1
|
Jung HA, Lim J, Choi YL, Lee SH, Joung JG, Jeon YJ, Choi JW, Shin S, Cho JH, Kim HK, Choi YS, Zo JI, Shim YM, Park S, Sun JM, Ahn JS, Ahn MJ, Han J, Park WY, Kim J, Park K. Clinical, Pathologic, and Molecular Prognostic Factors in Patients with Early-Stage EGFR-Mutant NSCLC. Clin Cancer Res 2022; 28:4312-4321. [PMID: 35838647 DOI: 10.1158/1078-0432.ccr-22-0879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE In early-stage, EGFR mutation-positive (EGFR-M+) non-small cell lung cancer (NSCLC), surgery remains the primary treatment, without personalized adjuvant treatments. We aimed to identify risk factors for recurrence-free survival (RFS) to suggest personalized adjuvant strategies in resected early-stage EGFR-M+ NSCLC. EXPERIMENTAL DESIGN From January 2008 to August 2020, a total of 2,340 patients with pathologic stage (pStage) IB-IIIA, non-squamous NSCLC underwent curative surgery. To identify clinicopathologic risk factors, 1,181 patients with pStage IB-IIIA, common EGFR-M+ NSCLC who underwent surgical resection were analyzed. To identify molecular risk factors, comprehensive genomic analysis was conducted in 56 patients with matched case-controls (pStage II and IIIA and type of EGFR mutation). RESULTS Median follow-up duration was 38.8 months (0.5-156.2). Among 1,181 patients, pStage IB, II, and IIIA comprised 577 (48.9%), 331 (28.0%), and 273 (23.1%) subjects, respectively. Median RFS was 73.5 months [95% confidence interval (CI), 62.1-84.9], 48.7 months (95% CI, 41.2-56.3), and 22.7 months (95% CI, 19.4-26.0) for pStage IB, II, and IIIA, respectively (P < 0.001). In multivariate analysis of clinicopathologic risk factors, pStage, micropapillary subtype, vascular invasion, and pleural invasion, and pathologic classification by cell of origin (type II pneumocyte-like tumor cell vs. bronchial surface epithelial cell-like tumor cell) were associated with RFS. As molecular risk factors, the non-terminal respiratory unit (non-TRU) of the RNA subtype (HR, 3.49; 95% CI, 1.72-7.09; P < 0.01) and TP53 mutation (HR, 2.50; 95% CI, 1.24-5.04; P = 0.01) were associated with poor RFS independent of pStage II or IIIA. Among the patients with recurrence, progression-free survival of EGFR-tyrosine kinase inhibitor (TKI) in those with the Apolipoprotein B mRNA Editing Catalytic Polypeptide-like (APOBEC) mutation signature was inferior compared with that of patients without this signature (8.6 vs. 28.8 months; HR, 4.16; 95% CI, 1.28-13.46; P = 0.02). CONCLUSIONS The low-risk group with TRU subtype and TP53 wild-type without clinicopathologic risk factors might not need adjuvant EGFR-TKIs. In the high-risk group, with non-TRU subtype and/or TP 53 mutation, or clinicopathologic risk factors, a novel adjuvant strategy of EGFR-TKI with others, e.g., chemotherapy or antiangiogenic agents needs to be investigated. Given the poor outcome to EGFR-TKIs after recurrence in patients with the APOBEC mutation signature, an alternative adjuvant strategy might be needed.
Collapse
Affiliation(s)
- Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Je-Gun Joung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Yeong Jeong Jeon
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Won Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sumin Shin
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Soo Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Ill Zo
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joungho Han
- Department of Pathology and Translational Genomics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Woong-Yang Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Wang LJ, Qiu BQ, Yuan MM, Zou HX, Gong CW, Huang H, Lai SQ, Liu JC. Identification and Validation of Dilated Cardiomyopathy-Related Genes via Bioinformatics Analysis. Int J Gen Med 2022; 15:3663-3676. [PMID: 35411175 PMCID: PMC8994656 DOI: 10.2147/ijgm.s350954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Dilated cardiomyopathy (DCM) is a type of cardiomyopathy that can easily cause heart failure and has a high mortality rate. Therefore, there is an urgent need to study the underlying mechanism of action of dilated cardiomyopathy. In the present study, we aimed to explore potential miRNA–mRNA pairs and drugs related to DCM. Methods The Microarray data were collected from the Gene Expression Omnibus (GEO) database. Bioinformatics analysis differentially expressed miRNAs and mRNAs in each microarray were obtained. The target genes of miRNAs were obtained from the miRWalk 2.0 database, and the intersection of these two gene sets (miRNA target genes and differentially expressed mRNAs in the microarray) was obtained. Pathway and Gene Ontology (GO) enrichment analyses were performed in the KOBAS database. Cytoscape software was used to construct the miRNA–mRNA network, and the final hub genes were obtained. Furthermore, we predicted several candidate drugs related to hub genes using DSigDB database. To confirm the abnormal expression of hub genes, qRT-PCR was performed. Results In total, eight differentially expressed miRNAs and 92 differentially expressed mRNAs were identified. In addition, 47 differentially expressed miRNA target genes were identified. According to the analysis results of the miRNA-mRNA network, we identified hsa-miR-551b-3p, hsa-miR-770-5p, hsa-miR-363-3p, PIK3R1, DDIT4, and CXCR4 as hub genes in DCM. Several candidate drugs, which are related to the hug genes, were identified. Conclusion In conclusion, in our study, we identified several hub genes that may be involved in the pathogenesis of DCM. Several drugs related to these hub genes may be used as clinical therapeutic candidates.
