1
|
Haam J, Gunin S, Wilson L, Fry S, Bernstein B, Thomson E, Noblet H, Cushman J, Yakel JL. Entorhinal cortical delta oscillations drive memory consolidation. Cell Rep 2023; 42:113267. [PMID: 37838945 PMCID: PMC10872950 DOI: 10.1016/j.celrep.2023.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Long-term memories are formed by creating stable memory representations via memory consolidation, which mainly occurs during sleep following the encoding of labile memories in the hippocampus during waking. The entorhinal cortex (EC) has intricate connections with the hippocampus, but its role in memory consolidation is largely unknown. Using cell-type- and input-specific in vivo neural activity recordings, here we show that the temporoammonic pathway neurons in the EC, which directly innervate the output area of the hippocampus, exhibit potent oscillatory activities during anesthesia and sleep. Using in vivo individual and populational neuronal activity recordings, we demonstrate that a subpopulation of the temporoammonic pathway neurons, which we termed sleep cells, generate delta oscillations via hyperpolarization-activated cyclic-nucleotide-gated channels during sleep. The blockade of these oscillations significantly impaired the consolidation of hippocampus-dependent memory. Together, our findings uncover a key driver of delta oscillations and memory consolidation that are found in the EC.
Collapse
Affiliation(s)
- Juhee Haam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | - Suman Gunin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Leslie Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Sydney Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Briana Bernstein
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Eric Thomson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Hayden Noblet
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jesse Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
2
|
Li C, Liu S, Mei Y, Wang Q, Lu X, Li H, Tao F. Differential Effects of Sevoflurane Exposure on Long-Term Fear Memory in Neonatal and Adult Rats. Mol Neurobiol 2022; 59:2799-2807. [PMID: 35201592 DOI: 10.1007/s12035-021-02629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
It remains unclear whether exposure to sevoflurane produces different effects on long-term cognitive function in developing and mature brains. In the present study, Sprague-Dawley neonatal rats at postnatal day (PND) 7 and adult rats (PND 56) were used in all experiments. We performed fear conditioning testing to examine long-term fear memory following 4-h sevoflurane exposure. We assessed hippocampal synapse ultrastructure with a transmission electron microscope. Moreover, we investigated the effect of sevoflurane exposure on the expression of postsynaptic protein 95 (PSD-95) and its binding protein kalirin-7 in the hippocampus. We observed that early exposure to sevoflurane in neonatal rats impairs hippocampus-dependent fear memory, reduces hippocampal synapse density, and dramatically decreases the expressions of PSD-95 and kalirin-7 in the hippocampus of the developing brain. However, sevoflurane exposure in adult rats has no effects on hippocampus-dependent fear memory and hippocampal synapse density, and the expressions of PSD-95 and kalirin-7 in the adult hippocampus are not significantly altered following sevoflurane treatment. Our results indicate that sevoflurane exposure produces differential effects on long-term fear memory in neonatal and adult rats and that PSD-95 signaling may be involved in the molecular mechanism for early sevoflurane exposure-caused long-term fear memory impairment.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Anesthesiology and Perioperative Cognitive Function, Zhengzhou, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA
| | - Yixin Mei
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Xihua Lu
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan, 450008, China.
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA.
| |
Collapse
|
3
|
Takaishi K, Kinoshita H, Feng GG, Azma T, Kawahito S, Kitahata H. Cytoskeleton-disrupting agent cytochalasin B reduces oxidative stress caused by high glucose in the human arterial smooth muscle. J Pharmacol Sci 2020; 144:197-203. [PMID: 33070838 DOI: 10.1016/j.jphs.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
The role of cytoskeleton dynamics in the oxidative stress toward human vasculature has been unclear. The current study examined whether the cytoskeleton-disrupting agent cytochalasin B reduces oxidative stress caused by high glucose in the human arterial smooth muscle. All experiments in the human omental arteries without endothelium or the cultured human coronary artery smooth muscle cells were performed in d-glucose (5.5 mmol/L). The exposure toward d-glucose (20 mmol/L) for 60 min reduced the relaxation or hyperpolarization to an ATP sensitive K+ channel (KATP) opener levcromakalim (10-8 to 3 × 10-6 mol/L and 3 × 10-6 mol/L, respectively). Cytochalasin B and a superoxide inhibitor Tiron, restored them similarly. Cytochalasin B reduced the NADPH oxidase activity, leading to a decrease in superoxide levels of the arteries treated with high d-glucose. Also, cytochalasin B impaired the F-actin constitution and the membrane translocation of an NADPH oxidase subunit p47phox in artery smooth muscle cells treated with high d-glucose. A clinical concentration of cytochalasin B prevented human vascular smooth muscle malfunction via the oxidative stress caused by high glucose. Regulation of the cytoskeleton may be essential to keep the normal vascular function in patients with hyperglycemia.
