1
|
Yépez JEG, Marangon RM, Johann ACBR, de Viveiros BM, Andreis PKDS, Vosgerau L, Salvação SML, Tanaka OM, Guariza-Filho O, Ignácio SA, Camargo ES. Impact of botulinum toxin type A on tooth movement and bone remodeling in male Wistar rats. Arch Oral Biol 2024; 169:106105. [PMID: 39447376 DOI: 10.1016/j.archoralbio.2024.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE We evaluated whether the use of botulinum neurotoxin type A (BTX-A) in masticatory muscles influences tooth movement and bone remodeling. DESIGN Seventy-seven male Wistar rats were allocated to the groups: S - Saline (n=20); SM - Saline with movement (n=20); BT - Botulinum toxin (n=18); BTM - Botulinum toxin with movement (n=19). On day 1, 0.02 mL of sterile 0.9 % saline was administered to groups S and SM and BTX-A (1 U in 0.02 mL of saline) to groups BT and BTM, in the masseter and temporal muscles laterally. On day 30, a nickel titanium spring was installed to move the first maxillary molar and euthanasia was performed on days 32 and 51. Tooth displacement, maxillary and mandibular bone volumes, collagen neoformation, bone and root resorptions, and masseter morphometry were assessed. Statistical analysis was conducted (p < 0.05). RESULTS A higher percentage of type I collagen was observed in the BT than in the S group on day 51 and lower mass, length, and diameter of the masseter fibers in BT and BTM (p < 0.05). Tooth displacement, bone volume, bone and root resorptions, hyaline area, and masseter height showed no difference among groups with and without BTX-A, regardless of tooth movement (p > 0.05). CONCLUSIONS BTX-A did not interfere with tooth displacement, bone volume, and dental and periodontal tissues related to tooth movement in rats; it increased mature collagen in animals without tooth movement; and it caused a decrease in the mass, length, and diameter of the masseter fibers.
Collapse
Affiliation(s)
- Joana Estephany Gordillo Yépez
- Graduate Program in Dentistry, Orthodontics, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Renata Machado Marangon
- Graduate Program in Dentistry, Orthodontics, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Aline Cristina Batista Rodrigues Johann
- Graduate Program in Dentistry, Stomatology, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Bruno Massa de Viveiros
- Graduate Program in Animal Sciences, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Patricia Kern Di Scala Andreis
- Graduate Program in Dentistry, Orthodontics, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Luana Vosgerau
- Undergraduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Sara Moreira Leal Salvação
- Undergraduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Orlando Motohiro Tanaka
- Graduate Program in Dentistry, Orthodontics, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Odilon Guariza-Filho
- Graduate Program in Dentistry, Orthodontics, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Sergio Aparecido Ignácio
- Graduate Program in Dentistry, Statistics, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| | - Elisa Souza Camargo
- Graduate Program in Dentistry, Orthodontics, Pontifícia Universidade Católica do Paraná, School of Medicine and Life Sciences, Rua Imaculada Conceição, 1155, Prado Velho, Curitiba, Paraná 80215-901, Brazil.
| |
Collapse
|
2
|
Ryoo HJ, Kwon H, Choi JS, Sohn BS, Yoo JY, Shim HS. Prospective Analysis of the Effectiveness of Targeted Botulinum Toxin Type A Injection Using an Ultrasound-Guided Single-Point Injection Technique for Lower Face Contouring. J Clin Med 2024; 13:5337. [PMID: 39274549 PMCID: PMC11396597 DOI: 10.3390/jcm13175337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Botulinum toxin type A (BoNT-A) injection is widely used for masseter hypertrophy. Traditional BoNT-A injection methods often incorporate landmark-guided blind injections, which approximate the shape of the masseter muscle inject across various points. Conversely, ultrasound (US)-guided injection techniques offer real-time visualization and dynamic monitoring, enhancing accuracy. Patients and Methods: 50 patients who underwent BoNT-A injections were included in this trial. One on the face side received a landmark-guided injection, and the other side was treated with a US-guided injection. Initial and post-procedure measurements of muscle thickness at the upper, middle, and lower regions were collected using ultrasound. Results: Both methods led to a significant reduction in muscle thickness one month after injection. In the upper area, the absolute difference in muscle thickness between the two methods was observed as a mean ± standard deviation (SD) value of 0.37 ± 0.0314 (p < 0.0001), indicating a superior effect with US-guided injection. Similarly, in the middle area, the mean ± SD difference was 0.41 ± 0.0608 (p < 0.0001) and in the lower area, the mean ± SD difference was 0.24 ± 0.0134 (p = 0.0004). Conclusions: This study demonstrated that the US-guided single-point injection technique is a more effective and accurate method for BoNT-A injection compared to the conventional method.
