1
|
Markezana A, Paldor M, Liao H, Ahmed M, Zorde-Khvalevsky E, Rozenblum N, Stechele M, Salvermoser L, Laville F, Goldmann S, Rosenberg N, Andrasina T, Ricke J, Galun E, Goldberg SN. Fibroblast growth factors induce hepatic tumorigenesis post radiofrequency ablation. Sci Rep 2023; 13:16341. [PMID: 37770545 PMCID: PMC10539492 DOI: 10.1038/s41598-023-42819-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Image-guided radiofrequency ablation (RFA) is used to treat focal tumors in the liver and other organs. Despite potential advantages over surgery, hepatic RFA can promote local and distant tumor growth by activating pro-tumorigenic growth factor and cytokines. Thus, strategies to identify and suppress pro-oncogenic effects of RFA are urgently required to further improve the therapeutic effect. Here, the proliferative effect of plasma of Hepatocellular carcinoma or colorectal carcinoma patients 90 min post-RFA was tested on HCC cell lines, demonstrating significant cellular proliferation compared to baseline plasma. Multiplex ELISA screening demonstrated increased plasma pro-tumorigenic growth factors and cytokines including the FGF protein family which uniquely and selectively activated HepG2. Primary mouse and immortalized human hepatocytes were then subjected to moderate hyperthermia in-vitro, mimicking thermal stress induced during ablation in the peri-ablational normal tissue. Resultant culture medium induced proliferation of multiple cancer cell lines. Subsequent non-biased protein array revealed that these hepatocytes subjected to moderate hyperthermia also excrete a similar wide spectrum of growth factors. Recombinant FGF-2 activated multiple cell lines. FGFR inhibitor significantly reduced liver tumor load post-RFA in MDR2-KO inflammation-induced HCC mouse model. Thus, Liver RFA can induce tumorigenesis via the FGF signaling pathway, and its inhibition suppresses HCC development.
Collapse
Affiliation(s)
- Aurelia Markezana
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel.
| | - Mor Paldor
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Haixing Liao
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Elina Zorde-Khvalevsky
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Nir Rozenblum
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Matthias Stechele
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Salvermoser
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Flinn Laville
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Salome Goldmann
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Nofar Rosenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Tomas Andrasina
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University Brno, Brno, Czech Republic
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Eithan Galun
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Shraga Nahum Goldberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel.
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA.
- Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
2
|
Severe heat stress modulated nuclear factor erythroid 2-related factor 2 and macrophage migration inhibitory factor pathway in rat liver. J Cell Commun Signal 2022; 16:547-566. [PMID: 35260968 PMCID: PMC9733776 DOI: 10.1007/s12079-022-00668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Heat stress impairs physiology and overall functionality of the body at tissue and organ level in animals. Liver being a vital organ performs more than hundreds regulatory functions of the body. Present study investigates the modulation of molecular pathways that are responsible for liver damage triggered by heat stress. Male Sprague dawley rats were exposed to heat stress (45 °C) in heat simulation chamber till core temperature reaches 40 °C and 42 °C in 25 and 42 min respectively. For in-depth evaluation of liver functions during severe heat stress, hepatic transcriptome and proteome were analysed by microarray and two dimensional gel electrophoresis respectively. Results revealed major alterations in redox status, inflammation, mitochondrial dysfunction and proteostasis related pathways. Data of molecular pathway analysis demonstrate that nuclear factor erythroid 2-related factor 2 (NRF-2) mediated oxidative stress response and macrophage migration inhibitory factor (MIF) regulated inflammatory pathways were upregulated in severe heat stressed liver. Expression levels of downstream molecules of above pathways such as heat shock protein 90AB 1, peroxiredoxin 5, Jun N-terminal kinases 1/2, heme-oxygenase 1, apolipoprotein 1 and interleukin 10 were examined and result suggested the upregulation of these genes modulates the NRF-2 and MIF regulated pathways in heat stressed liver. Irregularity in molecular signalling networks lead to mitochondrial dysfunction indicated by upregulation of ATP synthase β and peroxiredoxin 1 along with decreased levels of glucose-6-phosphate dehydrogenase and enhanced activity of cytochrome c in liver mitochondria. Thus, current study demonstrated heat induced alterations in key liver functions were regulated by NRF-2 and MIF pathways.
Collapse
|
3
|
Yang J, Guo W, Lu M. Recent Perspectives on the Mechanism of Recurrence After Ablation of Hepatocellular Carcinoma: A Mini-Review. Front Oncol 2022; 12:895678. [PMID: 36081558 PMCID: PMC9445307 DOI: 10.3389/fonc.2022.895678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Hepatectomy, liver transplantation, and ablation are the three radical treatments for early-stage hepatocellular carcinoma (ESHCC), but not all patients are fit for or can tolerate surgery; moreover, liver donors are limited. Therefore, ablation plays an important role in the treatment of ESHCC. However, some studies have shown that ablation has a higher local recurrence (LR) rate than hepatectomy and liver transplantation. The specific mechanism is unknown. The latest perspectives on the mechanism of recurrence after ablation of HCC were described and summarized. In this review, we discussed the possible mechanisms of recurrence after ablation of HCC, including epithelial–mesenchymal transition (EMT), activating autophagy, changes in non-coding RNA, and changes in the tumor microenvironment. A systematic and comprehensive understanding of the mechanism will contribute to the research and development of related treatment, combined with ablation to improve the therapeutic effect in patients with ESHCC.
