1
|
Teotia V, Jha P, Chopra M. Discovery of Potential Inhibitors of CDK1 by Integrating Pharmacophore-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation Studies, and Evaluation of Their Inhibitory Activity. ACS OMEGA 2024; 9:39873-39892. [PMID: 39346877 PMCID: PMC11425824 DOI: 10.1021/acsomega.4c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
The ability of CDK1 to compensate for the absence of other cell cycle CDKs poses a great challenge to treat cancers that overexpress these proteins. Despite several studies focusing on the area, there are no FDA-approved drugs selectively targeting CDK1. Here, the study aimed to develop potential CDK1 selective inhibitors through drug repurposing and leveraging the structural insights provided by the hit molecules generated. Approximately 280,000 compounds from DrugBank, Selleckchem, Otava and an in-house library were screened initially based on fit values using 3D QSAR pharmacophores built for CDK1 and subsequently through Lipinski, ADMET, and TOPKAT filters. 10,310 hits were investigated for docking into the binding site of CDK1 determined using the crystal structure of human CDK1 in complex with NU6102. The best 55 hits with better docking scores were further analyzed, and 12 hits were selected for 100 ns MD simulations followed by binding energy calculations using the MM-PBSA method. Finally, 10 hit molecules were tested in an in vitro CDK1 Kinase inhibition assay. Out of these, 3 hits showed significant CDK1 inhibitory potential with IC50 < 5 μM. These results indicate these compounds can be used to develop subtype-selective CDK1 inhibitors with better efficacy and reduced toxicities in the future.
Collapse
Affiliation(s)
- Vineeta Teotia
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Prakash Jha
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Madhu Chopra
- Laboratory
of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R.
Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Chitre TS, Mandot AM, Bhagwat RD, Londhe ND, Suryawanshi AR, Hirode PV, Bhatambrekar AL, Choudhari SY. 2,4,6-Trimethoxy chalcone derivatives: an integrated study for redesigning novel chemical entities as anticancer agents through QSAR, molecular docking, ADMET prediction, and computational simulation. J Biomol Struct Dyn 2024:1-24. [PMID: 38321946 DOI: 10.1080/07391102.2024.2309644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
QSAR, an efficient and successful approach for optimizing lead compounds in drug design, was employed to study a reported series of compounds derived from 2,4,6-trimethoxy chalcone derivatives. The ability of these compounds to inhibit CDK1 was examined, with the help of QSARINS software for model development. The generated QSAR model revealed three significant descriptors, exhibiting strong correlations with impressive statistical values: cross-validation leave-one-out correlation coefficient (Q2LOO) = 0.6663, coefficient of determination (R2) = 0.7863, external validation coefficient (R2ext) = 0.7854, cross-validation leave-many-out correlation coefficient (Q2LMO) = 0.6256, Concordance Correlation Coefficient for cross-validation (CCCcv) = 0.8150, CCCtr = 0.8804, and CCCext = 0.8750. From the key structural findings and the insights gained from the descriptors, ETA_dPsi_A, WTPT-5, and GATS7s, new lead molecules were designed. The designed molecules were then evaluated for their CDK1 inhibitory activity using the three-descriptor model developed in this study. To evaluate their drug likeliness, in-silico ADMET predictions were made using Schrodinger's Software. Molecular docking was carried out to determine the interactions of designed compounds with the target protein. The designed compounds having excellent binding pocket molecular stability and anticancer effectiveness was substantiated by the findings of the molecular dynamics simulation. The results of this work point out important properties and crucial interactions necessary for efficient protein inhibition, suggesting lead candidates for further development as novel anticancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Trupti S Chitre
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Aayush M Mandot
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Ramali D Bhagwat
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Nikhil D Londhe
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Atharva R Suryawanshi
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Purvaj V Hirode
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Aniket L Bhatambrekar
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Somdutta Y Choudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
3
|
Sun M, Abdelwahab MF, Zhang J, Samy MN, Mohamed NM, Abdel-Rahman IM, Alsenani F, Abdelmohsen UR, Mahmoud BK. Cytotoxic metabolites from Sinularia levi supported by network pharmacology. PLoS One 2024; 19:e0294311. [PMID: 38319945 PMCID: PMC10846738 DOI: 10.1371/journal.pone.0294311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/29/2023] [Indexed: 02/08/2024] Open
Abstract