Collapse
Affiliation(s)
- Hyun-Jung Ryoo
- Department of Plastic and Reconstructive Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| | - Ho Kwon
- Department of Plastic and Reconstructive Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Jae-Seon Choi
- Department of Plastic and Reconstructive Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| | - Bo-Seong Sohn
- Santaclaus Aesthetic Clinic, Seoul 06120, Republic of Korea
| | - Ja-Young Yoo
- Ruby Clinic, SeoCho-Gu, Seoul 06267, Republic of Korea
| | - Hyung-Sup Shim
- Department of Plastic and Reconstructive Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 16247, Republic of Korea
| |
Collapse
|
3
|
Dechaufour P, Libouban H, Chappard D, Kün-Darbois JD. Repeated unilateral injections of botulinum toxin in masticatory muscles in adult rats do not amplify condylar and alveolar bone loss nor modify the volume of the hypertrophic bone proliferation at enthesis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101955. [PMID: 38950733 DOI: 10.1016/j.jormas.2024.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVES Botulinum toxin is used in human in repeatedly masticatory muscles injections. A single BTX injection in animal induces mandibular bone loss with a muscle enthesis hypertrophic metaplasia. Our aim was to evaluate mandibular bone changes after unilateral repeated injections of BTX in adult rats. STUDY DESIGN Mature male rats were randomized into 3 groups: one, two or three injections. Each rat received injections in right masseter and temporalis muscles. The left side was the control side. Microcomputed tomography was used to perform 2D and 3D analyses. RESULTS Bone loss was evidenced on the right sides of alveolar and condylar bone. Alveolar bone volume increased in both control left side and injected right side whereas condylar bone volume remained constant in all groups, for both sides. Enthesis bone hypertrophic metaplasias were evidenced on the BTX injected sides without any modification with the number of injections. CONCLUSION BTX repeated injections in masticatory muscles lead to major mandibular condylar and alveolar bone loss that does not worsen. They lead to the occurrence of an enthesis bone proliferation that is not dependent on the number of injections. These results are an argument for the safety of BTX injections in masticatory muscles in human.
Collapse
Affiliation(s)
- Pierre Dechaufour
- Univ Angers, Nantes Université, Oniris, Inserm, RMeS, REGOS, SFR ICAT, F-49000 Angers, France; CHU Angers, Service de Chirurgie Maxillo-faciale, F-49933 Angers, France
| | - Hélène Libouban
- Univ Angers, Nantes Université, Oniris, Inserm, RMeS, REGOS, SFR ICAT, F-49000 Angers, France
| | - Daniel Chappard
- Univ Angers, Nantes Université, Oniris, Inserm, RMeS, REGOS, SFR ICAT, F-49000 Angers, France
| | - Jean-Daniel Kün-Darbois
- Univ Angers, Nantes Université, Oniris, Inserm, RMeS, REGOS, SFR ICAT, F-49000 Angers, France; CHU Angers, Service de Chirurgie Maxillo-faciale, F-49933 Angers, France.
