1
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
2
|
Daneshvar N, Tatsumi R, Peeler J, Anderson JE. Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 2020; 319:C116-C128. [PMID: 32374678 DOI: 10.1152/ajpcell.00121.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker γ-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Graduate School of Animal Sciences, Kyushu University, Fukoka, Japan
| | - Jason Peeler
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
A focused review of myokines as a potential contributor to muscle hypertrophy from resistance-based exercise. Eur J Appl Physiol 2020; 120:941-959. [PMID: 32144492 DOI: 10.1007/s00421-020-04337-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Resistance exercise induces muscle growth and is an important treatment for age-related losses in muscle mass and strength. Myokines are hypothesized as a signal conveying physiological information to skeletal muscle, possibly to "fine-tune" other regulatory pathways. While myokines are released from skeletal muscle following contraction, their role in increasing muscle mass and strength in response to resistance exercise or training is not established. Recent research identified both local and systemic release of myokines after an acute bout of resistance exercise. However, it is not known whether myokines with putative anabolic function are mechanistically involved in producing muscle hypertrophy after resistance exercise. Further, nitric oxide (NO), an important mediator of muscle stem cell activation, upregulates the expression of certain myokine genes in skeletal muscle. METHOD In the systemic context of complex hypertrophic signaling, this review: (1) summarizes literature on several well-recognized, representative myokines with anabolic potential; (2) explores the potential mechanistic role of myokines in skeletal muscle hypertrophy; and (3) identifies future research required to advance our understanding of myokine anabolism specifically in skeletal muscle. RESULT This review establishes a link between myokines and NO production, and emphasizes the importance of considering systemic release of potential anabolic myokines during resistance exercise as complementary to other signals that promote hypertrophy. CONCLUSION Investigating adaptations to resistance exercise in aging opens a novel avenue of interdisciplinary research into myokines and NO metabolites during resistance exercise, with the longer-term goal to improve muscle health in daily living, aging, and rehabilitation.
Collapse
|
4
|
Cui W, Liu CX, Wang J, Zhang YC, Shen Q, Feng ZH, Wu J, Li JX. An oleanolic acid derivative reduces denervation-induced muscle atrophy via activation of CNTF-mediated JAK2/STAT3 signaling pathway. Eur J Pharmacol 2019; 861:172612. [PMID: 31421088 DOI: 10.1016/j.ejphar.2019.172612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Denervation caused by sciatic nerve injury has brought great harm to the patients, especially denervation-induced muscle atrophy. The body stress produces a large number of Schwann cells when the sciatic nerve is injured, and the cells secrete some cytokines including ciliary neurotrophic factor (CNTF) that not only play a role in promoting the repair of sciatic nerve, but also maintain the normal physiological function of the muscles surrounding the damaged nerves. CNTF upregulates janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) signals in myoblasts, and consequently accelerates the proliferation and differentiation of myoblasts. This effect on myoblasts is the most effective way to relieve muscle atrophy. Therefore, increasing CNTF is a promising direction to improve muscle atrophy. In the present study, an oleanolic acid derivative, HA-19, increased the proliferation of Schwann cells, and elevated CNTF production of the cells. HA-19 up-regulated the phosphorylation of JAK2 and STAT3 not only by directly acting on myoblasts, but also by increasing the secretion of CNTF of Schwann cells; and consequently, promoted the proliferation and differentiation of myoblasts. In denervation-induced muscle atrophy mice model, treatment with HA-19 significantly increased the weights of tibialis anterior (TA), gastrocnemius (Gastroc.), extensor digitorum longus (EDL), soleus and quadriceps (Quad.) under atrophied state. And, very interestingly, these muscles under normal condition were also strengthened by HA-19. Our finding demonstrated that HA-19 has a great potential as a lead compound for the drug discovery of anti-denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, 210008, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Cui W, Liu CX, Zhang YC, Shen Q, Feng ZH, Wang J, Lu SF, Wu J, Li JX. A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicol Appl Pharmacol 2019; 378:114625. [PMID: 31201822 DOI: 10.1016/j.taap.2019.114625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Muscle atrophy refers to a decrease in the size of muscles in the body, occurs in certain muscles with inactivity in many diseases and lacks effective therapies up to date. Natural products still play an important role in drug discovery. In the present study, derivatives of a natural product, oleanolic acid, were screened with myoblast differentiation and myotube atrophy assays, respectively. Results revealed that one of the derivatives, HA-19 showed the most potent anti-muscle atrophy activity, and was used for further studies. We demonstrated that HA-19 led to the increase of the protein synthesis by activating mechanistic target of rapamycin complex 1 (mTORC1)/p70 S6K pathways, and also enhanced myoblast proliferation and terminal differentiation via up-regulating of the myogenic transcription factors Pax7, MyoD and Myogenin. The interesting thing was that HA-19 also suppressed protein degradation to prevent myotube atrophy by down-regulating negative growth factors, FoxO1, MuRF1 and Atrogin-1. The results were also supported by puromycin labelling and protein ubiquitination assays. These data revealed that HA-19 possessed a "dual effect" on inhibition of muscle atrophy. In disuse-induced muscle atrophy mice model, HA-19 treatment significantly increased the weights of bilateral tibialis anterior (TA), gastrocnemius (Gastroc.), quadriceps (Quad.), suggesting the effectiveness of HA-19 to remit disuse-induced muscle atrophy. Our finding demonstrated that HA-19 has a great potential as an inhibitor or lead compound for the anti-muscle atrophy drug discovery.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Ren YM, Duan YH, Sun YB, Yang T, Tian MQ. Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data. J Orthop Surg Res 2018; 13:284. [PMID: 30424787 PMCID: PMC6234628 DOI: 10.1186/s13018-018-0989-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Background Rotator cuff tear (RCT) is a common shoulder disorder in the elderly. Muscle atrophy, denervation and fatty infiltration exert secondary injuries on torn rotator cuff muscles. It has been reported that satellite cells (SCs) play roles in pathogenic process and regenerative capacity of human RCT via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) of SCs that regulated between the torn supraspinatus (SSP) samples and intact subscapularis (SSC) samples, identify their functions and molecular pathways. Methods The gene expression profile GSE93661 was downloaded and bioinformatics analysis was made. Results Five hundred fifty one DEGs totally were identified. Among them, 272 DEGs were overexpressed, and the remaining 279 DEGs were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene–gene interaction network analysis such as GNG13, GCG, NOTCH1, BCL2, NMUR2, PMCH, FFAR1, AVPR2, GNA14, and KALRN, that may contribute to the understanding of the molecular mechanisms of secondary injuries in RCT. We also discovered that GNG13/calcium signaling pathway is highly correlated with the denervation atrophy pathological process of RCT. Conclusion These genes and pathways provide a new perspective for revealing the underlying pathological mechanisms and therapy strategy of RCT.
