1
|
Qiu CJ, Hu LY, Yang J, Cao JJ, Pei BG, Dai RR, Pan SJ. A novel nanoplatform-based circCSNK1G3 affects CBX7 protein and promotes glioma cell growth. Int J Biol Macromol 2024; 276:134025. [PMID: 39033888 DOI: 10.1016/j.ijbiomac.2024.134025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Bioenvironmental and biological factors have the potential to contribute to the development of glioma, a type of brain tumor. Recent studies have suggested that a unique circular RNA called circCSNK1G3 could play a role in promoting the growth of glioma cells. It does this by stabilizing a specific microRNA called miR-181 and reducing the expression of a tumor-suppressor gene known as chromobox protein homolog 7 (CBX7). To further investigate circCSNK1G3 and its effects on glioma, we utilized a nanoplatform called adeno-associated virus (AAV)-RNAi.To explore the functional implications of circCSNK1G3, we employed siRNA to silence its expression. Along with these effects, the silencing of circCSNK1G3 led to a depletion of miR-181d and an upregulation of CBX7. When we introduced miR-181d mimics, which artificially increase the levels of miR-181d, the anti-glioma cell activity induced by circCSNK1G3 siRNA was almost completely reversed. Conversely, inhibiting miR-181d mimicked the effects of circCSNK1G3 silencing. Moreover, when we overexpressed circCSNK1G3 in glioma cells, we observed an elevation of miR-181d and a depletion of CBX7. We found that the growth of A172 xenografts (tumors) carrying circCSNK1G3 shRNA was significantly inhibited. In these xenograft tissues, we detected a depletion of circCSNK1G3 and miR-181d, as well as an upregulation of CBX7.
Collapse
Affiliation(s)
- Cheng-Jie Qiu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Liang-Yun Hu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Jin Yang
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jiao-Jiao Cao
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China
| | - Ben-Gen Pei
- Department of Neurosurgery, Zhou-Pu Hospital, Shanghai Jian-Kang University, School of Medicine, Shanghai, China.
| | - Ran-Ran Dai
- Department of Pulmonary and Critical Care Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Si-Jian Pan
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Mrozowska M, Górnicki T, Olbromski M, Partyńska AI, Dzięgiel P, Rusak A. New insights into the role of tetraspanin 6, 7, and 8 in physiology and pathology. Cancer Med 2024; 13:e7390. [PMID: 39031113 PMCID: PMC11258570 DOI: 10.1002/cam4.7390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The tetraspanin (TSPAN) family comprises 33 membrane receptors involved in various physiological processes in humans. Tetrasapanins are surface proteins expressed in cells of various organisms. They are localised to the cell membrane by four transmembrane domains (TM4SF). These domains bind several cell surface receptors and signalling proteins to tetraspanin-enriched lipid microdomains (TERM or TEM). Tetraspanins play a critical role in anchoring many proteins. They also act as a scaffold for cell signalling proteins. AIM To summarise how tetraspanins 6, 7 and 8 contribute to the carcinogenesis process in different types of cancer. METHODS To provide a comprehensive review of the role of tetraspanins 6, 7 and 8 in cancer biology, we conducted a thorough search in PubMed, Embase and performed manual search of reference list to collect and extract data. DISCUSSION The assembly of tetraspanins covers an area of approximately 100-400 nm. Tetraspanins are involved in various biological processes such as membrane fusion, aggregation, proliferation, adhesion, cell migration and differentiation. They can also regulate integrins, cell surface receptors and signalling molecules. Tetraspanins form direct bonds with proteins and other members of the tetraspanin family, forming a hierarchical network of interactions and are thought to be involved in cell and membrane compartmentalisation. Tetraspanins have been implicated in cancer progression and have been shown to have multiple binding partners and to promote cancer progression and metastasis. Clinical studies have documented a correlation between the level of tetraspanin expression and the prediction of cancer progression, including breast and lung cancer. CONCLUSIONS Tetraspanins are understudied in almost all cell types and their functions are not clearly defined. Fortunately, it has been possible to identify the basic mechanisms underlying the biological role of these proteins. Therefore, the purpose of this review is to describe the roles of tetraspanins 6, 7 and 8.
