1
|
Novak A, Pennings JLA, van der Maas L, Meiring HD, Ludwig I, Verkoeijen S, Rutten V, Broere F, Sloots A. Transcriptome and proteome analysis of innate immune responses to inactivated Leptospira and bivalent Leptospira vaccines in canine 030-D cells. Sci Rep 2022; 12:13418. [PMID: 35927283 PMCID: PMC9352656 DOI: 10.1038/s41598-022-16457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Mandatory potency testing of Leptospira vaccine batches relies partially on in vivo procedures, requiring large numbers of laboratory animals. Cell-based assays could replace in vivo tests for vaccine quality control if biomarkers indicative of Leptospira vaccine potency are identified. We investigated innate immune responsiveness induced by inactivated L. interrogans serogroups Canicola and Icterohaemorrhagiae, and two bivalent, non-adjuvanted canine Leptospira vaccines containing the same serogroups. First, the transcriptome and proteome analysis of a canine monocyte/macrophage 030-D cell line stimulated with Leptospira strains, and vaccine B revealed more than 900 DEGs and 23 DEPs in common to these three stimuli. Second, comparison of responses induced by vaccine B and vaccine D revealed a large overlap in DEGs and DEPs as well, suggesting potential to identify biomarkers indicative of Leptospira vaccine quality. Because not many common DEPs were identified, we selected seven molecules from the identified DEGs, associated with pathways related to innate immunity, of which CXCL-10, IL-1β, SAA, and complement C3 showed increased secretion upon stimulation with both Leptospira vaccines. These molecules could be interesting targets for development of biomarker-based assays for Leptospira vaccine quality control in the future. Additionally, this study contributes to the understanding of the mechanisms by which Leptospira vaccines induce innate immune responses in the dog.
Collapse
Affiliation(s)
- Andreja Novak
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Intravacc, Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | - Irene Ludwig
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saertje Verkoeijen
- Research Centre Healthy and Sustainable Living, Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Victor Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Internal Medicine of Companion Animals, Department of Clinical Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
2
|
van den Biggelaar RHGA, Hoefnagel MHN, Vandebriel RJ, Sloots A, Hendriksen CFM, van Eden W, Rutten VPMG, Jansen CA. Overcoming scientific barriers in the transition from in vivo to non-animal batch testing of human and veterinary vaccines. Expert Rev Vaccines 2021; 20:1221-1233. [PMID: 34550041 DOI: 10.1080/14760584.2021.1977628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Before release, vaccine batches are assessed for quality to evaluate whether they meet the product specifications. Vaccine batch tests, in particular of inactivated and toxoid vaccines, still largely rely on in vivo methods. Improved vaccine production processes, ethical concerns, and suboptimal performance of some in vivo tests have led to the development of in vitro alternatives. AREAS COVERED This review describes the scientific constraints that need to be overcome for replacement of in vivo batch tests, as well as potential solutions. Topics include the critical quality attributes of vaccines that require testing, the use of cell-based assays to mimic aspects of in vivo vaccine-induced immune responses, how difficulties with testing adjuvanted vaccines in vitro can be overcome, the use of altered batches to validate new in vitro test methods, and how cooperation between different stakeholders is key to moving the transition forward. EXPERT OPINION For safety testing, many in vitro alternatives are already available or at an advanced level of development. For potency testing, in vitro alternatives largely comprise immunochemical methods that assess several, but not all critical vaccine properties. One-to-one replacement by in vitro alternatives is not always possible and a combination of methods may be required.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arjen Sloots
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | | | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
van den Biggelaar RHGA, van der Maas L, Meiring HD, Pennings JLA, van Eden W, Rutten VPMG, Jansen CA. Proteomic analysis of chicken bone marrow-derived dendritic cells in response to an inactivated IBV + NDV poultry vaccine. Sci Rep 2021; 11:12666. [PMID: 34135356 PMCID: PMC8209092 DOI: 10.1038/s41598-021-89810-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Inactivated poultry vaccines are subject to routine potency testing for batch release, requiring large numbers of animals. The replacement of in vivo tests for cell-based alternatives can be facilitated by the identification of biomarkers for vaccine-induced immune responses. In this study, chicken bone marrow-derived dendritic cells were stimulated with an inactivated vaccine for infectious bronchitis virus and Newcastle disease virus, as well as inactivated infectious bronchitis virus only, and lipopolysaccharides as positive control, or left unstimulated for comparison with the stimulated samples. Next, the cells were lysed and subjected to proteomic analysis. Stimulation with the vaccine resulted in 66 differentially expressed proteins associated with mRNA translation, immune responses, lipid metabolism and the proteasome. For the eight most significantly upregulated proteins, mRNA expression levels were assessed. Markers that showed increased expression at both mRNA and protein levels included PLIN2 and PSMB1. Stimulation with infectious bronchitis virus only resulted in 25 differentially expressed proteins, which were mostly proteins containing Src homology 2 domains. Stimulation with lipopolysaccharides resulted in 118 differentially expressed proteins associated with dendritic cell maturation and antimicrobial activity. This study provides leads to a better understanding of the activation of dendritic cells by an inactivated poultry vaccine, and identified PLIN2 and PSMB1 as potential biomarkers for cell-based potency testing.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Hugo D Meiring
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|