Collapse
Affiliation(s)
- Jianquan Yang
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen Guo
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, China
| | - Man Lu
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Man Lu,
| |
Collapse
|
4
|
Deng Q, He M, Fu C, Feng K, Ma K, Zhang L. Radiofrequency ablation in the treatment of hepatocellular carcinoma. Int J Hyperthermia 2022; 39:1052-1063. [PMID: 35944905 DOI: 10.1080/02656736.2022.2059581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The purpose of this article is to discuss the use, comparative efficacy, and research progress of radiofrequency ablation (RFA), alone or in combination with other therapies, for the treatment of hepatocellular carcinoma (HCC). METHOD To search and summarize the basic and clinical studies of RFA in recent years. RESULTS RFA is one of the radical treatment methods listed in the guidelines for the diagnosis and treatment of HCC. It has the characteristics of being minimally invasive and safe and can obtain good local tumor control, and it can improve the local immune ability, improve the tumor microenvironment and enhance the efficacy of chemotherapy drugs. It is commonly used for HCC treatment before liver transplantation and combined ALPPS and hepatectomy for HCC. In addition, the technology of RFA is constantly developing. The birth of noninvasive, no-touch RFA technology and equipment and the precise RFA concept have improved the therapeutic effect of RFA. CONCLUSION RFA has good local tumor control ability, is minimally invasive, is safe and has other beneficial characteristics. It plays an increasingly important role in the comprehensive treatment strategy of HCC. Whether RFA alone or combined with other technologies expands the surgical indications of patients with HCC and provides more benefits for HCC patients needs to be determined.
Collapse
Affiliation(s)
- Qingsong Deng
- Army Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Minglian He
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunchuan Fu
- Department of Hepatobiliary Surgery, Xuanhan County People's Hospital, Xuanhan, China
| | - Kai Feng
- Army Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kuansheng Ma
- Army Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Leida Zhang
- Army Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Briones-Orta MA, Delgado-Coello B, Gutiérrez-Vidal R, Sosa-Garrocho M, Macías-Silva M, Mas-Oliva J. Quantitative Expression of Key Cancer Markers in the AS-30D Hepatocarcinoma Model. Front Oncol 2021; 11:670292. [PMID: 34737944 PMCID: PMC8561839 DOI: 10.3389/fonc.2021.670292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma is one of the cancers with the highest mortality rate worldwide. HCC is often diagnosed when the disease is already in an advanced stage, making the discovery and implementation of biomarkers for the disease a critical aim in cancer research. In this study, we aim to quantify the transcript levels of key signaling molecules relevant to different pathways known to participate in tumorigenesis, with special emphasis on those related to cancer hallmarks and epithelial-mesenchymal transition, using as a model the murine transplantable hepatocarcinoma AS-30D. Using qPCR to quantify the mRNA levels of genes involved in tumorigenesis, we found elevated levels for Tgfb1 and Spp1, two master regulators of EMT. A mesenchymal signature profile for AS-30D cells is also supported by the overexpression of genes encoding for molecules known to be associated to aggressiveness and metastatic phenotypes such as Foxm1, C-met, and Inppl1. This study supports the use of the AS-30D cells as an efficient and cost-effective model to study gene expression changes in HCC, especially those associated with the EMT process.
Collapse
Affiliation(s)
- Marco A Briones-Orta
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roxana Gutiérrez-Vidal
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela Sosa-Garrocho
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Mas-Oliva
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Markezana A, Goldberg SN, Kumar G, Zorde-Khvalevsky E, Gourevtich S, Rozenblum N, Galun E, Ahmed M. Incomplete thermal ablation of tumors promotes increased tumorigenesis. Int J Hyperthermia 2021; 38:263-272. [PMID: 33612046 DOI: 10.1080/02656736.2021.1887942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE While systemic tumor-stimulating effects can occur following ablation of normal liver linked to the IL-6/HGF/VEGF cytokinetic pathway, the potential for tumor cells themselves to produce these unwanted effects is currently unknown. Here, we study whether partially treated tumors induce increased tumor growth post-radiofrequency thermal ablation (RFA). METHODS Tumor growth was measured in three immunocompetent, syngeneic tumor models following partial RFA of the target tumor (in subcutaneous CT26 and MC38 mouse colorectal adenocarcinoma, N = 14 each); and in a distant untreated tumor following partial RFA of target subcutaneous R3230 rat breast adenocarcinoma (N = 12). Tumor cell proliferation (ki-67) and microvascular density (CD34) was assessed. In R3230 tumors, in vivo mechanism of action was assessed following partial RFA by measuring IL-6, HGF, and VEGF expression (ELISA) and c-Met protein (Western blot). Finally, RFA was performed in R3230 tumors with adjuvant c-Met kinase inhibitor or VEGF receptor inhibitor (at 3 days post-RFA, N = 3/arm, total N = 12). RESULTS RFA stimulated tumor growth in vivo in residual, incompletely treated surrounding CT26 and MC38 tumor at 3-6 days (p < 0.01). In R3230, RFA increased tumor growth in distant tumor 7 days post treatment compared to controls (p < 0.001). For all models, Ki-67 and CD34 were elevated (p < 0.01, all comparisons). IL-6, HGF, and VEGF were also upregulated post incomplete tumor RFA (p < 0.01). These markers were suppressed to baseline levels with adjuvant c-MET kinase or VEGF receptor inhibition. CONCLUSION Incomplete RFA of a target tumor can sufficiently stimulate residual tumor cells to induce accelerated growth of distant tumors via the IL-6/c-Met/HGF pathway and VEGF production.