Collapse
Affiliation(s)
- Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Aleksandra Izabela Partyńska
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
- Department of Human Biology, Faculty of PhysiotherapyWroclaw University of Health and Sport SciencesWroclawPoland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and EmbryologyWroclaw Medical UniversityWroclawPoland
| |
Collapse
|
3
|
Buccinnà B, Ramondetti C, Piccinini M. Ampk Activation Attenuates Her3 Upregulation And Neuregulin-Mediated Rescue of Cell Proliferation in Her2-Overexpressing Breast Cancer Cell Lines Exposed to Lapatinib. Biochem Pharmacol 2022; 204:115228. [PMID: 36007575 DOI: 10.1016/j.bcp.2022.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Lapatinib is a highly selective reversible inhibitor of the tyrosine kinase domains of HER2 and EGFR, approved for the treatment of advanced stage HER2-overexpressing breast cancers. Although targeted therapy with lapatinib provides initial clinical advantage, cancer cells' adaptive responses can overcome the inhibitory effects of lapatinib. HER3 upregulation and autocrine induction of HER3 ligand neuregulin-1 (NRG), have been implicated in the restoration of AKT and ERK1/2 activity and rescue of cell proliferation. In this study we evaluated the effects of lapatinib alone and in combination with AMPK activator GSK-621 in HER2-overexpressing breast cancer cell lines SKBR3 and BT474. Our results show that in cells exposed to lapatinib and GSK-621 in combination, lapatinib-mediated HER3 upregulation was reduced and reactivation of AKT and ERK1/2 kinases was prevented. The two drugs in combination decreased cell viability in a synergistic manner and greatly reduced the ability of NRG to rescue cell proliferation. Finally, we provide evidence that in cells exposed to lapatinib and GSK-621 in combination the establishment of a transcriptionally permissive chromatin structure at the HER3 promoter is hampered. The results of this study highlight a potential role for AMPK activation in counteracting lapatinib-induced adaptive responses of HER2-overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Barbara Buccinnà
- University of Turin, Department of Oncology, via Michelangelo Buonarroti 27/b, 10126 Torino, Italy.
| | - Cristina Ramondetti
- University of Turin, Department of Oncology, via Michelangelo Buonarroti 27/b, 10126 Torino, Italy.
| | - Marco Piccinini
- University of Turin, Department of Oncology, via Michelangelo Buonarroti 27/b, 10126 Torino, Italy.
| |
Collapse
|
4
|
Hu Y, Zhou Y, Yang Y, Tang H, Si Y, Chen Z, Shi Y, Fang H. Metformin Protects Against Diabetes-Induced Cognitive Dysfunction by Inhibiting Mitochondrial Fission Protein DRP1. Front Pharmacol 2022; 13:832707. [PMID: 35392573 PMCID: PMC8981993 DOI: 10.3389/fphar.2022.832707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
Objectives: Diabetes is an independent risk factor for dementia. Mitochondrial dysfunction is a critical player in diabetes and diabetic complications. The present study aimed to investigate the role of mitochondrial dynamic changes in diabetes-associated cognitive impairment. Methods: Cognitive functions were examined by novel object recognition and T-maze tests. Mice hippocampi were collected for electron microscopy and immunofluorescence examination. Neuron cell line HT22 and primary hippocampal neurons were challenged with high glucose in vitro. Mitotracker-Red CM-H2X ROS was used to detect mitochondrial-derived free radicals. Results: Diabetic mice exhibited memory loss and spatial disorientation. Electron microscopy revealed that diabetic mice had larger synaptic gaps, attenuated postsynaptic density and fewer dendritic spines in the hippocampus. More round-shape mitochondria were observed in hippocampal neurons in diabetic mice than those in control mice. In cultured neurons, high glucose induced a high phosphorylated level of dynamin-related protein 1 (DRP1) and increased oxidative stress, resulting in cell apoptosis. Inhibition of mitochondrial fission by Mdivi-1 and metformin significantly decreased oxidative stress and prevented cell apoptosis in cultured cells. Treatment of Mdivi-1 and metformin restored cognitive function in diabetic mice. Conclusion: Metformin restores cognitive function by inhibiting mitochondrial fission, reducing mitochondrial-derived oxidative stress, and mitigating neuron loss in hippocampi of diabetic mice. The protective effects of metformin shed light on the therapeutic strategy of cognitive impairment.
