1
|
Sanabria-Fernández JA, Lazzari N. Fostering marine resilience through the reduction of anthropogenic pressures in temperate rocky reefs. MARINE POLLUTION BULLETIN 2025; 216:117957. [PMID: 40250100 DOI: 10.1016/j.marpolbul.2025.117957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/21/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
Resilience is vital for maintaining the health of temperate coastal systems, especially in the Anthropocene era, where anthropogenic pressures such as pollution, physical impacts, and overfishing pose significant threats. However, the scarcity of studies addressing marine resilience hampers its effective management. To address this issue, we evaluated the resilience of 300 temperate rocky reefs situated in Southern Europe, considering biological, environmental, and anthropogenic factors. We identified 43 top resilient areas recommended for conservation and 39 bottom resilient areas that could benefit from reducing anthropogenic pressures. Given that our findings suggest that anthropogenic pressures unequally influence the resilience of bottom resilient areas, we followed their decreasing order of influence to simulate five management scenarios based on the cumulative reduction of these pressures. While different percentages of reduction in anthropogenic pressures were necessary to significantly enhance resilience in each scenario, we found that, regardless of the approach taken, a comparable percentage of bottom resilient areas-ranging from 17 % to 23 %-could be reclassified as moderate resilient areas. By advancing resilience knowledge in temperate rocky reefs, this research underscores the important role that reducing anthropogenic pressures plays in enhancing resilience but also provides valuable insights for their strategic management.
Collapse
Affiliation(s)
- José A Sanabria-Fernández
- CRETUS - Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Natali Lazzari
- EqualSea Lab-CRETUS, University of Santiago de Compostela, Spain
| |
Collapse
|
2
|
Bathymetry Derivatives and Habitat Data from Hyperspectral Imagery Establish a High-Resolution Baseline for Managing the Ningaloo Reef, Western Australia. REMOTE SENSING 2022. [DOI: 10.3390/rs14081827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Ningaloo Reef, Australia’s longest fringing reef, is uniquely positioned in the NW region of the continent, with clear, oligotrophic waters, relatively low human impacts, and a high level of protection through the World Heritage Site and its marine park status. Non-invasive optical sensors, which seamlessly derive bathymetry and bottom reflectance, are ideally suited for mapping and monitoring shallow reefs such as Ningaloo. Using an existing airborne hyperspectral survey, we developed a new, geomorphic layer for the reef for depths down to 20 m, through an object-oriented classification that combines topography and benthic cover. We demonstrate the classification approach using three focus areas in the northern region of the Muiron Islands, the central part around Point Maud, and Gnaraloo Bay in the south. Topographic mapping combined aspect, slope, and depth into 18 classes and, unsurprisingly, allocated much of the area into shallow, flat lagoons, and highlighted narrow, deeper channels that facilitate water circulation. There were five distinct geomorphic classes of coral-algal mosaics in different topographic settings. Our classifications provide a useful baseline for stratifying ecological field surveys, designing monitoring programmes, and assessing reef resilience from current and future threats.
Collapse
|
3
|
Hunt TN, Allen SJ, Bejder L, Parra GJ. Identifying priority habitat for conservation and management of Australian humpback dolphins within a marine protected area. Sci Rep 2020; 10:14366. [PMID: 32873830 PMCID: PMC7463025 DOI: 10.1038/s41598-020-69863-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/29/2020] [Indexed: 11/27/2022] Open
Abstract
Increasing human activity along the coast has amplified the extinction risk of inshore delphinids. Informed selection and prioritisation of areas for the conservation of inshore delphinids requires a comprehensive understanding of their distribution and habitat use. In this study, we applied an ensemble species distribution modelling approach, combining results of six modelling algorithms to identify areas of high probability of occurrence of the globally Vulnerable Australian humpback dolphin in northern Ningaloo Marine Park (NMP), north-western Australia. Model outputs were based on sighting data collected during systematic, boat-based surveys between 2013 and 2015, and in relation to various ecogeographic variables. Water depth and distance to coast were identified as the most important variables influencing dolphin presence, with dolphins showing a preference for shallow waters (5-15 m) less than 2 km from the coast. Areas of high probability (> 0.6) of dolphin occurrence were primarily (90%) in multiple use areas where extractive human activities are permitted, and were poorly represented in sanctuary (no-take) zones. This spatial mismatch emphasises the need to reassess for future spatial planning and marine park management plan reviews for NMP. Shallow, coastal waters identified here should be considered priority areas for the conservation of this Vulnerable species.
