1
|
Webster LJ, Villa-Gomez D, Brown R, Clarke W, Schenk PM. A synthetic biology approach for the treatment of pollutants with microalgae. Front Bioeng Biotechnol 2024; 12:1379301. [PMID: 38646010 PMCID: PMC11032018 DOI: 10.3389/fbioe.2024.1379301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
The increase in global population and industrial development has led to a significant release of organic and inorganic pollutants into water streams, threatening human health and ecosystems. Microalgae, encompassing eukaryotic protists and prokaryotic cyanobacteria, have emerged as a sustainable and cost-effective solution for removing these pollutants and mitigating carbon emissions. Various microalgae species, such as C. vulgaris, P. tricornutum, N. oceanica, A. platensis, and C. reinhardtii, have demonstrated their ability to eliminate heavy metals, salinity, plastics, and pesticides. Synthetic biology holds the potential to enhance microalgae-based technologies by broadening the scope of treatment targets and improving pollutant removal rates. This review provides an overview of the recent advances in the synthetic biology of microalgae, focusing on genetic engineering tools to facilitate the removal of inorganic (heavy metals and salinity) and organic (pesticides and plastics) compounds. The development of these tools is crucial for enhancing pollutant removal mechanisms through gene expression manipulation, DNA introduction into cells, and the generation of mutants with altered phenotypes. Additionally, the review discusses the principles of synthetic biology tools, emphasizing the significance of genetic engineering in targeting specific metabolic pathways and creating phenotypic changes. It also explores the use of precise engineering tools, such as CRISPR/Cas9 and TALENs, to adapt genetic engineering to various microalgae species. The review concludes that there is much potential for synthetic biology based approaches for pollutant removal using microalgae, but there is a need for expansion of the tools involved, including the development of universal cloning toolkits for the efficient and rapid assembly of mutants and transgenic expression strains, and the need for adaptation of genetic engineering tools to a wider range of microalgae species.
Collapse
Affiliation(s)
- Luke J. Webster
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Denys Villa-Gomez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Reuben Brown
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - William Clarke
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
- Algae Biotechnology, Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Nievergelt AP, Diener DR, Bogdanova A, Brown T, Pigino G. Efficient precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas. CELL REPORTS METHODS 2023; 3:100562. [PMID: 37671018 PMCID: PMC10475843 DOI: 10.1016/j.crmeth.2023.100562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
CRISPR-Cas genome engineering in the unicellular green algal model Chlamydomonas reinhardtii has until now been primarily applied to targeted gene disruption, whereas scarless knockin transgenesis has generally been considered difficult in practice. We have developed an efficient homology-directed method for knockin mutagenesis in Chlamydomonas by delivering CRISPR-Cas ribonucleoproteins and a linear double-stranded DNA (dsDNA) donor into cells by electroporation. Our method allows scarless integration of fusion tags and sequence modifications of proteins without the need for a preceding mutant line. We also present methods for high-throughput crossing of transformants and a custom quantitative PCR (qPCR)-based high-throughput screening of mutants as well as meiotic progeny. We demonstrate how to use this pipeline to facilitate the generation of mutant lines without residual selectable markers by co-targeted insertion. Finally, we describe how insertional cassettes can be erroneously mutated during insertion and suggest strategies to select for lines that are modified as designed.
Collapse
Affiliation(s)
- Adrian Pascal Nievergelt
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Dennis Ray Diener
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Gaia Pigino
- Human Technopole, V.le Rita Levi-Montalcini, 1, 20017 Milan, Italy
| |
Collapse
|
3
|
Dan J, Deng H, Xia Y, Zhan Y, Tang N, Wang Y, Cao M. Application of the FLP/LoxP-FRT recombination system to switch the eGFP expression in a model prokaryote. Open Life Sci 2022; 17:172-179. [PMID: 35350449 PMCID: PMC8919825 DOI: 10.1515/biol-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
In prokaryotes, few studies have applied the flippase (FLP)/P1-flippase recombination target (LoxP-FRT) recombination system to switch gene expression. This study developed a new method for switching gene expression by constructing an FLP/LoxP-FRT site-specific recombination system in Escherichia coli. To this end, we placed the Nos terminator flanked by a pair of LoxP-FRT in front of enhanced green fluorescent protein (eGFP). The Nos terminator was used to block the expression of the eGFP. When a plasmid expressing FLP was available, deletion of the Nos terminator would allow expression of eGFP. The regulatory effect was demonstrated by eGFP expression. The efficiency of the gene switch was calculated as high as 89.67%. The results showed that the FLP/LoxP-FRT recombinase system could be used as a gene switch to regulate gene expression in prokaryotes. This new method for switching gene expression could simplify the gene function analysis in E. coli and other prokaryotes, as well as eukaryotes.