Collapse
Affiliation(s)
- Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yile Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yajie Yang
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Haihong Tang
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuan Si
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zhong S, Xue J, Cao JJ, Sun B, Sun QF, Bian LG, Hu LY, Pan SJ. The therapeutic value of XL388 in human glioma cells. Aging (Albany NY) 2020; 12:22550-22563. [PMID: 33159013 PMCID: PMC7746352 DOI: 10.18632/aging.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022]
Abstract
XL388 is a highly efficient and orally-available ATP-competitive PI3K-mTOR dual inhibitor. Its activity against glioma cells was studied here. In established and primary human glioma cells, XL388 potently inhibited cell survival and proliferation as well as cell migration, invasion and cell cycle progression. The dual inhibitor induced significant apoptosis activation in glioma cells. In A172 cells and primary human glioma cells, XL388 inhibited Akt-mTORC1/2 activation by blocking phosphorylation of Akt and S6K1. XL388-induced glioma cell death was only partially attenuated by a constitutively-active mutant Akt1. Furthermore, it was cytotoxic against Akt1-knockout A172 glioma cells. XL388 downregulated MAF bZIP transcription factor G (MAFG) and inhibited Nrf2 signaling, causing oxidative injury in glioma cells. Conversely, antioxidants, n-acetylcysteine, pyrrolidine dithiocarbamate and AGI-106, alleviated XL388-induced cytotoxicity and apoptosis in glioma cells. Oral administration of XL388 inhibited subcutaneous A172 xenograft growth in severe combined immunodeficient mice. Akt-S6K1 inhibition and MAFG downregulation were detected in XL388-treated A172 xenograft tissues. Collectively, XL388 efficiently inhibits human glioma cell growth, through Akt-mTOR-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Shan Zhong
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun Xue
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jiao-Jiao Cao
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qing-Fang Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liu-Guan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Liang-Yun Hu
- Department of Stereotactic and Functional Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Si-Jian Pan
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
El-Houjeiri L, Possik E, Vijayaraghavan T, Paquette M, Martina JA, Kazan JM, Ma EH, Jones R, Blanchette P, Puertollano R, Pause A. The Transcription Factors TFEB and TFE3 Link the FLCN-AMPK Signaling Axis to Innate Immune Response and Pathogen Resistance. Cell Rep 2020; 26:3613-3628.e6. [PMID: 30917316 DOI: 10.1016/j.celrep.2019.02.102] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
TFEB and TFE3 are transcriptional regulators of the innate immune response, but the mechanisms regulating their activation upon pathogen infection are poorly elucidated. Using C. elegans and mammalian models, we report that the master metabolic modulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN) act upstream of TFEB/TFE3 in the innate immune response, independently of the mTORC1 signaling pathway. In nematodes, loss of FLCN or overexpression of AMPK confers pathogen resistance via activation of TFEB/TFE3-dependent antimicrobial genes, whereas ablation of total AMPK activity abolishes this phenotype. Similarly, in mammalian cells, loss of FLCN or pharmacological activation of AMPK induces TFEB/TFE3-dependent pro-inflammatory cytokine expression. Importantly, a rapid reduction in cellular ATP levels in murine macrophages is observed upon lipopolysaccharide (LPS) treatment accompanied by an acute AMPK activation and TFEB nuclear localization. These results uncover an ancient, highly conserved, and pharmacologically actionable mechanism coupling energy status with innate immunity.