The in-vitro anti-proliferative evaluation of Sinularia levi total extract against three cell lines revealed its potent effect against Caco-2 cell line with IC50 3.3 μg/mL, followed by MCF-7 and HepG-2 with IC50 6.4 μg/mL and 8.5 μg/mL, respectively, in comparison to doxorubicin. Metabolic profiling of S. levi total extract using liquid chromatography coupled with high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS) revealed the presence of phytoconstituents clusters consisting mainly of steroids and terpenoids (1-20), together with five metabolites 21-25, which were additionally isolated and identified through the phytochemical investigation of S. levi total extract through various chromatographic and spectroscopic techniques. The isolated metabolites included one sesquiterpene, two steroids and two diterpenes, among which compounds prostantherol (21) and 12-hydroperoxylsarcoph-10-ene (25) were reported for the first time in Sinularia genus. The cytotoxic potential evaluation of the isolated compounds revealed variable cytotoxic effects against the three tested cell lines. Compound 25 was the most potent with IC50 value of 2.13 ± 0.09, 3.54 ± 0.07 and 5.67 ± 0.08 μg/mL against HepG-2, MCF-7 and Caco-2, respectively, followed by gorgosterol (23) and sarcophine (24). Additionally, network analysis showed that cyclin-dependent kinase 1 (CDK1) was encountered in the mechanism of action of the three cancer types. Molecular docking analysis revealed that CDK1 inhibition could possibly be the reason for the cytotoxic potential.
Collapse
Affiliation(s)
- Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mamdouh Nabil Samy
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Nada M. Mohamed
- Department of Pharmaceutical Chemistry, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Islam M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, Minia, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Basma Khalaf Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Rambaher MH, Zdovc I, Glavač NK, Gobec S, Frlan R. Mur ligase F as a new target for the flavonoids quercitrin, myricetin, and (-)-epicatechin. J Comput Aided Mol Des 2023; 37:721-733. [PMID: 37796382 PMCID: PMC10618370 DOI: 10.1007/s10822-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
MurC, D, E, and F are ATP-dependent ligases involved in the stepwise assembly of the tetrapeptide stem of forming peptidoglycan. As highly conserved targets found exclusively in bacterial cells, they are of significant interest for antibacterial drug discovery. In this study, we employed a computer-aided molecular design approach to identify potential inhibitors of MurF. A biochemical inhibition assay was conducted, screening twenty-four flavonoids and related compounds against MurC-F, resulting in the identification of quercitrin, myricetin, and (-)-epicatechin as MurF inhibitors with IC50 values of 143 µM, 139 µM, and 92 µM, respectively. Notably, (-)-epicatechin demonstrated mixed type inhibition with ATP and uncompetitive inhibition with D-Ala-D-Ala dipeptide and UM3DAP substrates. Furthermore, in silico analysis using Sitemap and subsequent docking analysis using Glide revealed two plausible binding sites for (-)-epicatechin. The study also investigated the crucial structural features required for activity, with a particular focus on the substitution pattern and hydroxyl group positions, which were found to be important for the activity. The study highlights the significance of computational approaches in targeting essential enzymes involved in bacterial peptidoglycan synthesis.
Collapse
Affiliation(s)
- Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Irena Zdovc
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Gerbičeva ul. 60, Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Rok Frlan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Ogbodo UC, Enejoh OA, Okonkwo CH, Gnanasekar P, Gachanja PW, Osata S, Atanda HC, Iwuchukwu EA, Achilonu I, Awe OI. Computational identification of potential inhibitors targeting cdk1 in colorectal cancer. Front Chem 2023; 11:1264808. [PMID: 38099190 PMCID: PMC10720044 DOI: 10.3389/fchem.2023.1264808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: Despite improved treatment options, colorectal cancer (CRC) remains a huge public health concern with a significant impact on affected individuals. Cell cycle dysregulation and overexpression of certain regulators and checkpoint activators are important recurring events in the progression of cancer. Cyclin-dependent kinase 1 (CDK1), a key regulator of the cell cycle component central to the uncontrolled proliferation of malignant cells, has been reportedly implicated in CRC. This study aimed to identify CDK1 inhibitors with potential for clinical drug research in CRC. Methods: Ten thousand (10,000) naturally occurring compounds were evaluated for their inhibitory efficacies against CDK1 through molecular docking studies. The stability of the lead compounds in complex with CDK1 was evaluated using molecular dynamics simulation for one thousand (1,000) nanoseconds. The top-scoring candidates' ADME characteristics and drug-likeness were profiled using SwissADME. Results: Four hit compounds, namely, spiraeoside, robinetin, 6-hydroxyluteolin, and quercetagetin were identified from molecular docking analysis to possess the least binding scores. Molecular dynamics simulation revealed that robinetin and 6-hydroxyluteolin complexes were stable within the binding pocket of the CDK1 protein. Discussion: The findings from this study provide insight into novel candidates with specific inhibitory CDK1 activities that can be further investigated through animal testing, clinical trials, and drug development research for CRC treatment.