| |
Collapse
|
4
|
Cao LL, Yang ZG, Qi WH, Zhang H, Bi Y, Shan Y, Cui XW, Jiang F. A preliminary study on ultrasound techniques applied to evaluate the curative effect of botulinum toxin type a in hypertrophic scars. Heliyon 2024; 10:e34723. [PMID: 39144951 PMCID: PMC11320163 DOI: 10.1016/j.heliyon.2024.e34723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Objective To validate the feasibility of ultrasound in assessing the curative effect of botulinum toxin type A (BTXA) in treating hypertrophic scar (HS). Methods Eight healthy New Zealand long-eared rabbits were utilized in the study. Four wounds, each measuring 1.0 cm in diameter, were created on both ears of each rabbit. Immediately after surgery, each of these wounds received an injection containing a distinct concentration of BTXA. On postoperative week 6, scar thickness, vascularity, and hardness were assessed based on high frequency ultrasound (HFUS), superb microvascular imaging (SMI), shear wave elastography (SWE), Masson staining, and immunohistochemical staining for CD31. Results All wounds healed well, and HSs formed after 6 weeks post-surgery. Scar thickness based on HFUS presented a significant decrease with increasing BTXA concentration (p < 0.05), aligning with the gross morphology. Simultaneously, scar stiffness, evaluated using SWE, showed a significant decrease in accordance with the variation of the collagen volume fraction, which refers to the ratio of the collagen positive area to the total area (p < 0.05). Although the vascularity index obtained by SMI did not exhibit a statistically significant change across different BTXA concentrations, this technique effectively illustrated the microvascular perfusion in HS. Immunohistochemical staining for CD31 revealed that BTXA inhibited angiogenesis. Conclusion HFUS and SWE displayed excellent performance in evaluating HS thickness and stiffness. SMI showed a good performance in reflecting microvascular signals in HS. These ultrasound techniques have great potential in assessing the therapeutic effect of BTXA in HS.
Collapse
Affiliation(s)
- Liu-liu Cao
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Zhi-guo Yang
- Department of Plastic and Reconstructive Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Wei-hong Qi
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Huan Zhang
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Yu Bi
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Yong Shan
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Xin-wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Province, China
| | - Fan Jiang
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
| |
Collapse
|
5
|
Moussa MS, Bachour D, Komarova SV. Adverse effect of botulinum toxin-A injections on mandibular bone: A systematic review and meta-analysis. J Oral Rehabil 2024; 51:404-415. [PMID: 37668276 DOI: 10.1111/joor.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Botulinum toxin-A (BTX) is a potent neurotoxin that is emerging in the scope of dental practice for its ability to temporarily paralyse musculature and reduce hyperfunction. This may be desirable in diseases/disorders associated with hyperactive muscles such as the muscles of mastication, most implicated in painful temporomandibular disorders (TMDs). The use of BTX extends beyond its indications with off-label use in TMD's and other conditions, while potential adverse effects remain understudied. BTX is well-established hindlimb paralysis model in animals leading to significant bone loss with underlying mechanisms remaining unclear. The objective of this study is to systematically review the literature for articles investigating changes in mandibular bone following BTX injections and meta-analyse available data on reported bone outcomes. METHODS Comprehensive search of Medline, Embase and Web of Science retrieved 934 articles. Following the screening process, 36 articles in animals and humans were included for quantitative synthesis. Articles in human individuals (6) and three different animal species (14) presented mandibular bone outcomes that were included in the meta-analysis. RESULTS The masseter and temporalis muscles were frequently injected across all species. In humans, we observe a decrease of about 6% in cortical thickness of mandibular regions following BTX injection with no evident changes in either volume or density of bone structures. In animals, bone loss in the condylar region is significantly high in both cortical and trabecular compartments. DISCUSSION Our analysis supports the concept of BTX-induced bone-loss model in animal mandibles. Further, bone loss might be confined to the cortical compartments in humans. Most studies did not address the reality of repeated injections and excessive dosing, which occur due to the reversible action of BTX. More rigorous trials are needed to draw a full picture of potential long-term adverse effects on bone.
Collapse
Affiliation(s)
- Mahmoud S Moussa
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| | - Dona Bachour
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Polat Balkan E, Paksoy CS, Bağış N. Fractal analysis of the effects on mandibular bone of botulinum toxin therapy of the masseter muscle in patients with bruxism. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:83-88. [PMID: 37805341 DOI: 10.1016/j.oooo.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE We examined changes in the mandibular angle, ramus, and condylar neck of patients with bruxism after botulinum toxin-A (BTX-A) injection into the masseter muscle as calculated with fractal analysis (FA) on panoramic radiographs (PRs). METHODS We examined the PRs of 3 groups of 22 patients each (n = 66) obtained upon presentation and 6 months later. One group included healthy controls without bruxism, one group included patients with untreated bruxism, and one group included patients with bruxism who had undergone BTX-A injection into the masseter muscle. We performed FA of the bilateral angle, ramus, and condylar neck of the PRs to calculate fractal dimension (FD). RESULTS The FD values of the angle on the second PRs of the untreated bruxism group were significantly higher than those of the other groups (P = .026), specifically when compared to the BTX-A injection group (P = .017). The FD values in the angle and ramus of the bruxism group were significantly higher on the second PRs (P ≤..005)) Conversely, the FD values in the angle of the BTX-A injection group were significantly lower on the second PR (P = .039). CONCLUSIONS Masseter muscle hyperactivity due to bruxism increases bone density in masseter muscle attachment regions. BTX-A injection restricts muscle activity, thereby chnging bone structure and decreasing FD.
