1
|
Xie Z, McAuliffe O, Jin YS, Miller MJ. Invited review: Genomic modifications of lactic acid bacteria and their applications in dairy fermentation. J Dairy Sci 2024; 107:8749-8764. [PMID: 38969005 DOI: 10.3168/jds.2024-24989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
Lactic acid bacteria (LAB) have a long history of safe use in milk fermentation and are generally recognized as health-promoting microorganisms when present in fermented foods. Lactic acid bacteria are also important components of the human intestinal microbiota and are widely used as probiotics. Considering their safe and health-beneficial properties, LAB are considered appropriate vehicles that can be genetically modified for food, industrial and pharmaceutical applications. Here, this review describes (1) the potential opportunities for application of genetically modified LAB strains in dairy fermentation and (2) the various genomic modification tools for LAB strains, such as random mutagenesis, adaptive laboratory evolution, conjugation, homologous recombination, recombineering, and CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated protein)-based genome engineering. Finally, this review also discusses the potential future developments of these genomic modification technologies and their applications in dairy fermentations.
Collapse
Affiliation(s)
- Zifan Xie
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland P61 C996; School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland BT9 5DL
| | - Yong-Su Jin
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Michael J Miller
- Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801.
| |
Collapse
|
2
|
Tsvetkov P, Eisen TJ, Heinrich SU, Brune Z, Hallacli E, Newby GA, Kayatekin C, Pincus D, Lindquist S. Persistent Activation of mRNA Translation by Transient Hsp90 Inhibition. Cell Rep 2020; 32:108001. [PMID: 32783929 PMCID: PMC10088179 DOI: 10.1016/j.celrep.2020.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022] Open
Abstract
The heat shock protein 90 (Hsp90) chaperone functions as a protein-folding buffer and plays a role promoting the evolution of new heritable traits. To better understand how Hsp90 can affect mRNA translation, we screen more than 1,600 factors involved in mRNA regulation for physical interactions with Hsp90 in human cells. The mRNA binding protein CPEB2 strongly binds Hsp90 via its prion domain. In a yeast model, transient inhibition of Hsp90 results in persistent activation of a CPEB translation reporter even in the absence of exogenous CPEB that persists for 30 generations after the inhibitor is removed. Ribosomal profiling reveals that some endogenous yeast mRNAs, including HAC1, show a persistent change in translation efficiency following transient Hsp90 inhibition. Thus, transient loss of Hsp90 function can promote a nongenetic inheritance of a translational state affecting specific mRNAs, introducing a mechanism by which Hsp90 can promote phenotypic variation.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Timothy J Eisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sven U Heinrich
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zarina Brune
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Erinc Hallacli
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Greg A Newby
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Can Kayatekin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Wang Y, Zhang K, Li H, Xu X, Xue H, Wang P, Fu YV. Fine-tuning the expression of target genes using a DDI2 promoter gene switch in budding yeast. Sci Rep 2019; 9:12538. [PMID: 31467340 PMCID: PMC6715627 DOI: 10.1038/s41598-019-49000-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/21/2019] [Indexed: 11/22/2022] Open
Abstract
Tuned gene expression is crucial to the proper growth and response to the environmental changes of an organism. To enable tunable gene expression as designed is desirable in both scientific research and industrial application. Here, we introduce a novel promoter switching method based on the DDI2 promoter (PDDI2) that can fine tune the expression of target genes. We constructed a recyclable cassette (PDDI2-URA3-PDDI2) and integrated it upstream of yeast target genes to replace the native promoters by DDI2 promoter without introducing any junk sequence. We found that the presence or absence of cyanamide as an inducer could turn on or off the expression of target genes. In addition, we showed that PDDI2 could act as a gene switch to linearly regulate the expression levels of target genes in vivo. We switched the original promoters of RAD18, TUP1, and CDC6 with PDDI2 as a proof-of-concept.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaining Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hanfei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huijun Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingping Wang
- Qingdao Baihuizhiye Biotech Co.Ltd, Qingdao, 266109, China
| | - Yu V Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
A Seamless Gene Deletion Method and Its Application for Regulation of Higher Alcohols and Ester in Baijiu Saccharomyces cerevisiae. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6723849. [PMID: 31211141 PMCID: PMC6532323 DOI: 10.1155/2019/6723849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
Abstract
The security of engineering Saccharomyces cerevisiae is becoming more focused on industrial production in consideration of the public concern regarding genetically modified organisms. In this work, a rapid and highly efficient system for seamless gene deletion in S. cerevisiae was developed through two-step integration protocol combined with endonuclease I-SCEI expression. The factors affecting the frequency of the second homologous recombination were optimized, and studies indicated that the mutant strains with 500 bp direct repeats and that have been incubating in galactose (0.5 g/100 mL) medium at 30°C and 180 r/min for 24 h permit high frequency (6.86 × 10−4) of the second homologous recombination. Furthermore, DNA sequence assays showed only self-DNA in native location without any foreign genes after deletion using this method. The seamless gene deletion method was applied to the construction of the engineering strains with BAT2 (encoding aminotransferase) deletion and ATF1 (alcohol acetyltransferases) overexpression. The mutants exhibited significant effects on higher alcohol reduction and ester improvement after Baijiu fermentation. The engineered strains can be used in industrial production in security, thereby meeting the requirements of modern science and technology.