Collapse
Affiliation(s)
- Yi-Ming Ren
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Yuan-Hui Duan
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Yun-Bo Sun
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Tao Yang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China
| | - Meng-Qiang Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Jieyuan Road 190, Hongqiao District, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
7
|
Koide M, Hagiwara Y, Tsuchiya M, Kanzaki M, Hatakeyama H, Tanaka Y, Minowa T, Takemura T, Ando A, Sekiguchi T, Yabe Y, Itoi E. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration. TOHOKU J EXP MED 2018; 244:15-24. [PMID: 29311489 DOI: 10.1620/tjem.244.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.
Collapse
Affiliation(s)
- Masashi Koide
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | | | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University
| | - Hiroyasu Hatakeyama
- Graduate School of Biomedical Engineering, Tohoku University.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Yukinori Tanaka
- Department of Oral Immunology, Tohoku University Graduate School of Dentistry
| | | | | | - Akira Ando
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Takuya Sekiguchi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Yutaka Yabe
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
8
|
McKenna CF, Fry CS. Altered satellite cell dynamics accompany skeletal muscle atrophy during chronic illness, disuse, and aging. Curr Opin Clin Nutr Metab Care 2017; 20:447-452. [PMID: 28795971 PMCID: PMC5810415 DOI: 10.1097/mco.0000000000000409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review explores recent research investigating the contribution of satellite cells (skeletal muscle stem cells) during muscle fiber atrophy as seen in periods of disuse, illness, and aging. RECENT FINDINGS Studies indicate reduced satellite cell activity and density in a variety of acute and chronic conditions characterized by robust muscle wasting. The direct contribution of satellite cells to unloading/denervation and chronic illness-induced atrophy remains controversial. Inflammation that accompanies acute trauma and illness likely impedes proper satellite cell differentiation and myogenesis, promoting the rapid onset of muscle wasting in these conditions. Transgenic mouse studies provide surprising evidence that age-related declines in satellite cell function and abundance are not causally related to the onset of sarcopenia in sedentary animals. SUMMARY Recent clinical and preclinical studies indicate reduced abundance and dysregulated satellite cell activity that accompany muscle atrophy during periods of disuse, illness, and aging, providing evidence for their therapeutic potential.
Collapse
Affiliation(s)
- Colleen F. McKenna
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | - Christopher S. Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
9
|
Liao HT, Lin YF, Chou CT, Tsai CY. Semaphorin 3A in Ankylosing Spondylitis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 52:151-157. [PMID: 28736223 DOI: 10.1016/j.jmii.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND/PURPOSE To determine serum semaphorin 3A (Sema 3A) levels in ankylosing spondylitis (AS). METHODS Serum Sema 3A was measured in 46 AS patients and 30 healthy controls (HCs). For the patients, we recorded demographic data, disease activity, functional index & global assessment, detected human leukocyte antigen-B27 (HLA-B27), and measured erythrocyte sedimentation rate (ESR) & C-reactive protein (CRP). RESULTS Sema 3A was higher in AS patients than in HCs (3.98 ± 2.57 vs. 1.34 ± 0.48 ng/ml, p = 0.013). Area under the curve (AUC) of standard receiver operating characteristic (ROC) has suggested that Sema 3A > 2 ng/ml is better to predict the higher Bath Ankylosing Spondylitis Disease Activity Index (BASDAI, > 4) than ESR or CRP. There were good correlations between higher Sema 3A and uveitis, Schöber's test, as well as interstitial lung disease. AS patients undergoing anti-tumor necrosis factor therapies for 3 months exhibited a positive correlation of change in Sema 3A (ΔSema 3A) with disease activity fluctuation [ΔBASDAI, ΔBath Ankylosing Spondylitis Functional Index (BASFI) and ΔBath Ankylosing Spondylitis - Global score (BAS-G)]. CONCLUSION Serum Sema 3A level was increased in AS patients and was inversely correlated to Schöber's test. Serum Sema 3A is better as a bio-marker than ESR or CRP to correlate with high disease activity in AS patients, and it is also a good indicator for monitoring disease activity and functional status during anti-TNF treatment. Also, Sema 3A may be taken as a predictor for extra-articular presentations in AS, but this needs further study to elucidate.
Collapse
Affiliation(s)
- Hsien-Tzung Liao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chung-Tei Chou
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
10
|
Rothrauff BB, Pauyo T, Debski RE, Rodosky MW, Tuan RS, Musahl V. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:318-335. [PMID: 28084902 DOI: 10.1089/ten.teb.2016.0446] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thierry Pauyo
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Richard E Debski
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark W Rodosky
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Volker Musahl
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|