Collapse
Affiliation(s)
| | - Ojochenemi A. Enejoh
- Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria
| | - Chinelo H. Okonkwo
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | | | - Pauline W. Gachanja
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Shamim Osata
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Halimat C. Atanda
- Biotechnology Department, Federal University of Technology, Akure, Nigeria
| | - Emmanuel A. Iwuchukwu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Olaitan I. Awe
- Department of Computer Science, University of Ibadan, Ibadan, Nigeria
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
6
|
Aguirre T, Dornan GL, Hostachy S, Neuenschwander M, Seyffarth C, Haucke V, Schütz A, von Kries JP, Fiedler D. An unconventional gatekeeper mutation sensitizes inositol hexakisphosphate kinases to an allosteric inhibitor. eLife 2023; 12:RP88982. [PMID: 37843983 PMCID: PMC10578927 DOI: 10.7554/elife.88982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.
Collapse
Affiliation(s)
- Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Carola Seyffarth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Anja Schütz
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
7
|
Sharma V, Gupta M. Designing of kinase hinge binders: A medicinal chemistry perspective. Chem Biol Drug Des 2022; 100:968-980. [PMID: 35112799 DOI: 10.1111/cbdd.14024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
Protein kinases are key regulators of cellular signaling and play a critical role in oncogenesis. Inhibitors of protein kinases are pursued by both industry and academia as a promising target for cancer therapy. Within the protein kinases, the ATP site has produced more than 40 FDA-approved drugs. The ATP site is broadly composed of a hinge region, gatekeeper residues, DFG-loop, ribose pocket, and other hydrophobic regions. The hinge region in the ATP site can be used for designing potent inhibitors. In this review, we discuss some representative studies that will highlight the interactions of heterocyclic compounds with hinge regions of different kinases like BRAF kinase, EGRF kinase, MAP kinase, and Mps1 kinase.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA.,GreenLight Biosciences, Woburn, MA, United States
| |
Collapse
|
8
|
“Malancha” [Alternanthera philoxeroides (Mart.) Griseb.]: A Potential Therapeutic Option against Viral Diseases. Biomolecules 2022; 12:biom12040582. [PMID: 35454170 PMCID: PMC9025398 DOI: 10.3390/biom12040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Alternanthera philoxeroides (Mart.) Griseb., commonly known as “Alligator weed” in English, and “Malancha” in Bengali, is a leafy vegetable from the family Amaranthaceae A. L. de Jussieu. This species is native to China, particularly to the provinces around the Yangtze River, other Far East and South-East Asian countries, and countries from other continents (e.g., South America). This plant also grows in certain areas in Australia, New Zealand, and the USA. While in Bangladesh the leaves of this plant are consumed as a vegetable, in China, this plant has been used widely as a traditional remedy for the treatment of various viral diseases (e.g., measles, influenza, and haemorrhagic fever). Flavonoids and saponins are the two largest groups of phytochemicals produced by this plant, and the antiviral property of this plant and its compounds has been studied extensively. This review article reviews all published literature on this plant and critically appraises its phytochemical profile linking to biomolecular interactions and therapeutic potential, particularly, against viral diseases.