Collapse
Affiliation(s)
- Aurelia Markezana
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - S Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.,Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Division of Image-guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Gaurav Kumar
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Elina Zorde-Khvalevsky
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Svetlana Gourevtich
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Nir Rozenblum
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Wu L, Zhou J, Zhou W, Huang XF, Chen Q, Wang W, Zhai L, Li S, Tang Z. Sorafenib blocks the activation of the HIF-2α/VEGFA/EphA2 pathway, and inhibits the rapid growth of residual liver cancer following high-intensity focused ultrasound therapy in vivo. Pathol Res Pract 2021; 220:153270. [PMID: 33640712 DOI: 10.1016/j.prp.2020.153270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insufficient high-intensity focused ultrasound (HIFU) can promote the rapid progression of the residual tumor through the hypoxia inducible factor-2α +(HIF-2α)/vascular endothelial growth factor A (VEGFA)/ephrin type-A receptor 2 (EphA2) pathway. Although sorafenib has been shown to significantly improve the survival of patients with advanced liver cancer, the use of sorafenib in residual tumor tissues following HIFU has rarely been elucidated. Thus, this study aimed to investigate the potential adjuvant therapeutic effects of sorafenib following HIFU in order to reduce the relapse rate following insufficient HIFU. METHODS Xenograft tumors were established using nude mice injected with liver cancer cells. At approximately 4 weeks after the inoculation of the tumor cells (tumors reached 1.3-1.5 cm), all mice were randomly divided into 3 groups as follows: i) The control group (no treatment); ii) the HIFU-alone group, and iii) the combination group (HIFU + sorafenib), with 6 mice per group. The residual tumor volume was determined among the different treatment groups. The protein expression levels of HIF-2α, VEGFA and EphA2 were determined by immunohistochemistry and western blotting, and the mRNA levels were detected by RT-qPCR. The microvessel density (MVD) was calculated by CD31 immunohistochemistry staining. RESULTS The results revealed that by comparing the control group, insufficient HIFU promoted HIF-2α, VEGFA and EphA2 expression (P < 0.05). Compared with the HIFU-alone group, the protein and mRNA levels of HIF-2α, VEGFA and EphA2 were markedly decreased in the group that received combined treatment with HIFU and sorafenib (P < 0.05). Similar results were obtained for MVD expression. Synergistic tumor growth inhibitory effects were also observed between the control group and HIFU group (P < 0.05). CONCLUSIONS The findings of this study demonstrate that the expression of HIF-2α, VEGFA and EphA2 can be inhibited by sorafenib, and that sorafenib is likely to provide an effective adjunct treatment for patients with HCC following HIFU ablation.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Proliferation/drug effects
- Chemotherapy, Adjuvant
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- High-Intensity Focused Ultrasound Ablation
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm, Residual
- Protein Kinase Inhibitors/pharmacology
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Signal Transduction
- Sorafenib/pharmacology
- Tumor Burden/drug effects
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Lun Wu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Wuhan Province, PR China; Liver Surgery Institute of Experiment Center of Medicine, Department of Hepatobiliary Surgery, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, PR China
| | - Jiao Zhou
- Department of Urology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, PR China
| | - Wenbo Zhou
- Liver Surgery Institute of Experiment Center of Medicine, Department of Hepatobiliary Surgery, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, PR China
| | - Xue-Fei Huang
- Liver Surgery Institute of Experiment Center of Medicine, Department of Hepatobiliary Surgery, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, PR China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen Guangdong, 518101, PR China
| | - Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Wuhan Province, PR China
| | - Lulu Zhai
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Wuhan Province, PR China
| | - Shengwei Li
- The Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhigang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Wuhan Province, PR China.
| |
Collapse
|
8
|
Markezana A, Ahmed M, Kumar G, Zorde-Khvalevsky E, Rozenblum N, Galun E, Goldberg SN. Moderate hyperthermic heating encountered during thermal ablation increases tumor cell activity. Int J Hyperthermia 2020; 37:119-129. [PMID: 31969029 PMCID: PMC7654730 DOI: 10.1080/02656736.2020.1714084] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/03/2019] [Accepted: 11/30/2019] [Indexed: 01/16/2023] Open
Abstract
Purpose: The aim of this study was to determine whether moderate hyperthermic doses, routinely encountered in the periablational zone during thermal ablation, activate tumor cells sufficiently to secrete pro-tumorigenic factors that can induce increased proliferation.Material and methods: R3230 rat mammary tumor cells and human cancer cell lines, MCF7 breast adenocarcinoma, HepG2 and Huh7 HCC, and HT-29 and SW480 colon adenocarcinoma, were heated in to 45 ± 1 °C or 43 ± 1 °C in vitro for 5-10 min and incubated thereafter at 37 °C for 1.5, 3 or 8 hr (n = 3 trials each; total N = 135). mRNA expression profiles of cytokines implicated in RF-induced tumorigenesis including IL-6, TNFα, STAT3, HGF, and VEGF, were evaluated by relative quantitative real-time PCR. HSP70 was used as control. c-Met and STAT3 levels were assessed by Western blot. Finally, naïve cancer cells were incubated with medium from R3230 and human cancer cells that were subjected to 43-45 °C for 5 or 10 min and incubated for 3 or 8 h at 37 °C in an xCELLigence or incuCyte detection system.Results: Cell-line-specific dose and time-dependent elevations of at least a doubling in HSP70, IL-6, TNFα, STAT3, and HGF gene expression were observed in R3230 and human cancer cells subjected to moderate hyperthermia. R3230 and several human cell lines showed increased phosphorylation of STAT3 3 h post-heating and increased c-Met following heating. Medium of cancer cells subject to moderate hyperthermia induced statistically significant accelerated cell growth of all cell lines compared to non-heated media (p < 0.01, all comparisons).Conclusion: Heat-damaged human tumor cells by themselves can induce proliferation of tumor by releasing pro-tumorigenic factors.
Collapse
Affiliation(s)
- Aurelia Markezana
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Gaurav Kumar
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Elina Zorde-Khvalevsky
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Nir Rozenblum
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - S. Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
- Division of Image-guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
9
|
Camacho JC, Petre EN, Sofocleous CT. Thermal Ablation of Metastatic Colon Cancer to the Liver. Semin Intervent Radiol 2019; 36:310-318. [PMID: 31680722 DOI: 10.1055/s-0039-1698754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is responsible for approximately 10% of cancer-related deaths in the Western world. Liver metastases are frequently seen at the time of diagnosis and throughout the course of the disease. Surgical resection is often considered as it provides long-term survival; however, few patients are candidates for resection. Percutaneous ablative therapies are also used in the management of this patient population. Different thermal ablation (TA) technologies are available including radiofrequency ablation, microwave ablation (MWA), laser, and cryoablation. There is growing evidence about the role of interventional oncology and image-guided percutaneous ablation in the management of metastatic colorectal liver disease. This article aims to outline the technical considerations, outcomes, and rational of TA in the management of patients with CRC liver metastases, focusing on the emerging role of MWA.