Collapse
Affiliation(s)
- Junhao Dan
- Longping Branch of Graduate School, Hunan University , No. 2 Lushan South Road, Yuelu District , Changsha , Hunan Province 410082 , People’s Republic of China
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center , No. 736 Yuanda Road, Furong District , Changsha , Hunan Province 410125 , People’s Republic of China
| | - Yumei Xia
- Longping Branch of Graduate School, Hunan University , No. 2 Lushan South Road, Yuelu District , Changsha , Hunan Province 410082 , People’s Republic of China
| | - Yijie Zhan
- Longping Branch of Graduate School, Hunan University , No. 2 Lushan South Road, Yuelu District , Changsha , Hunan Province 410082 , People’s Republic of China
| | - Ning Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center , No. 736 Yuanda Road, Furong District , Changsha , Hunan Province 410125 , People’s Republic of China
| | - Yao Wang
- Longping Branch of Graduate School, Hunan University , No. 2 Lushan South Road, Yuelu District , Changsha , Hunan Province 410082 , People’s Republic of China
| | - Mengliang Cao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center , No. 736 Yuanda Road, Furong District , Changsha , Hunan Province 410125 , People’s Republic of China
| |
Collapse
|
4
|
TECHNOLOGIES OF GENETIC MATERIAL USE RESTRICTION: TYPES, MOLECULAR-GENETIC BASE AND ETHICAL ANALYSIS OF THEIR APPLICATION. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to save money, some farms use the seed obtained in the process of cultivation not only for sale, but also for sowing, which has not found supporters among companies engaged in the production of genetically modified seed. To protect their rights, the latter have created technologies to limit the use of genetic material, which are intended to be used for protection the intellectual rights to reproduce plants with a changed genotype. However, these technologies contain also a commercial component and violate a number of moral principles and international acts. Aim. To describe the types of terminator technologies, their genetic and molecular basis and purpose. To assess a correspondence of their compliance with the international documents and norms. Method. Terminator technologies types, genetic bases and application and their analysis from the standpoint of international norms were studied. To achieve the goal, the methods of fact analysis, comparison and generalization were used. Results. There are two types of terminator technologies (variety- and trait-specific), which are based on the interaction of three genes, which leads to the implementation of certain phenotypic manifestations. It was found that the technologies for limiting the use of genetic material are both contradictory and consistent with a number of international legal acts, which did not make it possible to determine clearly the appropriateness of their use in agriculture. Conclusions. Terminator technologies application is still a controversial fact since they are based on the duality principle: to carry simultaneously a positive and a negative manifestation for people.
Collapse
|
5
|
Zheng Y, Chen L, Zhu Z, Li D, Zhou P. Multigene engineering of medium-chain fatty acid biosynthesis in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. 3 Biotech 2020; 10:340. [PMID: 32714735 DOI: 10.1007/s13205-020-02340-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) are an ideal feedstock for biodiesel and a range of oleochemical products. In this study, different combinations of CnFATB3, CnLPAAT-B and CnKASI from coconut (Cocos nucifera L.) were coexpressed in transgenic Arabidopsis thaliana by a Cre/LoxP multigene expression system. Transgenic lines expressing different combinations of these genes were designated FL (FatB3 + LPAAT-B), FK (FatB3 + KASI) and FLK (FatB3 + LPAAT-B + KASI). The homozygous seeds of transgenic Arabidopsis thaliana expressing high levels of these genes were screened, and their fatty acid composition and lipid contents were determined. Compared with its content in wild-type A. thaliana, the lauric acid (C12:0) content was significantly increased by at least 395%, 134% and 124% in FLK, FL and FK seeds, respectively. Meanwhile, the myristic acid (C14:0) content was significantly increased by at least 383%, 106% and 102% in FL, FLK and FK seeds, respectively, compared to its level in wild-type seeds. Therefore, the FLK plants exhibited the best effects to increase the level of C12:0, and FL expressed the optimal combination of genes to increase the level of 14:0 MCFA.