Collapse
|
9
|
A New Oxadiazole-Based Topsentin Derivative Modulates Cyclin-Dependent Kinase 1 Expression and Exerts Cytotoxic Effects on Pancreatic Cancer Cells. Molecules 2021; 27:molecules27010019. [PMID: 35011251 PMCID: PMC8746667 DOI: 10.3390/molecules27010019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal form of cancer characterized by drug resistance, urging new therapeutic strategies. In recent years, protein kinases have emerged as promising pharmacological targets for the treatment of several solid and hematological tumors. Interestingly, cyclin-dependent kinase 1 (CDK1) is overexpressed in PDAC tissues and has been correlated to the aggressive nature of these tumors because of its key role in cell cycle progression and resistance to the induction of apoptosis. For these reasons, CDK1 is one of the main causes of chemoresistance, representing a promising pharmacological target. In this study, we report the synthesis of new 1,2,4-oxadiazole compounds and evaluate their ability to inhibit the cell growth of PATU-T, Hs766T, and HPAF-II cell lines and a primary PDAC cell culture (PDAC3). Compound 6b was the most active compound, with IC50 values ranging from 5.7 to 10.7 µM. Molecular docking of 6b into the active site of CDK1 showed the ability of the compound to interact effectively with the adenosine triphosphate binding pocket. Therefore, we assessed its ability to induce apoptosis (which increased 1.5- and 2-fold in PATU-T and PDAC3 cells, respectively) and to inhibit CDK1 expression, which was reduced to 45% in Hs766T. Lastly, compound 6b passed the ADME prediction, showing good pharmacokinetic parameters. These data demonstrate that 6b displays cytotoxic activity, induces apoptosis, and targets CDK1, supporting further studies for the development of similar compounds against PDAC.
Collapse
|
10
|
Balupuri A, Balasubramanian PK, Cho SJ. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
11
|
Velázquez-Libera JL, Rossino G, Navarro-Retamal C, Collina S, Caballero J. Docking, Interaction Fingerprint, and Three-Dimensional Quantitative Structure-Activity Relationship (3D-QSAR) of Sigma1 Receptor Ligands, Analogs of the Neuroprotective Agent RC-33. Front Chem 2019; 7:496. [PMID: 31355187 PMCID: PMC6637851 DOI: 10.3389/fchem.2019.00496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 01/25/2023] Open
Abstract
The human Sigma1 receptor (S1R), which has been identified as a target with an important role in neuropsychological disorders, was first crystallized 3 years ago. Since S1R structure has no relation with another previous crystallized structures, the presence of the new crystal is an important hallmark for the design of agonists and antagonists against this important target. Some years ago, our group identified RC-33, a potent and selective S1R agonist, endowed with neuroprotective properties. In this work, drawing on new structural information, we studied the interactions of RC-33 and its analogs with the S1R binding site by using computational methods such as docking, interaction fingerprints, and receptor-guided alignment three dimensional quantitative structure–activity relationship (3D-QSAR). We found that RC-33 and its analogs adopted similar orientations within S1R binding site, with high similitude with orientations of the crystallized ligands; such information was used for identifying the residues involved in chemical interactions with ligands. Furthermore, the structure-activity relationship of the studied ligands was adequately described considering classical QSAR tests. All relevant aspects of the interactions between the studied compounds and S1R were covered here, through descriptions of orientations, binding interactions, and features that influence differential affinities. In this sense, the present results could be useful in the future design of novel S1R modulators.
Collapse
Affiliation(s)
- José Luis Velázquez-Libera
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Giacomo Rossino
- Pharmaceutical and Medicinal Chemistry Section, Drug Sciences Department, Università di Pavia, Pavia, Italy
| | - Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Simona Collina
- Pharmaceutical and Medicinal Chemistry Section, Drug Sciences Department, Università di Pavia, Pavia, Italy
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
12
|
Gu C, Stashko MA, Puhl-Rubio AC, Chakraborty M, Chakraborty A, Frye SV, Pearce KH, Wang X, Shears SB, Wang H. Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis. J Med Chem 2019; 62:1443-1454. [PMID: 30624931 DOI: 10.1021/acs.jmedchem.8b01593] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary flavonoids inhibit certain protein kinases and phospholipid kinases by competing for their ATP-binding sites. These nucleotide pockets have structural elements that are well-conserved in two human small-molecule kinases, inositol hexakisphosphate kinase (IP6K) and inositol polyphosphate multikinase (IPMK), which synthesize multifunctional inositol phosphate cell signals. Herein, we demonstrate that both kinases are inhibited by quercetin and 16 related flavonoids; IP6K is the preferred target. Relative inhibitory activities were rationalized by X-ray analysis of kinase/flavonoid crystal structures; this detailed structure-activity analysis revealed hydrophobic and polar ligand/protein interactions, the degree of flexibility of key amino acid side chains, and the importance of water molecules. The seven most potent IP6K inhibitors were incubated with intact HCT116 cells at concentrations of 2.5 μM; diosmetin was the most selective and effective IP6K inhibitor (>70% reduction in activity). Our data can instruct on pharmacophore properties to assist the future development of inositol phosphate kinase inhibitors. Finally, we propose that dietary flavonoids may inhibit IP6K activity in cells that line the gastrointestinal tract.
