with challenges and opportunities, depending on the complexity and size of the structures. Filtration, precipitation/re-dissolution and size-exclusion chromatography (SEC) are potent technologies exploiting the size difference between product and impurities. In this study, we therefore investigated the integration of these technologies within a single unit operation, resulting in three different processes, one of which integrates all three technologies. VLPs, contained in clarified lysate from Escherichia coli, were precipitated by ammonium sulfate, washed, and re-dissolved in a commercial cross-flow filtration (CFF) unit. Processes were analyzed for yield, purity, as well as productivity and were found to be largely superior to a reference centrifugation process. Productivity was increased 2.6-fold by transfer of the wash and re-dissolution process to the CFF unit. Installation of a multimodal SEC column in the permeate line increased purity to 96% while maintaining a high productivity and high yield of 86%. In addition to these advantages, CFF-based capture and purification allows for scalable and disposable DSP. In summary, the developed set-up resulted in high yields and purities, bearing the potential to be applied as an integrated process step for capture and purification of in vivo-assembled VLPs and other protein nanoparticles.
Collapse
Affiliation(s)
| | | | | | | | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
17
|
Bamogo PKA, Brugidou C, Sérémé D, Tiendrébéogo F, Djigma FW, Simpore J, Lacombe S. Virus-based pharmaceutical production in plants: an opportunity to reduce health problems in Africa. Virol J 2019; 16:167. [PMID: 31888686 PMCID: PMC6937724 DOI: 10.1186/s12985-019-1263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Developing African countries face health problems that they struggle to solve. The major causes of this situation are high therapeutic and logistical costs. Plant-made therapeutics are easy to produce due to the lack of the safety considerations associated with traditional fermenter-based expression platforms, such as mammalian cells. Plant biosystems are easy to scale up and inexpensive, and they do not require refrigeration or a sophisticated medical infrastructure. These advantages provide an opportunity for plant-made pharmaceuticals to counteract diseases for which medicines were previously inaccessible to people in countries with few resources. MAIN BODY The techniques needed for plant-based therapeutic production are currently available. Viral expression vectors based on plant viruses have greatly enhanced plant-made therapeutic production and have been exploited to produce a variety of proteins of industrial, pharmaceutical and agribusiness interest. Some neglected tropical diseases occurring exclusively in the developing world have found solutions through plant bioreactor technology. Plant viral expression vectors have been reported in the production of therapeutics against these diseases occurring exclusively in the third world, and some virus-derived antigens produced in plants exhibit appropriate antigenicity and immunogenicity. However, all advances in the use of plants as bioreactors have been made by companies in Europe and America. The developing world is still far from acquiring this technology, although plant viral expression vectors may provide crucial help to overcome neglected diseases. CONCLUSION Today, interest in these tools is rising, and viral amplicons made in and for Africa are in progress. This review describes the biotechnological advances in the field of plant bioreactors, highlights factors restricting access to this technology by those who need it most and proposes a solution to overcome these limitations.
Collapse
Affiliation(s)
- Pingdwende Kader Aziz Bamogo
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Christophe Brugidou
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Drissa Sérémé
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Séverine Lacombe
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France.
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso.
| |
Collapse
|
18
|
Fumagalli M, Gerace D, Faè M, Iadarola P, Leelavathi S, Reddy VS, Cella R. Molecular, biochemical, and proteomic analyses of transplastomic tobacco plants expressing an endoglucanase support chloroplast-based molecular farming for industrial scale production of enzymes. Appl Microbiol Biotechnol 2019; 103:9479-9491. [PMID: 31701198 DOI: 10.1007/s00253-019-10186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 01/02/2023]
Abstract
The successful production of recombinant enzymes by tobacco transplastomic plants must maintain compatibility of the heterologous enzyme with chloroplast metabolism and its long-time enzyme stability. Based on previous reports, it has been taken for granted that following biolistic-transformation, homoplasticity could be obtained from the initially heteroplastic state following successive rounds of selection in the presence of the selection agent. However, several studies indicated that this procedure does not always ensure the complete elimination of unmodified wild-type plastomes. The present study demonstrates that CelK1 transplastomic plants, which were photosyntetically as active as untransformed ones, remain heteroplastomic even after repeated selection steps and that this state does not impair the relatively high-level production of the recombinant enzyme. In fact, even in the heteroplastomic state, the recombinant protein represented about 6% of the total soluble proteins (TSP). Moreover, our data also show that, while the recombinant endoglucanase undergoes phosphorylation, this post-translation modification does not have any significant impact on the enzymatic activity. Biomass storage might be required whenever the enzyme extraction process could not be performed immediately following the harvest of tobacco mature plants. In this respect, we have observed that enzyme activity in the detached leaves stored at 4 °C is maintained up to 20 weeks without significant loss of activity. These findings may have major implications in the future of chloroplast genetic engineering-based molecular farming to produce industrial enzymes in transplastomic plants.