Collapse
Affiliation(s)
- Leeanna El-Houjeiri
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Tarika Vijayaraghavan
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Mathieu Paquette
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - José A Martina
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jalal M Kazan
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Eric H Ma
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Russell Jones
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Paola Blanchette
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
7
|
TSPAN8 as a Novel Emerging Therapeutic Target in Cancer for Monoclonal Antibody Therapy. Biomolecules 2020; 10:biom10030388. [PMID: 32138170 PMCID: PMC7175299 DOI: 10.3390/biom10030388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tetraspanin 8 (TSPAN8) is a member of the tetraspanin superfamily that forms TSPAN8-mediated protein complexes by interacting with themselves and other various cellular signaling molecules. These protein complexes help build tetraspanin-enriched microdomains (TEMs) that efficiently mediate intracellular signal transduction. In physiological conditions, TSPAN8 plays a vital role in the regulation of biological functions, including leukocyte trafficking, angiogenesis and wound repair. Recently, reports have increasingly shown the functional role and clinical relevance of TSPAN8 overexpression in the progression and metastasis of several cancers. In this review, we will highlight the physiological and pathophysiological roles of TSPAN8 in normal and cancer cells. Additionally, we will cover the current status of monoclonal antibodies specifically targeting TSPAN8 and the importance of TSPAN8 as an emerging therapeutic target in cancers for monoclonal antibody therapy.
Collapse
|
8
|
Lnc-THOR silencing inhibits human glioma cell survival by activating MAGEA6-AMPK signaling. Cell Death Dis 2019; 10:866. [PMID: 31727877 PMCID: PMC6856358 DOI: 10.1038/s41419-019-2093-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Long non-coding RNA THOR (Lnc-THOR) binds to IGF2BP1, essential for its function. We here show that Lnc-THOR is expressed in human glioma tissues and cells. Its expression is extremely low or even undetected in normal brain tissues, as well as in human neuronal cells and astrocytes. We show that Lnc-THOR directly binds to IGF2BP1 in established and primary human glioma cells. shRNA-mediated Lnc-THOR knockdown or CRISPR/Cas9-induced Lnc-THOR knockout potently inhibited cell survival and proliferation, while provoking glioma cell apoptosis. Contrarily, forced overexpression of Lnc-THOR promoted glioma cell growth and migration. Importantly, Lnc-THOR shRNA or knockout activated MAGEA6-AMPK signaling in glioma cells. AMPK inactivation, by AMPKα1 shRNA, knockout, or dominant-negative mutation (T172A), attenuated Lnc-THOR shRNA-induced A172 glioma cell apoptosis. Moreover, CRISPR/Cas9-induced IGF2BP1 knockout activated MAGEA6-AMPK signaling as well, causing A172 glioma cell apoptosis. Significantly, Lnc-THOR shRNA was ineffective in IGF2BP1 KO A172 cells. In vivo, Lnc-THOR silencing or knockout potently inhibited subcutaneous A172 xenograft tumor growth in mice. MAGEA6 downregulation and AMPK activation were detected in Lnc-THOR-silenced/-KO A172 tumor tissues. Taken together, Lnc-THOR depletion inhibits human glioma cell survival possibly by activating MAGEA6-AMPK signaling.