Collapse
Affiliation(s)
- Li-Jun Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ming-Ming Yuan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Cheng-Wu Gong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Song-Qing Lai, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China, Tel +86 13699562160, Email
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Ji-Chun Liu, Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China, Tel +86 13907913502, Email
| |
Collapse
|
3
|
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022; 11:132. [PMID: 35215076 PMCID: PMC8878590 DOI: 10.3390/pathogens11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. Tobacco smoke is the most frequent risk factor etiologically associated with LC, although exposures to other environmental factors such as arsenic, radon or asbestos are also involved. Additionally, the involvement of some viral infections such as high-risk human papillomaviruses (HR-HPVs), Merkel cell polyomavirus (MCPyV), Jaagsiekte Sheep Retrovirus (JSRV), John Cunningham Virus (JCV), and Epstein-Barr virus (EBV) has been suggested in LC, though an etiological relationship has not yet been established. EBV is a ubiquitous gamma herpesvirus causing persistent infections and some lymphoid and epithelial tumors. Since EBV is heterogeneously detected in LCs from different parts of the world, in this review we address the epidemiological and experimental evidence of a potential role of EBV. Considering this evidence, we propose mechanisms potentially involved in EBV-associated lung carcinogenesis. Additional studies are warranted to dissect the role of EBV in this very frequent malignancy.
Collapse
Affiliation(s)
- Julio C. Osorio
- Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
4
|
Li TT, Gao X, Gao L, Gan BL, Xie ZC, Zeng JJ, Chen G. Role of upregulated miR-136-5p in lung adenocarcinoma: A study of 1242 samples utilizing bioinformatics analysis. Pathol Res Pract 2018. [PMID: 29526559 DOI: 10.1016/j.prp.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND It is generally acknowledged that miRNAs play pivotal roles in the initiation and development of cancer. The aim of the current study is to investigate the clinicopathological role of miR-136-5p in lung adenocarcinoma and its underlying molecular mechanism. MATERIALS AND METHODS Data of a cohort of 1242 samples were provided by the Gene Expression Omnibus and The Cancer Genome Atlas to evaluate miR-136-5p expression in lung adenocarcinoma. A comprehensive meta-analysis integrating the expression data from all sources was performed, followed by a summary receiver operating curve plotted to appraise the upregulated expression of miR-136-5p in lung adenocarcinoma. Candidate targets of miR-136-5p were launched by the intersection of differentially expressed genes in The Cancer Genome Atlas and genes predicted by 12 web-based platforms. Then, hub genes were illustrated by a protein-protein interaction network. Furthermore, Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and Protein Analysis Through Evolutionary Relationships analyses of potential target genes were carried out via bioinformatics tools. RESULTS MiR-136-5p expression was upregulated in lung adenocarcinoma versus normal tissues (standard mean difference = 0.43, 95% confidence interval: 0.27-0.58). The summary receiver operating characteristic curve further verified the upregulation of miR-136-5p in lung adenocarcinoma (area under curve = 0.7459). A total of 311 candidate target genes of miR-136-5p were gathered to create a protein-protein interaction network. Molecular mechanism analysis unveiled the potential miR-136-5p target genes participated in cell adhesion molecules, focal adhesion, complement and coagulation cascades and blood coagulation. CONCLUSION MiR-136-5p is overexpressed in lung adenocarcinoma and is involved in the molecular mechanism of lung adenocarcinoma via suppressing the expressions of downstream targets, especially claudin-18, sialophorin and syndecan 2 that participate in cell adhesion.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Xiang Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Zu-Cheng Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| |
Collapse
|