1
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
2
|
Borges TJ, Lima K, Murshid A, Lape IT, Zhao Y, Rigo MM, Lang BJ, Siddiqui SS, Hui E, Riella LV, Bonorino C, Calderwood SK. Innate extracellular Hsp70 inflammatory properties are mediated by the interaction of Siglec-E and LOX-1 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569623. [PMID: 38106019 PMCID: PMC10723335 DOI: 10.1101/2023.12.01.569623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Innate immune responses to cell damage-associated molecular patterns induce a controlled degree of inflammation, ideally avoiding the promotion of intense unwanted inflammatory adverse events. When released by damaged cells, Hsp70 can stimulate different responses that range from immune activation to immune suppression. The effects of Hsp70 are mediated through innate receptors expressed primarily by myeloid cells, such as dendritic cells (DCs). The regulatory innate receptors that bind to extracellular mouse Hsp70 (mHsp70) are not fully characterized, and neither are their potential interactions with activating innate receptors. Here, we describe that extracellular mHsp70 interacts with a receptor complex formed by inhibitory Siglec-E and activating LOX-1 on DCs. We also find that this interaction takes place within lipid microdomains, and Siglec-E acts as a negative regulator of LOX-1-mediated innate activation upon mHsp70 or oxidized LDL binding. Thus, HSP70 can both bind to and modulate the interaction of inhibitory and activating innate receptors on the cell surface. These findings add another dimension of regulatory mechanism to how self-molecules contribute to dampening of exacerbated inflammatory responses.
Collapse
|
3
|
Zhong M, Huang J, Wu Z, Chan KG, Wang L, Li J, Lee LH, Law JWF. Potential Roles of Selectins in Periodontal Diseases and Associated Systemic Diseases: Could They Be Targets for Immunotherapy? Int J Mol Sci 2022; 23:14280. [PMID: 36430760 PMCID: PMC9698067 DOI: 10.3390/ijms232214280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontal diseases are predisposing factors to the development of many systemic disorders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases could significantly affect human health and quality of life. Hence, it is vital to explore effective therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding, disruption of the gingival capillary's integrity, and irreversible destruction of the periodontal supporting bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-, and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune responses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic targets for periodontal disorders and their associated systemic diseases since they play a crucial role in immune regulation and endothelium dysfunction. However, the research on selectins and their association with periodontal and systemic diseases remains limited. This review aims to discuss the critical roles of selectins in periodontitis and associated systemic disorders and highlights the potential of selectins as therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Jiangyong Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Lijing Wang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiang Li
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Wang B, Wu G, Li K, Ling J, Zhao Y, Liu F. A Glycoside Hydrolase Family 99-Like Domain-Containing Protein Modifies Outer Membrane Proteins to Maintain Xanthomonas Pathogenicity and Viability in Stressful Environments. PHYTOPATHOLOGY 2021; 111:929-939. [PMID: 33174820 DOI: 10.1094/phyto-08-20-0327-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein glycosylation is an essential process that plays an important role in proteome stability, protein structure, and protein function modulation in eukaryotes. However, in bacteria, especially plant pathogenic bacteria, similar studies are lacking. Here, we investigated the relationship between protein glycosylation and pathogenicity by using Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight in rice, as a well-defined example. In our previous work, we identified a virulence-related hypothetical protein, PXO_03177, but how this protein regulates X. oryzae pv. oryzae virulence has remained unclear. BLAST analysis showed that most homologous proteins of PXO_03177 are glycoside hydrolase family 99-like domain-containing proteins. In the current study, we found that the outer membrane integrity of ΔPXO_03177 appeared to be disrupted. Extracting the outer membrane proteins (OMPs) and performing comparative proteomics and sodium dodecyl sulphate-polyacrylamide gel electrophoresis gel staining analyses revealed that PXO_03177 deletion altered the protein levels of 13 OMPs. Western blot analyses showed that the protein level and glycosylation modification of PXO_02523, a related OmpA family-like protein, was changed in the ΔPXO_03177 mutant background strain. Additionally, the interaction between PXO_03177 and PXO_02523 was confirmed by coimmunoprecipitation. Both PXO_03177 and PXO_02523 play important roles in regulating pathogen virulence and viability in stressful environments. This work provides the first evidence that protein glycosylation is necessary for the virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Kaihuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Ling
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| |
Collapse
|
5
|
Murakami Y, Nagano K, Hasegawa Y. Separation of Glycosylated OmpA-Like Proteins from Porphyromonas gingivalis and Tannerella forsythia. Methods Mol Biol 2021; 2210:143-155. [PMID: 32815135 DOI: 10.1007/978-1-0716-0939-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OmpA-like proteins located in the outer bacterial membrane are potential virulence factors from the major periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia. Our previous studies have shown that OmpA-like proteins are glycosylated by O-linked N-acetylglucosamine (O-GlcNAc) and are strongly reactive to wheat germ agglutinin (WGA) lectin, which shows sugar specificity to GlcNAc. Utilizing this property, we have developed a separation method for OmpA-like proteins by affinity chromatography using WGA lectin-agarose. The purity of enriched native OmpA-like proteins were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie Brilliant Blue (CBB) staining. More importantly, the purified OmpA-like proteins formed a unique trimeric structure keeping their bioactivity intact. In this chapter, we describe a detailed procedure to separate OmpA-like proteins, which may be used to further progress the biological studies of OmpA-like proteins.