Collapse
|
9
|
Ladli M, Richard C, Aguilar LC, Ducamp S, Bondu S, Sujobert P, Tamburini J, Lacombe C, Azar N, Foretz M, Zermati Y, Mayeux P, Viollet B, Verdier F. Finely-tuned regulation of AMP-activated protein kinase is crucial for human adult erythropoiesis. Haematologica 2018; 104:907-918. [PMID: 30309849 PMCID: PMC6518903 DOI: 10.3324/haematol.2018.191403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/03/2018] [Indexed: 11/09/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric complex containing α, β, and γ subunits involved in maintaining integrity and survival of murine red blood cells. Indeed, Ampk α1-/- , Ampk β1-/- and Ampk γ1-/- mice develop hemolytic anemia and the plasma membrane of their red blood cells shows elasticity defects. The membrane composition evolves continuously along erythropoiesis and during red blood cell maturation; defects due to the absence of Ampk could be initiated during erythropoiesis. We, therefore, studied the role of AMPK during human erythropoiesis. Our data show that AMPK activation had two distinct phases in primary erythroblasts. The phosphorylation of AMPK (Thr172) and its target acetyl CoA carboxylase (Ser79) was elevated in immature erythroblasts (glycophorin Alow), then decreased conjointly with erythroid differentiation. In erythroblasts, knockdown of the α1 catalytic subunit by short hairpin RNA led to a decrease in cell proliferation and alterations in the expression of membrane proteins (band 3 and glycophorin A) associated with an increase in phosphorylation of adducin (Ser726). AMPK activation in mature erythroblasts (glycophorin Ahigh), achieved through the use of direct activators (GSK621 and compound 991), induced cell cycle arrest in the S phase, the induction of autophagy and caspase-dependent apoptosis, whereas no such effects were observed in similarly treated immature erythroblasts. Thus, our work suggests that AMPK activation during the final stages of erythropoiesis is deleterious. As the use of direct AMPK activators is being considered as a treatment in several pathologies (diabetes, acute myeloid leukemia), this observation is pivotal. Our data highlighted the importance of the finely-tuned regulation of AMPK during human erythropoiesis.
Collapse
Affiliation(s)
- Meriem Ladli
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Cyrielle Richard
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Lilia Cantero Aguilar
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Sarah Ducamp
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Sabrina Bondu
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Pierre Sujobert
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité
| | - Jérôme Tamburini
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité
| | - Catherine Lacombe
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Nabih Azar
- Service d'Hémobiologie, Hôpital La Pitié Salpétrière, Paris, France
| | - Marc Foretz
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Yael Zermati
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Patrick Mayeux
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Benoit Viollet
- Institut Cochin, INSERM U1016.,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| | - Frédérique Verdier
- Institut Cochin, INSERM U1016 .,CNRS UMR 8104, Paris.,Université Paris Descartes, Sorbonne Paris Cité.,Labex GREX
| |
Collapse
|
10
|
Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, Siemianowicz K, Likus W, Wiechec E, Toyota BD, Hoshyar R, Seyfoori A, Sepehri Z, Ande SR, Khadem F, Akbari M, Gorman AM, Samali A, Klonisch T, Ghavami S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 2018; 184:13-41. [DOI: 10.1016/j.pharmthera.2017.10.017] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Liu W, Mao L, Ji F, Chen F, Hao Y, Liu G. Targeted activation of AMPK by GSK621 ameliorates H2O2-induced damages in osteoblasts. Oncotarget 2018; 8:10543-10552. [PMID: 28060740 PMCID: PMC5354679 DOI: 10.18632/oncotarget.14454] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
GSK621 is a novel AMP-activated protein kinase (AMPK) activator. This study tested its potential cytoprotective effect in hydrogen peroxide (H2O2)-treated osteoblasts. In cultured MC3T3-E1 osteoblastic cells and primary murine osteoblasts, GSK621 significantly attenuated H2O2-induced cell death and apoptosis. AMPK activation was required for GSK621-induced osteoblast cytoprotection. Inhibition of AMPK, by AMPKα1 T172A mutation or shRNA silence, almost completely blocked GSK621-induced osteoblast cytoprotection. Reversely, introduction of a constitutively-active AMPKα1 (T172D) alleviated H2O2 injuries in MC3T3-E1 cells. Further, GSK621 increased nicotinamide adenine dinucleotide phosphate (NADPH) content in osteoblasts to inhibit H2O2-induced reactive oxygen species (ROS) production. Meanwhile, GSK621 activated cytoprotective autophagy in the osteoblasts. On the other hand, pharmacological inhibition of autophagy alleviated GSK621-mediated osteoblast cytoprotection against H2O2. These results suggest that targeted activation of AMPK by GSK621 ameliorates H2O2-induced osteoblast cell injuries.