Collapse
Affiliation(s)
- M Fumagalli
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - D Gerace
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - M Faè
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - P Iadarola
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - S Leelavathi
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - V S Reddy
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
19
|
Muthamilselvan T, Kim JS, Cheong G, Hwang I. Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import. PLANT CELL REPORTS 2019; 38:825-833. [PMID: 31139894 DOI: 10.1007/s00299-019-02431-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 05/17/2023]
Abstract
Recently, plants have emerged as a lucrative alternative system for the production of recombinant proteins, as recombinant proteins produced in plants are safer and cheaper than those produced in bacteria and animal cell-based production systems. To obtain high yields in plants, recombinant proteins are produced in chloroplasts using different strategies. The first strategy is based on chloroplast transformation, followed by gene expression and translation in chloroplasts. This has proven to be a powerful approach for the production of proteins at high levels. The second approach is based on nuclear transformation, followed by post-translational import of proteins from the cytosol into chloroplasts. In the nuclear transformation approach, foreign genes are stably integrated into the nuclear genome or transiently expressed in the nucleus by non-integrating T-DNA. Although this approach also has great potential for protein production at high levels, it has not been thoroughly investigated. In this review, we focus on nuclear transformation-based protein expression and its subsequent sequestration in chloroplasts, and summarize the different strategies used for high-level production of recombinant proteins. We also discuss future directions for further improvements in protein production in chloroplasts through nuclear transformation-based gene expression.
Collapse
Affiliation(s)
- Thangarasu Muthamilselvan
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, South Korea
| | - Gangwon Cheong
- Department of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea.
| |
Collapse
|
20
|
Soares A, Niedermaier S, Faro R, Loos A, Manadas B, Faro C, Huesgen PF, Cheung AY, Simões I. An atypical aspartic protease modulates lateral root development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2157-2171. [PMID: 30778561 DOI: 10.1093/jxb/erz059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/05/2019] [Indexed: 05/25/2023]
Abstract
Few atypical aspartic proteases (APs) present in plants have been functionally studied to date despite having been implicated in developmental processes and stress responses. Here we characterize a novel atypical AP that we name Atypical Aspartic Protease in Roots 1 (ASPR1), denoting its expression in Arabidopsis roots. Recombinant ASPR1 produced by transient expression in Nicotiana benthamiana was active and displayed atypical properties, combining optimum acidic pH, partial sensitivity to pepstatin, pronounced sensitivity to redox agents, and unique specificity preferences resembling those of fungal APs. ASPR1 overexpression suppressed primary root growth and lateral root development, implying a previously unknown biological role for an AP. Quantitative comparison of wild-type and aspr1 root proteomes revealed deregulation of proteins associated with both reactive oxygen species and auxin homeostasis in the mutant. Together, our findings on ASPR1 reinforce the diverse pattern of enzymatic properties and biological roles of atypical APs and raise exciting questions on how these distinctive features impact functional specialization among these proteases.