Collapse
Affiliation(s)
- Elif Polat Balkan
- Ankara University, Faculty of Dentistry, Department of DentoMaxillofacial Radiology, Ankara, Turkey.
| | - Candan S Paksoy
- Ankara University, Faculty of Dentistry, Department of DentoMaxillofacial Radiology, Ankara, Turkey
| | - Nilsun Bağış
- Ankara University, Faculty of Dentistry, Department of Periodontology, Ankara, Turkey
| |
Collapse
|
7
|
Hou S, Peng S, Dai H, Song J, Xu L, Zhou J, Li L. Mechanical loading and autophagy: A study on the BoNT-A injection-induced condylar cartilage degeneration. Arch Biochem Biophys 2023; 749:109788. [PMID: 37852427 DOI: 10.1016/j.abb.2023.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Botulinum toxin A (BoNT-A) has emerged as a treatment option for temporomandibular disorder (TMD). By injecting BoNT-A into the masseter muscle, it is possible to reduce mechanical loading on the temporomandibular joint (TMJ). However, numerous prior studies have indicated excessive reduction in mechanical loading can have detrimental effects on TMJ cartilage. This study proposes that autophagy, a process influenced by mechanical loading, could play a role in BoNT-A-induced mandibular condyle cartilage degeneration. To explore this hypothesis, we employed both BoNT-A injection and an excessive biting model to induce variations in mechanical loading on the condyle cartilage of C57BL/6 mice, thereby simulating an increase and decrease in mechanical loading, respectively. Results showed a significant reduction in cartilage thickness and downregulation of Runt-related transcription factor 2 (Runx2) expression in chondrocytes following BoNT-A injection. In vitro experiments demonstrated that the reduction of Runx2 expression in chondrocytes is associated with autophagy, possibly dependent on decreased YAP expression induced by low mechanical loading. This study reveals the potential involvement of the YAP/LC3/Runx2 signaling pathway in BoNT-A mediated mandibular condylar cartilage degeneration.
Collapse
Affiliation(s)
- Siyu Hou
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Sisi Peng
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Ling Xu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Jianping Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Lingjie Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
8
|
Concentration-Dependent Inhibition of Hypertrophic Scar Formation by Botulinum Toxin Type A in a Rabbit Ear Model. Aesthetic Plast Surg 2022; 46:3072-3079. [PMID: 35864206 DOI: 10.1007/s00266-022-03008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypertrophic scar (HS), as a disappointing result of wound healing, adversely affects the patient, both physically and psychologically. Botulinum toxin type A (BTXA) has been revealed to prevent and improve HS. We conducted this study to assess the effect of different BTXA concentrations on inhibiting HS in a rabbit ear model. METHODS Eight healthy New Zealand long-eared rabbits were included in the experiment for modeling. Four wounds of 1 cm in diameter were created on both ears, which separately received an injection of a given BTXA concentration immediately after surgery. On postoperative days 40, scar tissue was obtained and subjected to hematoxylin and eosin (HE) staining for the hypertrophic index (HI) and immunohistochemical staining for CD31, Ki67, and transforming growth factor-beta 1 (TGF-β1) expression. The HI was assessed for scar proliferation, and CD31 and Ki67 expression were used to assess the effect of BTXA on angiogenesis and fibroblast proliferation, respectively. RESULTS All rabbits healed well without infection or mortality. From the HE staining, the HI showed a significant decrease with increasing BTXA concentration (p < 0.05). BTXA also inhibited angiogenesis and TGF-β1 expression in a concentration-dependent manner, with significant differences between the groups (p < 0.05). BTXA inhibited fibroblast proliferation with increasing BTXA concentration. However, there was no significant difference between the 0.5 U/0.1 ml and 0 U/0.1 ml groups (p > 0.05). CONCLUSION Immediate postoperative BTXA injection inhibited angiogenesis, fibroblast proliferation, and TGF-β1 expression in a concentration-dependent manner, thus suppressing HS formation in rabbit ears. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors https://www.springer.com/journal/00266 .