Collapse
|
5
|
|
6
|
A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast. G3-GENES GENOMES GENETICS 2018; 8:2067-2077. [PMID: 29703785 PMCID: PMC5982833 DOI: 10.1534/g3.118.200164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CRISPR/Cas9 system, which relies on RNA‐guided DNA cleavage to induce site-specific DNA double-strand breaks, is a powerful tool for genome editing. This system has been successfully adapted for the fission yeast Schizosaccharomyces pombe by expressing Cas9 and the single-guide RNA (sgRNA) from a plasmid. In the procedures published to date, the cloning step that introduces a specific sgRNA target sequence into the plasmid is the most tedious and time-consuming. To increase the efficiency of applying the CRISPR/Cas9 system in fission yeast, we here developed a cloning-free procedure that uses gap repair in fission yeast cells to assemble two linear DNA fragments, a gapped Cas9-encoding plasmid and a PCR-amplified sgRNA insert, into a circular plasmid. Both fragments contain only a portion of the ura4 or bsdMX marker so that only the correctly assembled plasmid can confer uracil prototrophy or blasticidin resistance. We show that this gap-repair-based and cloning-free CRISPR/Cas9 procedure permits rapid and efficient point mutation knock-in, endogenous N-terminal tagging, and genomic sequence deletion in fission yeast.
Collapse
|
7
|
Kayatekin C, Amasino A, Gaglia G, Flannick J, Bonner JM, Fanning S, Narayan P, Barrasa MI, Pincus D, Landgraf D, Nelson J, Hesse WR, Costanzo M, Myers CL, Boone C, Florez JC, Lindquist S. Translocon Declogger Ste24 Protects against IAPP Oligomer-Induced Proteotoxicity. Cell 2018; 173:62-73.e9. [PMID: 29526462 PMCID: PMC5945206 DOI: 10.1016/j.cell.2018.02.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/20/2017] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
Abstract
Aggregates of human islet amyloid polypeptide (IAPP) in the pancreas of patients with type 2 diabetes (T2D) are thought to contribute to β cell dysfunction and death. To understand how IAPP harms cells and how this might be overcome, we created a yeast model of IAPP toxicity. Ste24, an evolutionarily conserved protease that was recently reported to degrade peptides stuck within the translocon between the cytoplasm and the endoplasmic reticulum, was the strongest suppressor of IAPP toxicity. By testing variants of the human homolog, ZMPSTE24, with varying activity levels, the rescue of IAPP toxicity proved to be directly proportional to the declogging efficiency. Clinically relevant ZMPSTE24 variants identified in the largest database of exomes sequences derived from T2D patients were characterized using the yeast model, revealing 14 partial loss-of-function variants, which were enriched among diabetes patients over 2-fold. Thus, clogging of the translocon by IAPP oligomers may contribute to β cell failure.
Collapse
Affiliation(s)
- Can Kayatekin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Audra Amasino
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Giorgio Gaglia
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jason Flannick
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia M Bonner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Saranna Fanning
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Priyanka Narayan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dirk Landgraf
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Justin Nelson
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - William R Hesse
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Diabetes Research Center, Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Newby GA, Kiriakov S, Hallacli E, Kayatekin C, Tsvetkov P, Mancuso CP, Bonner JM, Hesse WR, Chakrabortee S, Manogaran AL, Liebman SW, Lindquist S, Khalil AS. A Genetic Tool to Track Protein Aggregates and Control Prion Inheritance. Cell 2017; 171:966-979.e18. [PMID: 29056345 DOI: 10.1016/j.cell.2017.09.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/20/2017] [Accepted: 09/25/2017] [Indexed: 01/05/2023]
Abstract
Protein aggregation is a hallmark of many diseases but also underlies a wide range of positive cellular functions. This phenomenon has been difficult to study because of a lack of quantitative and high-throughput cellular tools. Here, we develop a synthetic genetic tool to sense and control protein aggregation. We apply the technology to yeast prions, developing sensors to track their aggregation states and employing prion fusions to encode synthetic memories in yeast cells. Utilizing high-throughput screens, we identify prion-curing mutants and engineer "anti-prion drives" that reverse the non-Mendelian inheritance pattern of prions and eliminate them from yeast populations. We extend our technology to yeast RNA-binding proteins (RBPs) by tracking their propensity to aggregate, searching for co-occurring aggregates, and uncovering a group of coalescing RBPs through screens enabled by our platform. Our work establishes a quantitative, high-throughput, and generalizable technology to study and control diverse protein aggregation processes in cells.