Collapse
Affiliation(s)
- Weidong Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Li Mao
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Feng Ji
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Fengli Chen
- Clinical Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yuedong Hao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Gang Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
12
|
Pan SJ, Ren J, Jiang H, Liu W, Hu LY, Pan YX, Sun B, Sun QF, Bian LG. MAGEA6 promotes human glioma cell survival via targeting AMPKα1. Cancer Lett 2018; 412:21-29. [DOI: 10.1016/j.canlet.2017.09.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022]
|
13
|
Li P, Li X, Wu Y, Li M, Wang X. A novel AMPK activator hernandezine inhibits LPS-induced TNFα production. Oncotarget 2017; 8:67218-67226. [PMID: 28978028 PMCID: PMC5620168 DOI: 10.18632/oncotarget.18365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
Here, we found that hernandezine, a novel AMPK activator, inhibited LPS-induced TNFα expression/production in human macrophage cells (THP-1 and U937 lines). Activation of AMPK is required for hernandezine-induced anti-LPS response. AMPKα shRNA or dominant negative mutation (T172A) blocked hernandezine-induced AMPK activation, which almost completely reversed anti-LPS activity by hernandezine. Exogenous expression of the constitutively activate AMPKα (T172D, caAMPKα) also suppressed TNFα production by LPS. Remarkably, hernandezine was unable to further inhibit LPS-mediated TNFα production in caAMPKα-expressing cells. Hernandezine inhibited LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. Treatment of hernandezine in ex-vivo cultured primary human peripheral blood mononuclear cells (PBMCs) also largely attenuated LPS-induced TNFα production. Together, we conclude that AMPK activation by hernandezine inhibits LPS-induced TNFα production in macrophages/monocytes.
Collapse
Affiliation(s)
- Ping Li
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Xiaofang Li
- Department of Gastroenterology, The Third People's Hospital of Xi'an, Xi'an, China
| | - Yonghong Wu
- Staff Room of Clinical Immunology and Pathogen Detection, Medical Technology Department, Xi'an Medical College, Xi'an, China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Xiaochuang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|
14
|
Jia P, Li F, Gu W, Zhang W, Cai Y. Gab3 overexpression in human glioma mediates Akt activation and tumor cell proliferation. PLoS One 2017; 12:e0173473. [PMID: 28291820 PMCID: PMC5349442 DOI: 10.1371/journal.pone.0173473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/22/2017] [Indexed: 11/18/2022] Open
Abstract
This current study tested expression and potential biological functions of Gab3 in human glioma. Gab3 mRNA and protein expression was significantly elevated in human glioma tissues and glioma cells. Its level was however low in normal brain tissues and primary human astrocytes. In both established (U251MG cell line) and primary human glioma cells, Gab3 knockdown by shRNA/siRNA significantly inhibited Akt activation and cell proliferation. Reversely, forced Gab3 overexpression in U251MG cells promoted Akt activation and cell proliferation. In vivo, the growth of U251MG tumors in nude mice was inhibited following expressing Gab3 shRNA. Akt activation in cancer tissues was also suppressed by Gab3 shRNA. Together, we conclude that Gab3 overexpression in human glioma mediates Akt activation and cancer cell proliferation.
Collapse
Affiliation(s)
- Pifeng Jia
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Li
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Gu
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Zhang
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Cai
- Department of Neurosurgery, RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Chang CH, Lee CY, Lu CC, Tsai FJ, Hsu YM, Tsao JW, Juan YN, Chiu HY, Yang JS, Wang CC. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol 2017; 50:873-882. [PMID: 28197628 DOI: 10.3892/ijo.2017.3866] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is known to be an effective chemo-preventive phytochemical against multiple tumor cells. However, the increasing drug resistance avoids the cancer treatment in oral cavity cancer. In this study, we investigated the oral antitumor activity of resveratrol and its mechanism in cisplatin-resistant human oral cancer CAR cells. Our results demonstrated that resveratrol had an extremely low toxicity in normal oral cells and provoked autophagic cell death to form acidic vesicular organelles (AVOs) and autophagic vacuoles in CAR cells by acridine orange (AO) and monodansylcadaverine (MDC) staining. Either DNA fragmentation or DNA condensation occurred in resveratrol-triggered CAR cell apoptosis. These inhibitors of PI3K class III (3-MA) and AMP-activated protein kinase (AMPK) (compound c) suppressed the autophagic vesicle formation, LC3-II protein levels and autophagy induced by resveratrol. The pan-caspase inhibitor Z-VAD-FMK attenuated resveratrol-triggered cleaved caspase-9, cleaved caspase-3 and cell apoptosis. Resveratrol also enhanced phosphorylation of AMPK and regulated autophagy- and pro-apoptosis-related signals in resveratrol-treated CAR cells. Importantly, resveratrol also stimulated the autophagic mRNA gene expression, including Atg5, Atg12, Beclin-1 and LC3-II in CAR cells. Overall, our findings indicate that resveratrol is likely to induce autophagic and apoptotic death in drug-resistant oral cancer cells and might become a new approach for oral cancer treatment in the near future.