Collapse
Affiliation(s)
- Tim N Hunt
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, Sturt Road, Adelaide, SA, 5042, Australia.
| | - Simon J Allen
- School of Biological Sciences, University of Western Australia, Stirling Highway, Perth, WA, 6109, Australia
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
- Department of Anthropology, University of Zurich, Rämistrasse 71, 8006, Zurich, Switzerland
| | - Lars Bejder
- Aquatic Megafauna Research Unit, Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, South Street, Perth, WA, 6150, Australia
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Manoa, HI, 96734, USA
| | - Guido J Parra
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, Sturt Road, Adelaide, SA, 5042, Australia
| |
Collapse
|
4
|
Wilson KL, Tittensor DP, Worm B, Lotze HK. Incorporating climate change adaptation into marine protected area planning. GLOBAL CHANGE BIOLOGY 2020; 26:3251-3267. [PMID: 32222010 DOI: 10.1111/gcb.15094] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change and synthesize case studies (n = 27) of how marine conservation planning can respond to shifting environmental conditions. First, we derive a generalized conservation planning framework based on five published frameworks that incorporate climate change adaptation to inform MPA design. We then summarize examples from the scientific literature to assess how conservation goals were defined, vulnerability assessments performed and adaptation strategies incorporated into the design and management of existing or new MPAs. Our analysis revealed that 82% of real-world examples of climate change adaptation in MPA planning derive from tropical reefs, highlighting the need for research in other ecosystems and habitat types. We found contrasting recommendations for adaptation strategies at the planning stage, either focusing only on climate refugia, or aiming for representative protection of areas encompassing the full range of expected climate change impacts. Recommendations for MPA management were more unified and focused on adaptative management approaches. Lastly, we evaluate common barriers to adopting climate change adaptation strategies based on reviewing studies which conducted interviews with MPA managers and other conservation practitioners. This highlights a lack of scientific studies evaluating different adaptation strategies and shortcomings in current governance structures as two major barriers, and we discuss how these could be overcome. Our review provides a comprehensive synthesis of planning frameworks, case studies, adaptation strategies and management actions which can inform a more coordinated global effort to adapt existing and future MPA networks to continued climate change.
Collapse
Affiliation(s)
- Kristen L Wilson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Derek P Tittensor
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- UN Environment World Conservation Monitoring Centre, Cambridge, UK
| | - Boris Worm
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Heike K Lotze
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Tittensor DP, Beger M, Boerder K, Boyce DG, Cavanagh RD, Cosandey-Godin A, Crespo GO, Dunn DC, Ghiffary W, Grant SM, Hannah L, Halpin PN, Harfoot M, Heaslip SG, Jeffery NW, Kingston N, Lotze HK, McGowan J, McLeod E, McOwen CJ, O’Leary BC, Schiller L, Stanley RRE, Westhead M, Wilson KL, Worm B. Integrating climate adaptation and biodiversity conservation in the global ocean. SCIENCE ADVANCES 2019; 5:eaay9969. [PMID: 31807711 PMCID: PMC6881166 DOI: 10.1126/sciadv.aay9969] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/01/2019] [Indexed: 05/18/2023]
Abstract
The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process. Climate-smart management objectives should become the default for all protected areas, and made into an explicit international policy target. Furthermore, incentives to use more dynamic management tools would increase the climate change responsiveness of the MPA network as a whole. Given ongoing negotiations on international conservation targets, now is the ideal time to proactively reform management of the global seascape for the dynamic climate-biodiversity reality.