Collapse
Affiliation(s)
- Yukitaka Murakami
- Department of Dental Basic Education (Biology), Asahi University School of Dentistry, Mizuho, Gifu, Japan.
| | - Keiji Nagano
- Division of Microbiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
6
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
7
|
OmpA-like proteins of Porphyromonas gingivalis contribute to serum resistance and prevent Toll-like receptor 4-mediated host cell activation. PLoS One 2018; 13:e0202791. [PMID: 30153274 PMCID: PMC6112661 DOI: 10.1371/journal.pone.0202791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/09/2018] [Indexed: 12/03/2022] Open
Abstract
Porphyromonas gingivalis possesses various abilities to evade and disrupt host immune responses, by which it acts as an important periodontal pathogen. P. gingivalis produces outer membrane protein A (OmpA)-like proteins (OmpALPs), Pgm6 and Pgm7, as major O-linked glycoproteins, but their pathological roles in P. gingivalis infection are largely unknown. Here, we report that OmpALP-deficient strains of P. gingivalis show an enhanced stimulatory activity in coculture with host cells. Such an altered ability of the OmpALP-deficient strains was found to be due to their impaired survival in coculture and the release of LPS from dead bacterial cells to stimulate Toll-like receptor 4 (TLR4). Further analyses revealed that the OmpALP-deficient strains were inviable in serum-containing media although they grew normally in the bacterial medium. The wild-type strain was able to grow in 90% normal human serum, while the OmpALP-deficient strains did not survive even at 5%. The OmpALP-deficient strains did not survive in heat-inactivated serum, but they gained the ability to survive and grow in proteinase K-treated serum. Of note, the sensitivity of the OmpALP-deficient strains to the bactericidal activity of human β-defensin 3 was increased as compared with the WT. Thus, this study suggests that OmpALPs Pgm6 and Pgm7 are important for serum resistance of P. gingivalis. These proteins prevent bacterial cell destruction by serum and innate immune recognition by TLR4; this way, P. gingivalis may adeptly colonize serum-containing gingival crevicular fluids and subgingival environments.
Collapse
|
8
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
9
|
Chinthamani S, Settem RP, Honma K, Kay JG, Sharma A. Macrophage inducible C-type lectin (Mincle) recognizes glycosylated surface (S)-layer of the periodontal pathogen Tannerella forsythia. PLoS One 2017; 12:e0173394. [PMID: 28264048 PMCID: PMC5338828 DOI: 10.1371/journal.pone.0173394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/20/2017] [Indexed: 01/11/2023] Open
Abstract
The oral pathogen Tannerella forsythia is implicated in the development of periodontitis, a common inflammatory disease that leads to the destruction of the gum and tooth supporting tissues, often leading to tooth loss. T. forsythia is a unique Gram-negative organism endowed with an elaborate protein O-glycosylation system that allows the bacterium to express a glycosylated surface (S)-layer comprising two high molecular weight glycoproteins modified with O-linked oligosaccharides. The T. forsythia S-layer has been implicated in the modulation of cytokine responses of antigen presenting cells, such as macrophages, that play a significant role during inflammation associated with periodontitis. The macrophage-inducible C-type lectin receptor (Mincle) is an FcRγ-coupled pathogen recognition receptor that recognizes a wide variety of sugar containing ligands from fungal and bacterial pathogens. In this study, we aimed to determine if Mincle might be involved in the recognition of T. forsythia S-layer and modulation of cytokine response of macrophages against the bacterium. Binding studies using recombinant Mincle-Fc fusion protein indicated a specific Ca2+-dependent binding of Mincle to T. forsythia S-layer. Subsequent experiments with Mincle-expressing and Mincle-knockdown macrophages revealed a role for Mincle/S-layer interaction in the induction of both pro- and anti-inflammatory cytokine secretion in macrophages stimulated with T. forsythia as well as its S-layer. Together, these studies revealed Mincle as an important macrophage receptor involved in the modulation of cytokine responses of macrophages against T. forsythia, and thus may play a critical role in orchestrating the host immune response against the bacterium.
Collapse
Affiliation(s)
- Sreedevi Chinthamani
- Dept. of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Rajendra P. Settem
- Dept. of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Kiyonobu Honma
- Dept. of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Jason G. Kay
- Dept. of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| | - Ashu Sharma
- Dept. of Oral Biology, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|