Collapse
|
9
|
Zhang J, Hu Y, Wang Z, Wu X, Yang C, Yang H. Hypoxia-inducible factor expression is related to apoptosis and cartilage degradation in temporomandibular joint osteoarthritis. BMC Musculoskelet Disord 2022; 23:583. [PMID: 35710352 PMCID: PMC9202126 DOI: 10.1186/s12891-022-05544-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It remains unclear etiology of cartilaginous tissues in osteoarthritis (OA) lesions. In this study, we hypothesized the accumulation of hypoxia-inducible factor (HIF) and activated apoptosis relate to condylar cartilage degeneration in vivo. METHODS Malocclusion stress was applied for 2 weeks, 4 weeks and 8 weeks to induce an OA-like lesion animal model in rats. Histological analysis was performed by H&E staining and Safranin O/fast green staining. The expression levels of protein in condylar cartilage were examined by immunostaining to evaluate cartilage degeneration. RESULTS We found apparent histological phenotypes associated with degeneration in the occlusion disorder (OD) stress group. The OD group at 4 weeks and 8 weeks had obviously reduced expression of Aggrecan (Acan) and type II collagen (Col II) in cartilage. In contrast, the OD groups had higher levels of ADAM metallopeptidase with thrombospondin type 5 (ADAMTS5) and matrix metallopeptidase 13 (MMP13) in the condylar cartilage than the control group. Moreover, the OD group cartilage had prominent degenerative changes with reduced levels of hypoxia inducible factor 1 alpha (HIF1α) and increased levels of hypoxia inducible factor 2 alpha (HIF2α) and the apoptosis factor Caspase3 in condylar cartilage at 8 weeks. CONCLUSION Thus, abnormal hypoxic conditions inducing Occlusion disorder stress results in cartilage degeneration. opposite expression patterns of HIF1α and HIF2α could be involved in the pathogenesis of condylar cartilage degeneration and chondrocyte apoptosis. HIF2α may provide a potential negative feedback mechanism for HIF1α during cartilage damage.
Collapse
Affiliation(s)
- Jun Zhang
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, He Cheng Guo Ji Building C, 1088 Mid-Haiyuan Road, Kunming, 650100, Yunnan, China
| | - Yu Hu
- Department of Orthodontics, Kunming Medical University Affiliated Stomatological Hospital, Kunming, China
| | - Zihan Wang
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, He Cheng Guo Ji Building C, 1088 Mid-Haiyuan Road, Kunming, 650100, Yunnan, China
| | - Xuelian Wu
- Honghe Health Vocational Collage, Honghe, Yunnan Province, China
| | - Chun Yang
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, He Cheng Guo Ji Building C, 1088 Mid-Haiyuan Road, Kunming, 650100, Yunnan, China.
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, He Cheng Guo Ji Building C, 1088 Mid-Haiyuan Road, Kunming, 650100, Yunnan, China.