Collapse
Affiliation(s)
- André Soares
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Stefan Niedermaier
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Rosário Faro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Andreas Loos
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Carlos Faro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Isaura Simões
- Institute for Interdisciplinary Research, University of Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| |
Collapse
|
21
|
Diamos AG, Mason HS. High-level expression and enrichment of norovirus virus-like particles in plants using modified geminiviral vectors. Protein Expr Purif 2018; 151:86-92. [PMID: 29908914 DOI: 10.1016/j.pep.2018.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/08/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
Abstract
Recombinant virus-like particles (VLPs) are proven to be safe and effective vaccine candidates. We have previously described a plant-based recombinant protein expression system based on agroinfiltration of a replicating vector derived from the geminivirus bean yellow dwarf virus (BeYDV). The system has been systematically optimized to improve expression and reduce cell death in Nicotiana benthamiana leaves. Using these modifications, we show that VLPs derived from genotype GII.4 norovirus, the leading cause of acute gastroenteritis worldwide, can be produced at >1 mg/g leaf fresh weight (LFW), over three times the highest level ever reported in plant-based systems. We also produced norovirus GI VLPs at 2.3 mg/g LFW. Treatment of VLP-containing crude leaf extracts with acid, detergent, or heat enhanced recovery and allowed selective enrichment of norovirus VLPs. Optimal treatment conditions allowed removal of >90% of endogenous plant proteins without any loss of norovirus VLPs. Selective enrichment of hepatitis B core antigen (HBcAg) VLPs by acid treatment was also demonstrated, with some losses in yield that were partially mitigated in the presence of detergent. Sedimentation analysis confirmed that acid and detergent did not inhibit proper assembly of norovirus VLPs, although heat treatment had a small negative effect. These results demonstrate that milligram quantities of norovirus VLPs can be obtained and highly enriched in a matter of days from a single plant leaf using the BeYDV plant expression system.
Collapse
Affiliation(s)
- Andrew G Diamos
- Center for Immunotherapy, Vaccines & Virotherapy, Biodesign Institute at ASU and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines & Virotherapy, Biodesign Institute at ASU and School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
22
|
Kim HJ, Cho SY, Park MH, Kim HJ. Comparison of the size distributions and immunogenicity of human papillomavirus type 16 L1 virus-like particles produced in insect and yeast cells. Arch Pharm Res 2018; 41:544-553. [PMID: 29637494 DOI: 10.1007/s12272-018-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Insect and yeast cells are considered the expression systems of choice for producing virus-like particles (VLPs), and numerous types of VLPs have been produced in these systems. However, previous studies were restricted to identifying the characteristics of individual VLP preparations. No direct comparison of the structures and immunogenic properties of insect and yeast-derived VLPs has so far been made. In the present study, the size distribution and immunogenic properties of human papillomavirus type 16 (HPV16) L1 VLPs produced in Spodoptera frugipedra-9 insect cells and Saccharomyces cerevisiae were compared. The insect cell-derived VLPs were larger than the yeast ones (P < 0.0001), with median sizes of 34 and 26 nm, respectively. In addition, the insect-derived VLPs appeared to be more diverse in size than the yeast-derived VLPs. Immunization of mice with 30 ng per dose of VLPs elicited 2.7- and 2.4-fold higher anti-HPV16 L1 IgG and anti-HPV16 neutralizing antibody titers than immunization with the same amounts of the yeast-derived VLPs after the 4th immunizations, respectively. Our results suggest that the choice of expression system critically affects the particle size and immunogenic property of HPV16 L1 VLPs.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Seo Young Cho
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Min-Hye Park
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
23
|
Yanez RJR, Lamprecht R, Granadillo M, Torrens I, Arcalís E, Stöger E, Rybicki EP, Hitzeroth II. LALF 32-51 -E7, a HPV-16 therapeutic vaccine candidate, forms protein body-like structures when expressed in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:628-637. [PMID: 28733985 PMCID: PMC5787834 DOI: 10.1111/pbi.12802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 05/28/2023]
Abstract