Collapse
Affiliation(s)
- Derek P. Tittensor
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
- Corresponding author.
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Kristina Boerder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Daniel G. Boyce
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Guillermo Ortuño Crespo
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Daniel C. Dunn
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Australia
| | | | | | - Lee Hannah
- The Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Patrick N. Halpin
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Mike Harfoot
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Susan G. Heaslip
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Nicholas W. Jeffery
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Naomi Kingston
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Heike K. Lotze
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Chris J. McOwen
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Bethan C. O’Leary
- School of Environment and Life Sciences, University of Salford, Manchester, UK
- Department of Environment and Geography, University of York, York, UK
| | - Laurenne Schiller
- Marine Affairs Program, Dalhousie University, Halifax, NS, Canada
- Ocean Wise, Vancouver, BC, Canada
| | - Ryan R. E. Stanley
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Maxine Westhead
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | | | - Boris Worm
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Mcleod E, Anthony KRN, Mumby PJ, Maynard J, Beeden R, Graham NAJ, Heron SF, Hoegh-Guldberg O, Jupiter S, MacGowan P, Mangubhai S, Marshall N, Marshall PA, McClanahan TR, Mcleod K, Nyström M, Obura D, Parker B, Possingham HP, Salm RV, Tamelander J. The future of resilience-based management in coral reef ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:291-301. [PMID: 30583103 DOI: 10.1016/j.jenvman.2018.11.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/26/2018] [Accepted: 11/10/2018] [Indexed: 05/12/2023]
Abstract
Resilience underpins the sustainability of both ecological and social systems. Extensive loss of reef corals following recent mass bleaching events have challenged the notion that support of system resilience is a viable reef management strategy. While resilience-based management (RBM) cannot prevent the damaging effects of major disturbances, such as mass bleaching events, it can support natural processes that promote resistance and recovery. Here, we review the potential of RBM to help sustain coral reefs in the 21st century. We explore the scope for supporting resilience through existing management approaches and emerging technologies and discuss their opportunities and limitations in a changing climate. We argue that for RBM to be effective in a changing world, reef management strategies need to involve both existing and new interventions that together reduce stress, support the fitness of populations and species, and help people and economies to adapt to a highly altered ecosystem.
Collapse
Affiliation(s)
| | - Kenneth R N Anthony
- Australian Institute of Marine Science, PMB 3, Townsville, Qld, 4810, Australia; Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Jeffrey Maynard
- SymbioSeas and the Marine Applied Research Center, Wilmington, NC, 28411, United States
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority, Townsville, Qld, 4810, Australia
| | | | - Scott F Heron
- NOAA Coral Reef Watch, NESDIS Center for Satellite Applications and Research, College Park, MD, 20740, USA; ReefSense, Townsville, Qld 4814, Australia; Marine Geophysical Laboratory, Physics Department, College of Science, Technology and Engineering, James Cook University, Townsville, Qld, 4811, Australia
| | - Ove Hoegh-Guldberg
- Global Change Institute, University of Queensland, St Lucia, 4072, Qld, Australia
| | - Stacy Jupiter
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | | | | | - Nadine Marshall
- CSIRO Land and Water and College of Science and Engineering, James Cook University, Townsville, Q4811, Australia
| | - Paul A Marshall
- Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, Qld, 4072, Australia; Reef Ecologic, North Ward, Townsville, Qld, 4810, Australia
| | | | - Karen Mcleod
- COMPASS, Oregon State University, Department of Zoology, Corvallis, OR, USA
| | - Magnus Nyström
- Stockholm Resilience Centre, Stockholm University, Stockholm, SE, 10691, Sweden
| | - David Obura
- CORDIO East Africa, Mombasa, Kenya; Global Change Institute, University of Queensland, St Lucia, 4072, Qld, Australia
| | - Britt Parker
- NOAA NIDIS/Cooperative Institute for Research In Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Hugh P Possingham
- The Nature Conservancy, Arlington, VA, 22203, USA; The University of Queensland, Brisbane, 4072, Australia
| | | | | |
Collapse
|