Collapse
Affiliation(s)
- Juan C Camacho
- Department of Radiology, Weill-Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elena N Petre
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Constantinos T Sofocleous
- Department of Radiology, Weill-Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Jondal DE, Thompson SM, Butters KA, Knudsen BE, Anderson JL, Roberts LR, Callstrom MR, Woodrum DA. Single-Dose Neoadjuvant AKT Pathway Inhibitor Reduces Growth of Hepatocellular Carcinoma after Laser Thermal Ablation in Small-Animal Model. Radiology 2019; 292:752-759. [PMID: 31335281 PMCID: PMC6736176 DOI: 10.1148/radiol.2019190115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/08/2019] [Accepted: 06/11/2019] [Indexed: 01/12/2023]
Abstract
BackgroundLocal recurrence following thermal ablation of hepatocellular carcinoma (HCC) larger than 2-3 cm remains a challenging clinical problem. Prior studies suggest that phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)-dependent protein kinase B (AKT) signaling mediates HCC cell survival caused by moderate heat stress in vitro, but these findings need in vivo validation.PurposeTo test the hypothesis that neoadjuvant inhibition of PI3K/mTOR/AKT signaling reduces HCC tumor growth in vivo after laser ablation and to evaluate the effects of moderate heat stress on molecular signaling and cellular function in HCC cells in vitro.Materials and MethodsHCC tumor-bearing mice were randomized to neoadjuvant PI3K/mTOR inhibitor (BEZ235) or control groups followed by an intentional partial laser ablation or sham ablation; there were at least nine mice per group. Postablation tumor growth was monitored up to 7 days. Tumor volumes were compared for drug or ablation groups by using two-way analysis of variance. N1S1 HCC cells pretreated with BEZ235 or control and subjected to moderate heat stress (45°C for 10 minutes) or control (37°C for 10 minutes) were analyzed by using mass spectrometry. Protein interaction networks were derived from protein expression analysis software, and cellular function activation state (Z-score) and fold-change in AKT phosphorylation were calculated.ResultsThere was a 37%-75% reduction in HCC tumor volume by day 7 after ablation in the BEZ235 plus ablation group (713 mm3 ± 417) compared with vehicle plus sham (1559 mm3 ± 552), vehicle plus ablation (1041 mm3 ± 591), and BEZ235 plus sham (1108 mm3 ± 523) groups (P < .001, P = .04, and P = .005, respectively). PI3K/mTOR inhibition prevented moderate heat stress-induced AKT signaling (Z-score, -0.2; P < .001) and isoform-specific AKT phosphorylation compared with the vehicle plus heat stress group. PI3K/mTOR inhibition prevented moderate heat stress-induced global effects on HCC molecular signaling and cellular function, including decreased cell survival, growth, and proliferation (Z-score, -0.3 to -3.2; P < .001) and increased apoptosis and cell death (Z-score, 0.4-1.1; P < .001).ConclusionModerate heat stress induces PI3K/mTOR/AKT-dependent global effects on hepatocellular carcinoma (HCC) cell survival, function, and death. Neoadjuvant PI3K/mTOR/AKT inhibition reduces postablation HCC tumor growth.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by White in this issue.
Collapse
Affiliation(s)
- Danielle E. Jondal
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K.,
J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology
(L.R.R.), Mayo Clinic School of Medicine, 200 First St SW, Rochester, MN
55905
| | - Scott M. Thompson
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K.,
J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology
(L.R.R.), Mayo Clinic School of Medicine, 200 First St SW, Rochester, MN
55905
| | - Kim A. Butters
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K.,
J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology
(L.R.R.), Mayo Clinic School of Medicine, 200 First St SW, Rochester, MN
55905
| | - Bruce E. Knudsen
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K.,
J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology
(L.R.R.), Mayo Clinic School of Medicine, 200 First St SW, Rochester, MN
55905
| | - Jill L. Anderson
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K.,
J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology
(L.R.R.), Mayo Clinic School of Medicine, 200 First St SW, Rochester, MN
55905
| | - Lewis R. Roberts
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K.,
J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology
(L.R.R.), Mayo Clinic School of Medicine, 200 First St SW, Rochester, MN
55905
| | - Matthew R. Callstrom
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K.,
J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology
(L.R.R.), Mayo Clinic School of Medicine, 200 First St SW, Rochester, MN
55905
| | - David A. Woodrum
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K.,
J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology
(L.R.R.), Mayo Clinic School of Medicine, 200 First St SW, Rochester, MN
55905
| |
Collapse
|
11
|
Affiliation(s)
- Sarah B White
- From the Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226
| |
Collapse
|
12
|
Huo Y, Chen WS, Lee J, Feng GS, Newton IG. Stress Conditions Induced by Locoregional Therapies Stimulate Enrichment and Proliferation of Liver Cancer Stem Cells. J Vasc Interv Radiol 2019; 30:2016-2025.e5. [PMID: 31208945 DOI: 10.1016/j.jvir.2019.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study tested the hypothesis that stress conditions that simulated percutaneous thermal ablation (PTA), transarterial embolization (TAE), or transarterial chemoembolization stimulated enrichment of hepatocellular carcinoma (HCC) cancer stem cells (hCSCs) and that hCSC inhibitors can suppress this effect. MATERIALS AND METHODS Human HCC cell lines HepG2 and PLC/PRF/5 were subjected to a 46.5°C heat bath for 10 minutes or to 1% hypoxia for 72 hours without fetal bovine serum and with or without doxorubicin. Cells were then treated with a β-catenin inhibitor (FH535 or XAV939), a PI3 kinase inhibitor (Ly294002), or niclosamide, a US Food and Drug Administration-approved antihelminthic drug that acts as a mitochondrial decoupler and mixed inhibitor. Surviving cells were analyzed for hCSC markers by flow cytometry, for stemness by colony-forming assay or sphere-forming assay, and for proliferative capacity by MTT assay (where MTT is 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide). Expression of proteins related to CSC renewal and proliferation were analyzed by immunoblotting and immunostaining. RESULTS Conditions that simulated PTA, TAE, and transarterial chemoembolization resulted in an enrichment of cells bearing hCSC markers (CD133, CD44, and EpCAM). Cells surviving heat stress exhibited higher colony- or sphere-forming capacity and a greater proliferative state. These effects could be suppressed by niclosamide and inhibitors of β-catenin and PI3 kinase. CONCLUSIONS Stress conditions induced by locoregional therapies stimulated hCSC enrichment and proliferation, which could be suppressed by niclosamide and inhibitors of pathways important for hCSC renewal. Future studies will determine whether combining locoregional therapies with adjuvant hCSC inhibitors reduces HCC recurrence.