Collapse
Affiliation(s)
- Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Michael A Stashko
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ana C Puhl-Rubio
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Molee Chakraborty
- Department of Pharmacology and Physiology , Saint Louis University School of Medicine , M370, Schwitalla Hall, 1402 South Grand Boulevard , Saint Louis , Missouri 63104 , United States
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology , Saint Louis University School of Medicine , M370, Schwitalla Hall, 1402 South Grand Boulevard , Saint Louis , Missouri 63104 , United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
13
|
Shears SB, Wang H. Inositol phosphate kinases: Expanding the biological significance of the universal core of the protein kinase fold. Adv Biol Regul 2019; 71:118-127. [PMID: 30392847 PMCID: PMC9364425 DOI: 10.1016/j.jbior.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 05/06/2023]
Abstract
The protein kinase family is characterized by substantial conservation of architectural elements that are required for both ATP binding and phosphotransferase activity. Many of these structural features have also been identified in homologous enzymes that phosphorylate a variety of alternative, non-protein substrates. A comparative structural analysis of these different kinase sub-classes is a portal to a greater understanding of reaction mechanisms, enzyme regulation, inhibitor-development strategies, and superfamily-level evolutionary relationships. To serve such advances, we review structural elements of the protein kinase fold that are conserved in the subfamily of inositol phosphate kinases (InsPKs) that share a PxxxDxKxG catalytic signature: inositol 1,4,5-trisphosphate kinase (IP3K), inositol hexakisphosphate kinase (IP6K), and inositol polyphosphate multikinase (IPMK). We describe conservation of the fundamental two-lobe kinase architecture: an N-lobe constructed upon an anti-parallel β-strand scaffold, which is coupled to a largely helical C-lobe by a single, adenine-binding hinge. This equivalency also includes a G-loop that embraces the β/γ-phosphates of ATP, a transition-state stabilizing residue (Lys/His), and a Mg-positioning aspartate residue within a catalytic triad. Furthermore, we expand this list of conserved structural features to include some not previously identified in InsPKs: a 'gatekeeper' residue in the N-lobe, and an 'αF'-like helix in the C-lobe that anchors two structurally-stabilizing, hydrophobic spines, formed from non-consecutive residues that span the two lobes. We describe how this wide-ranging structural homology can be exploited to develop lead inhibitors of IP6K and IPMK, by using strategies similar to those that have generated ATP-competing inhibitors of protein-kinases. We provide several examples to illustrate how such an approach could benefit human health.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
14
|
Caballero J, Morales-Bayuelo A, Navarro-Retamal C. Mycobacterium tuberculosis serine/threonine protein kinases: structural information for the design of their specific ATP-competitive inhibitors. J Comput Aided Mol Des 2018; 32:1315-1336. [PMID: 30367309 DOI: 10.1007/s10822-018-0173-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/20/2018] [Indexed: 12/17/2022]
Abstract
In the last decades, human protein kinases (PKs) have been relevant as targets in the development of novel therapies against many diseases, but the study of Mycobacterium tuberculosis PKs (MTPKs) involved in tuberculosis pathogenesis began much later and has not yet reached an advanced stage of development. To increase knowledge of these enzymes, in this work we studied the structural features of MTPKs, with focus on their ATP-binding sites and their interactions with inhibitors. PknA, PknB, and PknG are the most studied MTPKs, which were previously crystallized; ATP-competitive inhibitors have been designed against them in the last decade. In the current work, reported PknA, PknB, and PknG inhibitors were extracted from literature and their orientations inside the ATP-binding site were proposed by using docking method. With this information, interaction fingerprints were elaborated, which reveal the more relevant residues for establishing chemical interactions with inhibitors. The non-crystallized MTPKs PknD, PknF, PknH, PknJ, PknK, and PknL were also studied; their three-dimensional structural models were developed by using homology modeling. The main characteristics of MTPK ATP-binding sites (the non-crystallized and crystallized MTPKs, including PknE and PknI) were accounted; schemes of the main polar and nonpolar groups inside their ATP-binding sites were constructed, which are suitable for a major understanding of these proteins as antituberculotic targets. These schemes could be used for establishing comparisons between MTPKs and human PKs in order to increase selectivity of MTPK inhibitors. As a key tool for guiding medicinal chemists interested in the design of novel MTPK inhibitors, our work provides a map of the structural elements relevant for the design of more selective ATP-competitive MTPK inhibitors.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile.