| |
Collapse
|
10
|
Chandrasekaran P, Kwok B, Han B, Adams SM, Wang C, Chery DR, Mauck RL, Dyment NA, Lu XL, Frank DB, Koyama E, Birk DE, Han L. Type V Collagen Regulates the Structure and Biomechanics of TMJ Condylar Cartilage: A Fibrous-Hyaline Hybrid. Matrix Biol 2021; 102:1-19. [PMID: 34314838 DOI: 10.1016/j.matbio.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
This study queried the role of type V collagen in the post-natal growth of temporomandibular joint (TMJ) condylar cartilage, a hybrid tissue with a fibrocartilage layer covering a secondary hyaline cartilage layer. Integrating outcomes from histology, immunofluorescence imaging, electron microscopy and atomic force microscopy-based nanomechanical tests, we elucidated the impact of type V collagen reduction on TMJ condylar cartilage growth in the type V collagen haploinsufficiency and inducible knockout mice. Reduction of type V collagen led to significantly thickened collagen fibrils, decreased tissue modulus, reduced cell density and aberrant cell clustering in both the fibrous and hyaline layers. Post-natal growth of condylar cartilage involves the chondrogenesis of progenitor cells residing in the fibrous layer, which gives rise to the secondary hyaline layer. Loss of type V collagen resulted in reduced proliferation of these cells, suggesting a possible role of type V collagen in mediating the progenitor cell niche. When the knockout of type V collagen was induced in post-weaning mice after the start of physiologic TMJ loading, the hyaline layer exhibited pronounced thinning, supporting an interplay between type V collagen and occlusal loading in condylar cartilage growth. The phenotype in hyaline layer can thus be attributed to the impact of type V collagen on the mechanically regulated progenitor cell activities. In contrast, knee cartilage does not contain the progenitor cell population at post-natal stages, and develops normal structure and biomechanical properties with the loss of type V collagen. Therefore, in the TMJ, in addition to its established role in regulating the assembly of collagen I fibrils, type V collagen also impacts the mechanoregulation of progenitor cell activities in the fibrous layer. We expect such knowledge to establish a foundation for understanding condylar cartilage matrix development and regeneration, and to yield new insights into the TMJ symptoms in patients with classic Ehlers-Danlos syndrome, a genetic disease due to autosomal mutation of type V collagen.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
11
|
Li H, Liao L, Hu Y, Xu Y, Zhang Y, Huo F, Tian W, Guo W. Identification of Type H Vessels in Mice Mandibular Condyle. J Dent Res 2021; 100:983-992. [PMID: 33764221 DOI: 10.1177/00220345211002120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Type H vessel is a specific vessel subtype that is strongly positive for CD31 and endomucin (CD31hiEmcnhi). It has already been identified that it can tightly regulate the coupling of angiogenesis and osteogenesis in the long bone of mice and human beings. The long bone is formed through endochondral ossification, which is the same type of process happening in mandibular condyle. Although the ossification of long bone and mandibular condyle has the same developmental process, the existence of type H vessels in the mouse condyle remains unclear. To address this, we identified that abundant type H vessels existed in the subchondral bone of the mouse condylar head and endosteum of the mouse condylar neck. Meanwhile, immunofluorescence imaging of the condyles in different ages of male C57BL/6J mice demonstrated that type H vessels decreased while aging. Furthermore, we validated a positive correlation between type H vessels and Osterix+ osteoprogenitors in the condyle induced by mandibular advancement. Mechanistically, we confirmed that deferoxamine mesylate, which promoted the proliferation of type H endothelial cells by activating hypoxia-inducible factor 1α (HIF-1α) signaling pathways, largely prevented the osteopenia in the condyle induced by botulinum toxin type A. Collectively, these results demonstrate that in the mouse condyle, type H vessels in areas of high function positively correlate with bone formation. In addition, we show a novel influence of HIF-1α signaling on osteogenesis via an increase in type H vessels. In conclusion, promoting angiogenesis of type H vessels is a promising strategy for the therapeutic improvement of osteogenesis in mandibular condyle.
Collapse
Affiliation(s)
- H Li
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Liao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Xu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - F Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Kusaba G, Matsunaga S, Kitamura K, Kasahara M, Shimoo Y, Abe S, Nakano T, Ishimoto T, Hikita A, Nojima K, Nishii Y. Micro/nanostructural Characteristic Changes in the Mandibles of Rats after Injection of Botulinum Neurotoxin. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gaku Kusaba
- Oral Health Science Center, Tokyo Dental College
- Department of Orthodontics, Tokyo Dental College
| | - Satoru Matsunaga
- Oral Health Science Center, Tokyo Dental College
- Department of Anatomy, Tokyo Dental College
| | - Kei Kitamura
- Department of Oral Ultrastructural Science, Tokyo Dental College
| | | | | | | | - Takayoshi Nakano
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University
| | - Takuya Ishimoto
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University
| | - Atsuhiko Hikita
- Department of Cell & Tissue Engineering (Fujisoft), Graduate School of Medicine, The University of Tokyo