Collapse
Affiliation(s)
- Yuchen Huo
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Wendy S Chen
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Jin Lee
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California
| | - Isabel G Newton
- Department of Radiology, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California.
| |
Collapse
|
13
|
Heberle AM, Razquin Navas P, Langelaar-Makkinje M, Kasack K, Sadik A, Faessler E, Hahn U, Marx-Stoelting P, Opitz CA, Sers C, Heiland I, Schäuble S, Thedieck K. The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Sci Alliance 2019; 2:2/2/e201800257. [PMID: 30923191 PMCID: PMC6441495 DOI: 10.26508/lsa.201800257] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/11/2023] Open
Abstract
PI3K and p38 act in a hierarchical manner to enhance mTORC1 activity and stress granule formation; although PI3K is the main driver, the impact of p38 gets apparent as PI3K activity declines. All cells and organisms exhibit stress-coping mechanisms to ensure survival. Cytoplasmic protein-RNA assemblies termed stress granules are increasingly recognized to promote cellular survival under stress. Thus, they might represent tumor vulnerabilities that are currently poorly explored. The translation-inhibitory eIF2α kinases are established as main drivers of stress granule assembly. Using a systems approach, we identify the translation enhancers PI3K and MAPK/p38 as pro-stress-granule-kinases. They act through the metabolic master regulator mammalian target of rapamycin complex 1 (mTORC1) to promote stress granule assembly. When highly active, PI3K is the main driver of stress granules; however, the impact of p38 becomes apparent as PI3K activity declines. PI3K and p38 thus act in a hierarchical manner to drive mTORC1 activity and stress granule assembly. Of note, this signaling hierarchy is also present in human breast cancer tissue. Importantly, only the recognition of the PI3K-p38 hierarchy under stress enabled the discovery of p38’s role in stress granule formation. In summary, we assign a new pro-survival function to the key oncogenic kinases PI3K and p38, as they hierarchically promote stress granule formation.
Collapse
Affiliation(s)
- Alexander Martin Heberle
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patricia Razquin Navas
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Miriam Langelaar-Makkinje
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katharina Kasack
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Sadik
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Erik Faessler
- Jena University Language and Information Engineering Lab, Friedrich-Schiller-University Jena, Jena, Germany
| | - Udo Hahn
- Jena University Language and Information Engineering Lab, Friedrich-Schiller-University Jena, Jena, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Strategies for Toxicological Assessment, Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Christiane A Opitz
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Heiland
- Faculty of Bioscience, Fisheries and Economics, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sascha Schäuble
- Jena University Language and Information Engineering Lab, Friedrich-Schiller-University Jena, Jena, Germany .,Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Kathrin Thedieck
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands .,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Thompson SM, Jondal DE, Butters KA, Knudsen BE, Anderson JL, Roberts LR, Callstrom MR, Woodrum DA. Heat Stress and Thermal Ablation Induce Local Expression of Nerve Growth Factor Inducible (VGF) in Hepatocytes and Hepatocellular Carcinoma: Preclinical and Clinical Studies. Gene Expr 2018; 19:37-47. [PMID: 29973305 PMCID: PMC6290322 DOI: 10.3727/105221618x15305531034617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The purposes of this study were to test the hypothesis that heat stress and hepatic thermal ablation induce nerve growth factor inducible (VGF) and to determine intrahepatic versus systemic VGF expression induced by thermal ablation in vivo and in patients. Hepatocytes and HCC cells were subjected to moderate (45°C) or physiologic (37°C) heat stress for 10 min and assessed for VGF expression at 0-72 h post-heat stress (n ≥ 3 experiments). Orthotopic N1S1 HCC-bearing rats were randomized to sham or laser thermal ablation (3 W × 90 s), and liver/serum was harvested at 0-7 days postablation for analysis of VGF expression (n ≥ 6 per group). Serum was collected from patients undergoing thermal ablation for HCC (n = 16) at baseline, 3-6, and 18-24 h postablation and analyzed for VGF expression. Data were analyzed using ordinary or repeated-measures one-way analysis of variance and post hoc pairwise comparison with Dunnett's test. Moderate heat stress induced time-dependent VGF mRNA (3- to 15-fold; p < 0.04) and protein expression and secretion (3.1- to 3.3-fold; p < 0.05). Thermal ablation induced VGF expression at the hepatic ablation margin at 1 and 3 days postablation but not remote from the ablation zone or distant intrahepatic lobe. There was no detectable serum VGF following hepatic thermal ablation in rats and no increase in serum VGF following HCC thermal ablation in patients at 3-6 and 18-24 h postablation compared to baseline (0.71- and 0.63-fold; p = 0.27 and p = 0.16, respectively). Moderate heat stress induces expression and secretion of VGF in HCC cells and hepatocytes in vitro, and thermal ablation induces local intrahepatic but not distant intrahepatic or systemic VGF expression in vivo.