Collapse
Affiliation(s)
- Yusheng Zheng
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Lizhi Chen
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Zhiyong Zhu
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Dongdong Li
- College of Tropical Crops, Hainan University, Hainan, 570228 Hainan China
| | - Peng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
6
|
Diao J, Song X, Guo T, Wang F, Chen L, Zhang W. Cellular engineering strategies toward sustainable omega-3 long chain polyunsaturated fatty acids production: State of the art and perspectives. Biotechnol Adv 2020; 40:107497. [DOI: 10.1016/j.biotechadv.2019.107497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
|
7
|
Esland L, Larrea-Alvarez M, Purton S. Selectable Markers and Reporter Genes for Engineering the Chloroplast of Chlamydomonas reinhardtii. BIOLOGY 2018; 7:E46. [PMID: 30309004 PMCID: PMC6315944 DOI: 10.3390/biology7040046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Chlamydomonas reinhardtii is a model alga of increasing interest as a cell factory for the production of valuable compounds, including therapeutic proteins and bioactive metabolites. Expression of foreign genes in the chloroplast is particularly advantageous as: (i) accumulation of product in this sub-cellular compartment minimises potential toxicity to the rest of the cell; (ii) genes can integrate at specific loci of the chloroplast genome (plastome) by homologous recombination; (iii) the high ploidy of the plastome and the high-level expression of chloroplast genes can be exploited to achieve levels of recombinant protein as high as 5% total cell protein; (iv) the lack of any gene silencing mechanisms in the chloroplast ensures stable expression of transgenes. However, the generation of C. reinhardtii chloroplast transformants requires efficient methods of selection, and ideally methods for subsequent marker removal. Additionally, the use of reporter genes is critical to achieving a comprehensive understanding of gene expression, thereby informing experimental design for recombinant applications. This review discusses currently available selection and reporter systems for chloroplast engineering in C. reinhardtii, as well as those used for chloroplast engineering in higher plants and other microalgae, and looks to the future in terms of possible new markers and reporters that will further advance the C. reinhardtii chloroplast as an expression platform.
Collapse
Affiliation(s)
- Lola Esland
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Marco Larrea-Alvarez
- School of Biological Sciences and Engineering, Yachay-Tech University, Hacienda San José, Urcuquí-Imbabura 100650, Ecuador.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Metabolic engineering using iterative self-cloning to improve lipid productivity in Coccomyxa. Sci Rep 2018; 8:11742. [PMID: 30082815 PMCID: PMC6078956 DOI: 10.1038/s41598-018-30254-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
We previously developed a self-cloning system that introduces cDNA of the uridine monophosphate synthase gene (cUMPS) of Coccomyxa sp. strain Obi as a selectable marker into uracil-auxotrophic mutants (Ura−) of the same alga. Here, we developed a Cre/loxP-based system for the removal of cUMPS flanked by directly repeated loxP sites from the Coccomyxa genome using the intracellular delivery of purified Cre recombinase to generate an Ura− strain that was used as a host for second-round transformation using cUMPS as the selection marker. Employing this marker–gene-recycling system, Coccomyxa strains devoid of foreign DNA except the 34-bp loxP sequence, which overexpressed an acyl-(acyl-carrier-protein) thioesterase gene, and a type-2 diacylglycerol acyltransferase gene, were constructed by the sequential introduction of two expression cassettes for the respective genes. One of the resulting strains showed 1.4-fold higher lipid productivity than the wild-type strain. This method will be applicable to other eukaryotic microalgae to create marker-free transgenic strains.
Collapse
|
9
|
Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies. Proc Natl Acad Sci U S A 2018; 115:E7015-E7022. [PMID: 29987047 PMCID: PMC6065045 DOI: 10.1073/pnas.1718193115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stacking traits in microalgae is limited by a lack of robust genome modification tools and selectable marker availability. This presents a key hurdle in developing strains for renewable products including biofuels. Here, we overcome these limitations by combining inducible Cre recombinase with constitutive Cas9 nuclease expression in the industrial strain, Nannochloropsis gaditana. With this system, we demonstrate marker- and reporter-free recapitulation of an important lipid productivity trait. In addition, we generate a strain harboring seven-gene knockouts within the photosystem antennae encoding genes. The combined use of relatively mature (Cre) and emerging (CAS9) genome modification technologies can thus accelerate the pace of industrial strain development and facilitate basic research into functionally redundant gene families. Robust molecular tool kits in model and industrial microalgae are key to efficient targeted manipulation of endogenous and foreign genes in the nuclear genome for basic research and, as importantly, for the development of algal strains to produce renewable products such as biofuels. While Cas9-mediated gene knockout has been demonstrated in a small number of algal species with varying efficiency, the ability to stack traits or generate knockout mutations in two or more loci are often severely limited by selectable agent availability. This poses a critical hurdle in developing production strains, which require stacking of multiple traits, or in probing functionally redundant gene families. Here, we combine Cas9 genome editing with an inducible Cre recombinase in the industrial alga Nannochloropsis gaditana to generate a strain, NgCas9+Cre+, in which the potentially unlimited stacking of knockouts and addition of new genes is readily achievable. Cre-mediated marker recycling is first demonstrated in the removal of the selectable marker and GFP reporter transgenes associated with the Cas9/Cre construct in NgCas9+Cre+. Next, we show the proof-of-concept generation of a markerless knockout in a gene encoding an acyl-CoA oxidase (Aco1), as well as the markerless recapitulation of a 2-kb insert in the ZnCys gene 5′-UTR, which results in a doubling of wild-type lipid productivity. Finally, through an industrially oriented process, we generate mutants that exhibit up to ∼50% reduction in photosynthetic antennae size by markerless knockout of seven genes in the large light-harvesting complex gene family.
Collapse
|