Collapse
Affiliation(s)
- Chao-Hsiang Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chao-Ying Lee
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Je-Wei Tsao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| |
Collapse
|
16
|
Nie J, Liu A, Tan Q, Zhao K, Hu K, Li Y, Yan B, Zhou L. AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem Biophys Res Commun 2016; 482:246-252. [PMID: 27847321 DOI: 10.1016/j.bbrc.2016.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, its activity in human gallbladder cancer cells was evaluated here. We show that AICAR provoked significant apoptosis in human gallbladder cancer cell lines (Mz-ChA-1, QBC939 and GBC-SD) and primary gallbladder cancer cells. AICAR-induced cytotoxicity in gallbladder cancer cells appears independent of AMPK activation. Inhibition of AMPK, via AMPKα shRNA knockdown or dominant negative mutation (T172A), failed to rescue GBC-SD cells from AICAR. Further, forced-activation of AMPK, by adding two other AMPK activators (A769662 and Compound 13), or expressing a constitutively-active mutant AMPKα (T172D), didn't induce GBC-SD cell death. Remarkably, AICAR treatment in gallbladder cancer cells induced endoplasmic reticulum (ER) stress activation, the latter was tested by caspase-12 activation, C/EBP homologous protein (CHOP) expression and IRE1/PERK phosphorylation. Contrarily, salubrinal (the ER stress inhibitor), z-ATAD-fmk (the caspase-12 inhibitor) or CHOP shRNAs significantly attenuated AICAR-induced gallbladder cancer cell apoptosis. Together, we conclude that AICAR-induced gallbladder cancer cell apoptosis requires ER stress activation, but is independent of AMPK.
Collapse
Affiliation(s)
- Jifeng Nie
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Aidong Liu
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qunya Tan
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Kai Zhao
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Kui Hu
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Yong Li
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Bin Yan
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Lin Zhou
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
17
|
Wu YH, Li Q, Li P, Liu B. GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production. Biochem Biophys Res Commun 2016; 480:289-295. [PMID: 27712936 DOI: 10.1016/j.bbrc.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/01/2016] [Indexed: 02/01/2023]
Abstract
LPS stimulation in macrophages/monocytes induces TNFα production. We here tested the potential effect of GSK621, a novel AMP-activated protein kinase (AMPK) activator, against the process. In RAW264.7 macrophages, murine bone marrow-derived macrophages (BMDMs), and chronic obstructive pulmonary disease (COPD) patients' monocytes, GSK621 significantly inhibited LPS-induced TNFα protein secretion and mRNA synthesis. Inhibition of AMPK, through AMPKα shRNA knockdown or dominant negative mutation (T172A), almost abolished GSK621's suppression on TNFα in RAW264.7 cells. Reversely, forced-expression of a constitutively-active AMPKα (T172D) mimicked GSK621 actions and reduced LPS-induced TNFα production. Molecularly, GSK621 suppressed LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. In vivo, GSK621 oral administration inhibited LPS-induced TNFα production and endotoxin shock in mice. In summary, GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production in macrophages/monocytes.
Collapse
Affiliation(s)
- Yong-Hong Wu
- Department of Medical Technology, Xi'an Medical University, China
| | - Quan Li
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Li
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
| | - Bei Liu
- Department of Medical Technology, Xi'an Medical University, China.
| |
Collapse
|