High-risk human papillomaviruses (HPVs) cause cervical cancer, and while there are good prophylactic vaccines on the market, these are ineffective against established infections, creating a clear need for therapeutic vaccines. The HPV E7 protein is one of the essential oncoproteins for the onset and maintenance of malignancy and is therefore an ideal therapeutic vaccine target. We fused the HPV-16 E7 protein to the Limulus polyphemus antilipopolysaccharide factor (LALF32-51 ), a small hydrophobic peptide that can penetrate cell membranes and that has immunomodulatory properties. LALF32-51 -E7 was transiently expressed in Nicotiana benthamiana, and we previously determined that it accumulated better when targeted to chloroplasts compared to being localized in the cytoplasm. Subsequently, we aimed to prove whether LALF32-51 -E7 was indeed associated with the chloroplasts by determining its subcellular localization. The LALF32-51 -E7 gene was fused to one encoding enhanced GFP to generate a LG fusion protein, and localization was determined by confocal laser scanning microscopy and transmission electron microscopy (TEM). The fluorescence observed from chloroplast-targeted LG was distinctively different from that of the cytoplasmic LG. Small spherical structures resembling protein bodies (PBs) were seen that clearly localized with the chloroplasts. Larger but less abundant PB-like structures were also seen for the cytoplasmic LG. PB-like structure formation was confirmed for both LG and LALF32-51 -E7 by TEM. LALF32-51 -E7 was indeed targeted to the chloroplasts by the chloroplast transit peptide used in this study, and it formed aggregated PB-like structures. This study could open a new avenue for the use of LALF32-51 as a PB-inducing peptide.
Collapse
Affiliation(s)
- Romana J. R. Yanez
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Renate Lamprecht
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | | | - Isis Torrens
- Center for Genetic Engineering and BiotechnologyHavanaCuba
| | - Elsa Arcalís
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva Stöger
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Edward P. Rybicki
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Inga I. Hitzeroth
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
24
|
Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017; 5:biomedicines5030044. [PMID: 28758953 PMCID: PMC5618302 DOI: 10.3390/biomedicines5030044] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Plant-made biopharmaceuticals have long been considered a promising technology for providing inexpensive and efficacious medicines for developing countries, as well as for combating pandemic infectious diseases and for use in personalized medicine. Plant virus expression vectors produce high levels of pharmaceutical proteins within a very short time period. Recently, plant viruses have been employed as nanoparticles for novel forms of cancer treatment. This review provides a glimpse into the development of plant virus expression systems both for pharmaceutical production as well as for immunotherapy.
Collapse
|
25
|
Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci OA 2017; 3:FSO217. [PMID: 28884013 PMCID: PMC5583679 DOI: 10.4155/fsoa-2017-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023] Open
Abstract
Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. Cancer immunotherapy has made great strides over recent years. This review describes the use of plants as production systems to produce biopharmaceuticals such as vaccines and antibodies to treat a wide variety of cancers. The use of nanoparticle technology based on plant viruses as a novel strategy to target and combat cancers is also included. The review concludes with a discussion of plant production platforms and their relevance for the generation of cheap and effective cancer immunotherapies for developing countries.
Collapse
|
26
|
Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in commercializing plastid transformation technology. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5945-5960. [PMID: 27697788 DOI: 10.1093/jxb/erw360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastid transformation has emerged as an alternative platform to generate transgenic plants. Attractive features of this technology include specific integration of transgenes-either individually or as operons-into the plastid genome through homologous recombination, the potential for high-level protein expression, and transgene containment because of the maternal inheritance of plastids. Several issues associated with nuclear transformation such as gene silencing, variable gene expression due to the Mendelian laws of inheritance, and epigenetic regulation have not been observed in the plastid genome. Plastid transformation has been successfully used for the production of therapeutics, vaccines, antigens, and commercial enzymes, and for engineering various agronomic traits including resistance to biotic and abiotic stresses. However, these demonstrations have usually focused on model systems such as tobacco, and the technology per se has not yet reached the market. Technical factors limiting this technology include the lack of efficient protocols for the transformation of cereals, poor transgene expression in non-green plastids, a limited number of selection markers, and the lengthy procedures required to recover fully segregated plants. This article discusses the technology of transforming the plastid genome, the positive and negative features compared with nuclear transformation, and the current challenges that need to be addressed for successful commercialization.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91058 Evry, France
| | - Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|