Collapse
Affiliation(s)
- Gregory A Newby
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Szilvia Kiriakov
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Erinc Hallacli
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Can Kayatekin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Peter Tsvetkov
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Christopher P Mancuso
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - J Maeve Bonner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - William R Hesse
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Susan W Liebman
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| | - Susan Lindquist
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Roggenkamp E, Giersch RM, Wedeman E, Eaton M, Turnquist E, Schrock MN, Alkotami L, Jirakittisonthon T, Schluter-Pascua SE, Bayne GH, Wasko C, Halloran M, Finnigan GC. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains. Front Microbiol 2017; 8:1773. [PMID: 28979241 PMCID: PMC5611381 DOI: 10.3389/fmicb.2017.01773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae continues to serve as a powerful model system for both basic biological research and industrial application. The development of genome-wide collections of individually manipulated strains (libraries) has allowed for high-throughput genetic screens and an emerging global view of this single-celled Eukaryote. The success of strain construction has relied on the innate ability of budding yeast to accept foreign DNA and perform homologous recombination, allowing for efficient plasmid construction (in vivo) and integration of desired sequences into the genome. The development of molecular toolkits and “integration cassettes” have provided fungal systems with a collection of strategies for tagging, deleting, or over-expressing target genes; typically, these consist of a C-terminal tag (epitope or fluorescent protein), a universal terminator sequence, and a selectable marker cassette to allow for convenient screening. However, there are logistical and technical obstacles to using these traditional genetic modules for complex strain construction (manipulation of many genomic targets in a single cell) or for the generation of entire genome-wide libraries. The recent introduction of the CRISPR/Cas gene editing technology has provided a powerful methodology for multiplexed editing in many biological systems including yeast. We have developed four distinct uses of the CRISPR biotechnology to generate yeast strains that utilizes the conversion of existing, commonly-used yeast libraries or strains. We present Cas9-based, marker-less methodologies for (i) N-terminal tagging, (ii) C-terminally tagging yeast genes with 18 unique fusions, (iii) conversion of fluorescently-tagged strains into newly engineered (or codon optimized) variants, and finally, (iv) use of a Cas9 “gene drive” system to rapidly achieve a homozygous state for a hypomorphic query allele in a diploid strain. These CRISPR-based methods demonstrate use of targeting universal sequences previously introduced into a genome.
Collapse
Affiliation(s)
- Emily Roggenkamp
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Rachael M Giersch
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Emily Wedeman
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Muriel Eaton
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Emily Turnquist
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Madison N Schrock
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Linah Alkotami
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Thitikan Jirakittisonthon
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State UniversityManhattan, KS, United States
| | | | - Gareth H Bayne
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Cory Wasko
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| |
Collapse
|
10
|
Rodríguez-López M, Cotobal C, Fernández-Sánchez O, Borbarán Bravo N, Oktriani R, Abendroth H, Uka D, Hoti M, Wang J, Zaratiegui M, Bähler J. A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast. Wellcome Open Res 2017; 1:19. [PMID: 28612052 PMCID: PMC5445975 DOI: 10.12688/wellcomeopenres.10038.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 01/24/2023] Open
Abstract
In the fission yeast
Schizosaccharomyces pombe the prevailing approach for gene manipulations is based on homologous recombination of a PCR product that contains genomic target sequences and a selectable marker. The CRISPR/Cas9 system has recently been implemented in fission yeast, which allows for seamless genome editing without integration of a selection marker or leaving any other genomic ‘scars’. The published method involves manual design of the single guide RNA (sgRNA), and digestion of a large plasmid with a problematic restriction enzyme to clone the sgRNA. To increase the efficiency of this approach, we have established and optimized a PCR-based system to clone the sgRNA without restriction enzymes into a plasmid with a dominant
natMX6 (nourseothricin)
selection marker. We also provide a web-tool, CRISPR4P, to support the design of the sgRNAs and the primers required for the entire process of seamless DNA deletion. Moreover, we report the preparation of G1-synchronized and cryopreserved
S. pombe cells, which greatly increases the efficiency and speed for transformations, and may also facilitate standard gene manipulations. Applying this optimized CRISPR/Cas9-based approach, we have successfully deleted over 80 different non-coding RNA genes, which are generally lowly expressed, and have inserted 7 point mutations in 4 different genomic regions.