Collapse
Affiliation(s)
- Scott M. Thompson
- *Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Danielle E. Jondal
- *Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kim A. Butters
- *Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bruce E. Knudsen
- *Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jill L. Anderson
- *Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lewis R. Roberts
- †Division of Gastroenterology and Hepatology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matthew R. Callstrom
- *Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A. Woodrum
- *Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Jondal DE, Thompson SM, Butters KA, Knudsen BE, Anderson JL, Carter RE, Roberts LR, Callstrom MR, Woodrum DA. Heat Stress and Hepatic Laser Thermal Ablation Induce Hepatocellular Carcinoma Growth: Role of PI3K/mTOR/AKT Signaling. Radiology 2018; 288:730-738. [PMID: 29737948 DOI: 10.1148/radiol.2018172944] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose To determine if heat stress and hepatic laser thermal ablation induce hepatocellular carcinoma (HCC) growth and to identify growth factors induced by heat stress. Materials and Methods Non-heat-stressed HCC cells were cocultured with HCC cells or hepatocytes that were heat stressed at 37°C (physiologic), 45°C (moderate), or 50°C (severe) for 10 minutes and proliferation monitored with bioluminescence imaging for up to 6 days after heat stress (three experiments). Rats bearing orthotopic N1S1 HCC were randomly assigned to undergo immediate sham or laser thermal (3 W for 60 or 90 seconds; hereafter, 3W×60s and 3W×90s, respectively) ablation of the median (local) or left (distant) hepatic lobe, and tumor growth was monitored with magnetic resonance imaging for up to 18 days after ablation (six or more rats per group). Experiments were repeated with rats randomly assigned to receive either the adjuvant phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor (NVP-BEZ235) or the vehicle control. Heat-stressed HCC cells and hepatocytes were analyzed by using microarray or quantitative real-time polymerase chain reaction analysis for growth factor expression (three or more experiments). Groups were compared by using one- or two-way analysis of variance, and post hoc pairwise comparison was performed with the Dunnett test. Results There were more non-heat-stressed HCC cells when cells were cocultured with cells subjected to moderate but not physiologic or severe heat stress (P < .001 for both). Local intrahepatic N1S1 tumors were larger at day 18 in the 3W×60s (mean, 3102 mm3 ± 463 [standard error]; P = .004) and 3W×90s (mean, 3538 mm3 ± 667; P < .001) groups than in the sham group (mean, 1363 mm3 ± 361) but not in distant intrahepatic tumors (P = .31). Adjuvant BEZ235 resulted in smaller N1S1 tumors in the BEZ235 and laser thermal ablation group than in the vehicle control and laser thermal ablation group (mean, 1731 mm3 ± 1457 vs 3844 mm3 ± 2400, P < .001). Moderate heat stress induced expression of growth factors in HCC cells and hepatocytes, including heparin-binding growth factor, fibroblast growth factor 21, and nerve growth factor (range, 2.9-66.9-fold; P < .05). Conclusion Moderate heat stress and laser thermal ablation induce hepatocellular carcinoma growth, which is prevented with adjuvant PI3K/mTOR/protein kinase B inhibition.
Collapse
Affiliation(s)
- Danielle E Jondal
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| | - Scott M Thompson
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| | - Kim A Butters
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| | - Bruce E Knudsen
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| | - Jill L Anderson
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| | - Rickey E Carter
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| | - Lewis R Roberts
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| | - Matthew R Callstrom
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| | - David A Woodrum
- From the Department of Radiology (D.E.J., S.M.T., K.A.B., B.E.K., J.L.A., M.R.C., D.A.W.) and Division of Gastroenterology and Hepatology (L.R.R.), Mayo Clinic School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Health Sciences Research, Mayo Clinic School of Medicine, Jacksonville, Fla (R.E.C.)
| |
Collapse
|
16
|
Abstract
OBJECTIVE The purpose of this article is to discuss the use, comparative efficacy, and general technical considerations of percutaneous ablation, alone or in combination with other therapies, for the treatment of hepatocellular carcinoma (HCC). CONCLUSION Percutaneous ablation is a mainstay treatment for early-stage HCC, offering survival comparable to that of surgical resection for small lesions. It can act as a primary curative therapy or bridge therapy for patients waiting to undergo liver transplant. New ablation modalities and combining tumor ablation with other therapies, such as transarterial chemoembolization, can improve clinical outcomes and allow treatment of larger lesions. Combining thermal ablation with systemic chemotherapy, including immunotherapy, is an area of future development.
Collapse
|
17
|
Stress-induced phosphoprotein 1 mediates hepatocellular carcinoma metastasis after insufficient radiofrequency ablation. Oncogene 2018; 37:3514-3527. [DOI: 10.1038/s41388-018-0169-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 12/25/2022]
|
18
|
Thompson SM, Jondal DE, Butters KA, Knudsen BE, Anderson JL, Stokes MP, Jia X, Grande JP, Roberts LR, Callstrom MR, Woodrum DA. Heat stress induced, ligand-independent MET and EGFR signalling in hepatocellular carcinoma. Int J Hyperthermia 2017; 34:812-823. [PMID: 28954551 DOI: 10.1080/02656736.2017.1385859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The aims of the present study were 2-fold: first, to test the hypothesis that heat stress induces MET and EGFR signalling in hepatocellular carcinoma (HCC) cells and inhibition of this signalling decreases HCC clonogenic survival; and second, to identify signalling pathways associated with heat stress induced MET signalling. MATERIALS AND METHODS MET+ and EGFR+ HCC cells were pre-treated with inhibitors to MET, EGFR, PI3K/mTOR or vehicle and subjected to heat stress or control ± HGF or EGF growth factors and assessed by colony formation assay, Western blotting and/or quantitative mass spectrometry. IACUC approved partial laser thermal or sham ablation was performed on orthotopic N1S1 and AS30D HCC tumours and liver/tumour assessed for phospho-MET and phospho-EGFR immunostaining. RESULTS Heat-stress induced rapid MET and EGFR phosphorylation that is distinct from HGF or EGF in HCC cells and thermal ablation induced MET but not EGFR phosphorylation at the HCC tumour ablation margin. Inhibition of the MET and EGFR blocked both heat stress and growth factor induced MET and EGFR phosphorylation and inhibition of MET decreased HCC clonogenic survival following heat stress. Pathway analysis of quantitative phosphoproteomic data identified downstream pathways associated with heat stress induced MET signalling including AKT, ERK, Stat3 and JNK. However, inhibition of heat stress induced MET signalling did not block AKT signalling. CONCLUSIONS Heat-stress induced MET and EGFR signalling is distinct from growth factor mediated signalling in HCC cells and MET inhibition enhances heat stress induced HCC cell killing via a PI3K/AKT/mTOR-independent mechanism.