| | - Alejandro Morales-Bayuelo
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| |
Collapse
|
15
|
Hao PY, Feng YL, Zhou YS, Song XM, Li HL, Ma Y, Ye CL, Yu XP. Schaftoside Interacts With NlCDK1 Protein: A Mechanism of Rice Resistance to Brown Planthopper, Nilaparvata lugens. FRONTIERS IN PLANT SCIENCE 2018; 9:710. [PMID: 29896209 PMCID: PMC5986872 DOI: 10.3389/fpls.2018.00710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/09/2018] [Indexed: 05/10/2023]
Abstract
Brown planthopper (BPH) Nilaparvata lugens Stål is a serious insect pest of rice in Asian countries. Active compounds have close relationship with rice resistance against BPH. In this study, HPLC, MS/MS, and NMR techniques were used to identify active compounds in total flavonoids of rice. As a result, a BPH resistance-associated compound, Peak 1 in HPLC chromatogram of rice flavonoids, was isolated and identified as schaftoside. Feeding experiment with artificial diet indicated that schaftoside played its role in a dose dependent manner, under the concentration of 0.10 and 0.15 mg mL-1, schaftoside showed a significant inhibitory effect on BPH survival (p < 0.05), in comparison with the control. The fluorescent spectra showed that schaftoside has a strong ability to bind with NlCDK1, a CDK1 kinase of BPH. The apparent association constant KA for NlCDK1 binding with schaftoside is 6.436 × 103 L/mol. Docking model suggested that binding of schaftoside might affect the activation of NlCDK1 as a protein kinase, mainly through interacting with amino acid residues Glu12, Thr14 and Val17 in the ATP binding element GXGXXGXV (Gly11 to Val18). Western blot using anti-phospho-CDK1 (pThr14) antibody confirmed that schaftoside treatment suppressed the phosphorylation on Thr-14 site of NlCDK1, thus inhibited its activation as a kinase. Therefore, this study revealed the schaftoside-NlCDK1 interaction mode, and unraveled a novel mechanism of rice resistance against BPH.
Collapse
|
16
|
Muñoz-Gutiérrez C, Cáceres-Rojas D, Adasme-Carreño F, Palomo I, Fuentes E, Caballero J. Docking and quantitative structure-activity relationship of bi-cyclic heteroaromatic pyridazinone and pyrazolone derivatives as phosphodiesterase 3A (PDE3A) inhibitors. PLoS One 2017; 12:e0189213. [PMID: 29216268 PMCID: PMC5720733 DOI: 10.1371/journal.pone.0189213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
PDE3s belong to the phosphodiesterases family, where the PDE3A isoform is the major subtype in platelets involved in the cAMP regulation pathway of platelet aggregation. PDE3A inhibitors have been designed as potential antiplatelet agents. In this work, a homology model of PDE3A was developed and used to obtain the binding modes of bicyclic heteroaromatic pyridazinones and pyrazolones. Most of the studied compounds adopted similar orientations within the PDE3A active site, establishing hydrogen bonds with catalytic amino acids. Besides, the structure-activity relationship of the studied inhibitors was described by using a field-based 3D-QSAR method. Different structure alignment strategies were employed, including template-based and docking-based alignments. Adequate correlation models were obtained according to internal and external validations. In general, QSAR models revealed that steric and hydrophobic fields describe the different inhibitory activities of the compounds, where the hydrogen bond donor and acceptor fields have minor contributions. It should be stressed that structural elements of PDE3A inhibitors are reported here, through descriptions of their binding interactions and their differential affinities. In this sense, the present results could be useful in the future design of more specific and potent PDE3A inhibitors that may be used for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Camila Muñoz-Gutiérrez
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Daniela Cáceres-Rojas
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | | | - Iván Palomo
- Platelet Research Laboratory, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Platelet Research Laboratory, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
- Núcleo Científico Multidisciplinario, Universidad de Talca, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
- * E-mail:
| |
Collapse
|