Collapse
Affiliation(s)
- Kazumi Takaishi
- Department of Dental Anesthesiology, Tokushima University Hospital, Tokushima, Japan
| | - Hiroyuki Kinoshita
- Department of Anesthesiology, Tokushima University Hospital, Tokushima, Japan; Department of Anesthesiology, Aichi Medical University School of Medicine, Aichi, Japan.
| | - Guo-Gang Feng
- Department of Anesthesiology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Toshiharu Azma
- Department of Anesthesiology & Pain Medicine, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Shinji Kawahito
- Department of Anesthesiology, Tokushima University Hospital, Tokushima, Japan
| | - Hiroshi Kitahata
- Department of Dental Anesthesiology, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
4
|
Li XT, Qin Y, Zhao JY, Zhang JS. Acute lens opacity induced by different kinds of anesthetic drugs in mice. Int J Ophthalmol 2019; 12:904-908. [PMID: 31236344 DOI: 10.18240/ijo.2019.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To study whether specific anesthetic drugs or tear layer evaporation was primarily responsible for the acute cataract and what the change of lens structure is in anesthetized mice. METHODS Five groups were set up in the experiment: Group A (topicamide and phenylephrine mixed eye drop+ chloral hydrate), Group B (tropicamide and phenylephrine mixed eye drop+sevoflurane), Group C (tropicamide and phenylephrine mixed eye drop), Group D (topicamide and phenylephrine mixed eye drop+chloral hydrate, carbomer eye drop in the right eyes), and Group E (tropicamide and phenylephrine mixed eye drop+sevoflurane, carbomer eye drop in the right eyes). A simple classification system was used to assess the severity of lens opacity. And a numerical value from 0 to 3 to each grade was assigned for the cataract index calculation and data analysis. The gross appearance and time course of development of lens opacity were assessed. Hematoxylin and eosin staining was used to observe the lens structure changes in the reversible cataract. RESULTS Tropicamide did not induce lens opacification in mice. Lens opacity caused by inhaled sevoflurane was similar to injected cholral hydrate. Both inhaled-anesthetic-induced lens opacity and injected-anesthetic-induced lens opacity could be prevented by carbomer eye drop. In the severe opacity lens, a wide range of lens fiber cell structure had disordered. The fiber cells became uneven thickness. CONCLUSION The acute reversible lens opacity can unilaterally develop or be induced by a local cause. The structure of lens fiber cells changed in the lens opacity which may influence the permanent connection of the lens fiber cells. This study was not only of practical significance to help maintain lens transparency for eye research, but also of the deeper consideration about the reversible lens opacification phenomenon.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China.,Aier Eye Hospital, Shenyang 110000, Liaoning Province, China
| | - Yu Qin
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China
| | - Jin-Song Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang 110005, Liaoning Province, China.,Aier Eye Hospital, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
5
|
Suberoylanilide hydroxamic acid reversed cognitive and synaptic plasticity impairments induced by sevoflurane exposure in adult mice. Neuroreport 2019; 30:274-279. [DOI: 10.1097/wnr.0000000000001196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Does Memory Consolidation by Anesthetics Relate to a Time Window of Age? Anesth Analg 2017. [DOI: 10.1213/ane.0000000000002163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|