Collapse
Affiliation(s)
- Scott M Thompson
- a Department of Radiology , Mayo Clinic School of Medicine , Rochester , MN , USA
| | - Danielle E Jondal
- a Department of Radiology , Mayo Clinic School of Medicine , Rochester , MN , USA
| | - Kim A Butters
- a Department of Radiology , Mayo Clinic School of Medicine , Rochester , MN , USA
| | - Bruce E Knudsen
- a Department of Radiology , Mayo Clinic School of Medicine , Rochester , MN , USA
| | - Jill L Anderson
- a Department of Radiology , Mayo Clinic School of Medicine , Rochester , MN , USA
| | - Matthew P Stokes
- b Cell Signaling Technology, Inc. 3 Trask Ln. Danvers , MA , USA
| | - Xiaoying Jia
- b Cell Signaling Technology, Inc. 3 Trask Ln. Danvers , MA , USA
| | - Joseph P Grande
- c Department of Laboratory Medicine and Pathology , Mayo Clinic School of Medicine , Rochester , MN , USA
| | - Lewis R Roberts
- d Division of Gastroenterology and Hepatology , Mayo Clinic School of Medicine , Rochester , MN , USA
| | - Matthew R Callstrom
- a Department of Radiology , Mayo Clinic School of Medicine , Rochester , MN , USA
| | - David A Woodrum
- a Department of Radiology , Mayo Clinic School of Medicine , Rochester , MN , USA
| |
Collapse
|
19
|
Kim JM, Lim KS, Byun M, Lee KT, Yang YR, Park M, Lim D, Chai HH, Bang HT, Hwangbo J, Choi YH, Cho YM, Park JE. Identification of the acclimation genes in transcriptomic responses to heat stress of White Pekin duck. Cell Stress Chaperones 2017; 22:787-797. [PMID: 28634817 PMCID: PMC5655367 DOI: 10.1007/s12192-017-0809-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022] Open
Abstract
White Pekin duck is an important meat resource in the livestock industries. However, the temperature increase due to global warming has become a serious environmental factor in duck production, because of hyperthermia. Therefore, identifying the gene regulations and understanding the molecular mechanism for adaptation to the warmer environment will provide insightful information on the acclimation system of ducks. This study examined transcriptomic responses to heat stress treatments (3 and 6 h at 35 °C) and control (C, 25 °C) using RNA-sequencing analysis of genes from the breast muscle tissue. Based on three distinct differentially expressed gene (DEG) sets (3H/C, 6H/C, and 6H/3H), the expression patterns of significant DEGs (absolute log2 > 1.0 and false discovery rate < 0.05) were clustered into three responsive gene groups divided into upregulated and downregulated genes. Next, we analyzed the clusters that showed relatively higher expression levels in 3H/C and lower levels in 6H/C with much lower or opposite levels in 6H/3H; we referred to these clusters as the adaptable responsive gene group. These genes were significantly enriched in the ErbB signaling pathway, neuroactive ligand-receptor interaction and type II diabetes mellitus in the KEGG pathways (P < 0.01). From the functional enrichment analysis and significantly regulated genes observed in the enriched pathways, we think that the adaptable responsive genes are responsible for the acclimation mechanism of ducks and suggest that the regulation of phosphoinositide 3-kinase genes including PIK3R6, PIK3R5, and PIK3C2B has an important relationship with the mechanisms of adaptation to heat stress in ducks.
Collapse
Affiliation(s)
- Jun-Mo Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyu-Sang Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Mijeong Byun
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Young-Rok Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mina Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Han-Tae Bang
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Jong Hwangbo
- Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, Republic of Korea
| | - Yang-Ho Choi
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yong-Min Cho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
| |
Collapse
|
20
|
Shady W, Petre EN, Vakiani E, Ziv E, Gonen M, Brown KT, Kemeny NE, Solomon SB, Solit DB, Sofocleous CT. Kras mutation is a marker of worse oncologic outcomes after percutaneous radiofrequency ablation of colorectal liver metastases. Oncotarget 2017; 8:66117-66127. [PMID: 29029497 PMCID: PMC5630397 DOI: 10.18632/oncotarget.19806] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Kras mutation has been associated with shorter overall survival and time to disease recurrence after resection of colorectal liver metastases (CLM). This study evaluated the prognostic value of Kras mutation in patients with CLM treated by percutaneous radiofrequency ablation (RFA). METHODS This is an IRB waived retrospective analysis of the impact of KRAS mutation status on oncologic outcomes after CLM RFA. The endpoints were overall survival (OS), local tumor progression (LTP) rates, and incidence of new liver, lung, and peritoneal metastases. Survival times were calculated using Kaplan-Meier methodology from the time of RFA. RESULTS The study enrolled 97 patients. Kras exon 2 mutation was detected in 39% (38/97) of patients. On univariate analysis, Kras mutation (P=0.016) (HR: 1.8; 95% CI: 1.1 - 2.9) was a significant predictor of OS and retained significance on multivariate analysis. Kras mutation was a significant predictor of new liver metastases (P=0.037) (SHR: 2.0; CI: 1.0-3.7) and peritoneal metastases (P=0.015) (sHR: 3.0; 95% CI: 1.2-7.2) on multivariate analysis. Kras mutation was a significant predictor of LTP after RFA of CLM ablated with margins of 1-5 mm (P=0.018) (SHR: 3.0; 95% CI: 1.2-7.7) with an LTP rate of 80% (12/15) versus 41% (11/27) for wild type. CONCLUSION Kras mutation is a significant predictor of overall survival, new liver, and peritoneal metastases after RFA of CLM. A minimal radiographic ablation margin ≥ 6 mm is essential for local tumor control especially for mutant CLM.