Collapse
Affiliation(s)
- María Rodríguez-López
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Cristina Cotobal
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Oscar Fernández-Sánchez
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Natalia Borbarán Bravo
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Risky Oktriani
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Heike Abendroth
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Dardan Uka
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mimoza Hoti
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Jin Wang
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, USA
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
11
|
Rodríguez-López M, Cotobal C, Fernández-Sánchez O, Borbarán Bravo N, Oktriani R, Abendroth H, Uka D, Hoti M, Wang J, Zaratiegui M, Bähler J. A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast. Wellcome Open Res 2017. [PMID: 28612052 DOI: 10.12688/wellcomeopenres.10038.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe the prevailing approach for gene manipulations is based on homologous recombination of a PCR product that contains genomic target sequences and a selectable marker. The CRISPR/Cas9 system has recently been implemented in fission yeast, which allows for seamless genome editing without integration of a selection marker or leaving any other genomic 'scars'. The published method involves manual design of the single guide RNA (sgRNA), and digestion of a large plasmid with a problematic restriction enzyme to clone the sgRNA. To increase the efficiency of this approach, we have established and optimized a PCR-based system to clone the sgRNA without restriction enzymes into a plasmid with a dominant natMX6 (nourseothricin) selection marker. We also provide a web-tool, CRISPR4P, to support the design of the sgRNAs and the primers required for the entire process of seamless DNA deletion. Moreover, we report the preparation of G1-synchronized and cryopreserved S. pombe cells, which greatly increases the efficiency and speed for transformations, and may also facilitate standard gene manipulations. Applying this optimized CRISPR/Cas9-based approach, we have successfully deleted over 80 different non-coding RNA genes, which are generally lowly expressed, and have inserted 7 point mutations in 4 different genomic regions.
Collapse
Affiliation(s)
- María Rodríguez-López
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Cristina Cotobal
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Oscar Fernández-Sánchez
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Natalia Borbarán Bravo
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Risky Oktriani
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Heike Abendroth
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Dardan Uka
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mimoza Hoti
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Jin Wang
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, USA
| | - Jürg Bähler
- Research Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
12
|
Wang Q, Xue H, Li S, Chen Y, Tian X, Xu X, Xiao W, Fu YV. A method for labeling proteins with tags at the native genomic loci in budding yeast. PLoS One 2017; 12:e0176184. [PMID: 28459859 PMCID: PMC5411076 DOI: 10.1371/journal.pone.0176184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022] Open
Abstract
Fluorescent proteins and epitope tags are often used as protein fusion tags to study target proteins. One prevailing technique in the budding yeast Saccharomyces cerevisiae is to fuse these tags to a target gene at the precise chromosomal location via homologous recombination. However, several limitations hamper the application of this technique, such as the selectable markers not being reusable, tagging of only the C-terminal being possible, and a "scar" sequence being left in the genome. Here, we describe a strategy to solve these problems by tagging target genes based on a pop-in/pop-out and counter-selection system. Three fluorescent protein tag (mCherry, sfGFP, and mKikGR) and two epitope tag (HA and 3×FLAG) constructs were developed and utilized to tag HHT1, UBC13 or RAD5 at the chromosomal locus as proof-of-concept.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Huijun Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Siqi Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ying Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuelei Tian
- College of Life Sciences, Capital Normal University, Beijing, China
- National Institute for Radiological Protection, China CDC, Beijing, China
| | - Xin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK Canada
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Recent advances in genetic modification systems for Actinobacteria. Appl Microbiol Biotechnol 2017; 101:2217-2226. [PMID: 28184986 DOI: 10.1007/s00253-017-8156-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 01/08/2023]
Abstract
Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.
Collapse
|
14
|
Rodríguez-López M, Cotobal C, Fernández-Sánchez O, Borbarán Bravo N, Oktriani R, Abendroth H, Uka D, Hoti M, Wang J, Zaratiegui M, Bähler J. A CRISPR/Cas9-based method and primer design tool for seamless genome editing in fission yeast. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.10038.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe the prevailing approach for gene manipulations is based on homologous recombination of a PCR product that contains genomic target sequences and a selectable marker. The CRISPR/Cas9 system has recently been implemented in fission yeast, which allows for seamless genome editing without integration of a selection marker or leaving any other genomic ‘scars’. The published method involves manual design of the single guide RNA (sgRNA), and digestion of a large plasmid with a problematic restriction enzyme to clone the sgRNA. To increase the efficiency of this approach, we have established and optimized a PCR-based system to clone the sgRNA without restriction enzymes into a plasmid with a dominant natMX6 (nourseothricin) selection marker. We also provide a web-tool, CRISPR4P, to support the design of the sgRNAs and the primers required for the entire process of seamless DNA deletion. Moreover, we report the preparation of G1-synchronized and cryopreserved S. pombe cells, which greatly increases the efficiency and speed for transformations, and may also facilitate standard gene manipulations. Applying this optimized CRISPR/Cas9-based approach, we have successfully deleted over 80 different non-coding RNA genes, which are generally lowly expressed, and have inserted 7 point mutations in 4 different genomic regions.
Collapse
|