Collapse
Affiliation(s)
- Waleed Shady
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elena N. Petre
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Etay Ziv
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Karen T. Brown
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nancy E. Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen B. Solomon
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David B. Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Constantinos T. Sofocleous
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
21
|
Kumar G, Goldberg SN, Gourevitch S, Levchenko T, Torchilin V, Galun E, Ahmed M. Targeting STAT3 to Suppress Systemic Pro-Oncogenic Effects from Hepatic Radiofrequency Ablation. Radiology 2017; 286:524-536. [PMID: 28880787 DOI: 10.1148/radiol.2017162943] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose To (a) identify key expressed genes in the periablational rim after radiofrequency ablation (RFA) and their role in driving the stimulation of distant tumor growth and (b) use adjuvant drug therapies to block key identified mediator(s) to suppress off-target tumorigenic effects of hepatic RFA. Materials and Methods This institutional animal care and use committee-approved study was performed in C57BL6 mice (n = 20) and F344 rats (n = 124). First, gene expression analysis was performed in mice after hepatic RFA or sham procedure; mice were sacrificed 24 hours to 7 days after treatment. Data were analyzed for differentially expressed genes (greater than twofold change) and their functional annotations. Next, animals were allocated to hepatic RFA or sham treatment with or without STAT3 (signal transducer and activator of transcription 3) inhibitor S3I-201 for periablational phosphorylated STAT3 immunohistochemistry analysis at 24 hours. Finally, animals with subcutaneous R3230 adenocarcinoma tumors were allocated to RFA or sham treatment with or without a STAT3 inhibitor (S3I-201 or micellar curcumin, eight arms). Outcomes included distant tumor growth, proliferation (Ki-67 percentage), and microvascular density. Results At 24 hours, 217 genes had altered expression (107 upregulated and 110 downregulated), decreasing to 55 genes (27 upregulated and 28 downregulated) and 18 genes (four upregulated, 14 downregulated) at 72 hours and 7 days, respectively. At 24 hours, STAT3 occurred in four of seven activated pathways associated with pro-oncogenic genes at network analysis. Immunohistochemistry analysis confirmed elevated periablational phosphorylated STAT3 24 hours after RFA, which was suppressed with S3I-201 (percentage of positive cells per field: 31.7% ± 3.4 vs 3.8% ± 1.7; P < .001). Combined RFA plus S3I-201 reduced systemic distant tumor growth at 7 days (end diameter: 11.8 mm ± 0.5 with RFA plus S3I-201, 19.8 mm ± 0.7 with RFA alone, and 15 mm ± 0.7 with sham procedure; P < .001). STAT3 inhibition with micellar curcumin also suppressed postablation stimulation of distant tumor growth, proliferation, and microvascular density (P < .01). Conclusion Gene expression analysis identified multiple pathways upregulated in the periablational rim after hepatic RFA, of which STAT3 was active in four of seven. Postablation STAT3 activation is linked to increased distant tumor stimulation and can be suppressed with adjuvant STAT3 inhibitors. © RSNA, 2017.
Collapse
Affiliation(s)
- Gaurav Kumar
- From the Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Rd, WCC 308-B, Boston, MA 02215 (G.K., S.N.G., M.A.); Division of Image-guided Therapy and Interventional Oncology, Department of Radiology (S.N.G.), and Goldyne Savad Institute of Gene Therapy (S.G., E.G.), Hadassah Hebrew University Hospital, Jerusalem, Israel; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Mass (T.L., V.T.)
| | - S Nahum Goldberg
- From the Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Rd, WCC 308-B, Boston, MA 02215 (G.K., S.N.G., M.A.); Division of Image-guided Therapy and Interventional Oncology, Department of Radiology (S.N.G.), and Goldyne Savad Institute of Gene Therapy (S.G., E.G.), Hadassah Hebrew University Hospital, Jerusalem, Israel; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Mass (T.L., V.T.)
| | - Svetlana Gourevitch
- From the Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Rd, WCC 308-B, Boston, MA 02215 (G.K., S.N.G., M.A.); Division of Image-guided Therapy and Interventional Oncology, Department of Radiology (S.N.G.), and Goldyne Savad Institute of Gene Therapy (S.G., E.G.), Hadassah Hebrew University Hospital, Jerusalem, Israel; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Mass (T.L., V.T.)
| | - Tatyana Levchenko
- From the Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Rd, WCC 308-B, Boston, MA 02215 (G.K., S.N.G., M.A.); Division of Image-guided Therapy and Interventional Oncology, Department of Radiology (S.N.G.), and Goldyne Savad Institute of Gene Therapy (S.G., E.G.), Hadassah Hebrew University Hospital, Jerusalem, Israel; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Mass (T.L., V.T.)
| | - Vladimir Torchilin
- From the Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Rd, WCC 308-B, Boston, MA 02215 (G.K., S.N.G., M.A.); Division of Image-guided Therapy and Interventional Oncology, Department of Radiology (S.N.G.), and Goldyne Savad Institute of Gene Therapy (S.G., E.G.), Hadassah Hebrew University Hospital, Jerusalem, Israel; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Mass (T.L., V.T.)
| | - Eithan Galun
- From the Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Rd, WCC 308-B, Boston, MA 02215 (G.K., S.N.G., M.A.); Division of Image-guided Therapy and Interventional Oncology, Department of Radiology (S.N.G.), and Goldyne Savad Institute of Gene Therapy (S.G., E.G.), Hadassah Hebrew University Hospital, Jerusalem, Israel; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Mass (T.L., V.T.)
| | - Muneeb Ahmed
- From the Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Rd, WCC 308-B, Boston, MA 02215 (G.K., S.N.G., M.A.); Division of Image-guided Therapy and Interventional Oncology, Department of Radiology (S.N.G.), and Goldyne Savad Institute of Gene Therapy (S.G., E.G.), Hadassah Hebrew University Hospital, Jerusalem, Israel; and Department of Pharmaceutical Sciences, Northeastern University, Boston, Mass (T.L., V.T.)
| |
Collapse
|