| | | | | |
Collapse
|
13
|
Wang Z, Sa G, Wei Z, Dai X, Wan Q, Yang X. Obvious morphologic changes in the mandible and condylar cartilage after triple botulinum toxin injections into the bilateral masseter. Am J Orthod Dentofacial Orthop 2020; 158:e43-e52. [PMID: 32988574 DOI: 10.1016/j.ajodo.2020.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Nonsurgical treatments that can prevent or reduce the extent of the mandibular excess at an early stage are desirable. A single botulinum toxin (BTX) injection into the unilateral and bilateral masseter can regulate mandibular contour and condylar cartilage. However, BTX injection is frequency dependent when used in facelifts. This study aimed to evaluate the effect of BTX injection into the bilateral masseter at different frequencies on the mandibular contour and condylar cartilage. METHODS In the present study, 24 female Sprague Dawley rats (4 weeks old) were divided into 3 groups: control, single injection, and triple injection. Contour measurement of the mandible was carried out by radiographic imaging. Microcomputerized tomography was performed to determine the change in bone volume in the subchondral bone. Hematoxylin and eosin staining was used to observe the morphologic changes of condylar cartilage. Immunohistochemistry was performed to detect the expression level of biomechanically sensitive factors, including transforming growth factor-β1, parathyroid hormone-related protein, SRY-box 9, and type II collagen. RESULTS Bone volume and/or total volume, trabecular number, and trabecular thickness of the mineralized cartilage and subchondral bone significantly decreased in the triple injection group when compared with the single injection group. Mandibular contour also diminished after increased BTX injection frequencies. Chondrocyte proliferation ability and the expression levels of transforming growth factor-β1, parathyroid hormone-related protein, SRY-box 9, and type II collagen significantly decreased in all BTX injection groups and more in the triple injection group. CONCLUSIONS Morphologic changes of the mandible and condylar cartilage become more obvious after increased BTX injection frequencies, suggesting that multiple BTX injections into the masseter of patients may relieve the severity of mandibular deformity at an early stage.
Collapse
Affiliation(s)
- Zhuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guoliang Sa
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zequan Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Dai
- Department of Skin Medical Cosmetology, Renmin Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qilong Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xuewen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Effects of Botulinum Toxin Type A on Microvessels in Hypertrophic Scar Models on Rabbit Ears. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2170750. [PMID: 32626735 PMCID: PMC7315252 DOI: 10.1155/2020/2170750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022]
Abstract
Background Although Botulinum Toxin Type A (BTXA) has been applied to scar prevention and treatment, the mechanisms still require further exploration. Objective To investigate the effects of BTXA on microvessels in the hypertrophic scar models on rabbit ears. Methods Eight big-eared New Zealand rabbits (males or females) were selected to establish scar models. One ear of each rabbit (4 models in each ear) was selected randomly to be injected with BTXA immediately after modeling and included in the treated group, while the opposite ear was untreated and included in the control group. The growth of scars in each group was observed and recorded, and 4 rabbits were sacrificed on days 30 and 45 after modeling. Then, scar height was measured by hematoxylin-eosin (HE) staining, vascular endothelial growth factor (VEGF) expression was detected by immunohistochemical (IHC) testing, and microvessel density (MVD) was calculated based on CD34 (human hematopoietic progenitor cell antigen). Results The wounds in each group were well healed and free from infection or necrosis. On days 30 and 45, the scar height, MVD value, and VEGF expression in the treated group were lower than those in the control group (P < 0.05). For the treated group, the above indicators on day 45 were lower than on day 30 (P > 0.05). Besides, there was a positive correlation between the MVD value and the VEGF expression in the treated group (P < 0.05). Conclusion The injection of BTXA immediately after modeling inhibits VEGF expression and reduces angiogenesis, thereby inhibiting hypertrophic scar formation.
Collapse
|
15
|
Buvinic S, Balanta-Melo J, Kupczik K, Vásquez W, Beato C, Toro-Ibacache V. Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions. Front Endocrinol (Lausanne) 2020; 11:606947. [PMID: 33732211 PMCID: PMC7959242 DOI: 10.3389/fendo.2020.606947] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.
Collapse
Affiliation(s)
- Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Sonja Buvinic,
| | - Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali, Colombia
- Evidence-Based Practice Unit Univalle, Hospital Universitario del Valle, Cali, Colombia
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
16
|
Dutra EH, Yadav S. The effects on the mandibular condyle of Botox injection into the masseter are not transient. Am J Orthod Dentofacial Orthop 2019; 156:193-202. [PMID: 31375229 DOI: 10.1016/j.ajodo.2018.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To evaluate whether the effects on the mandibular condylar cartilage (MCC) and subchondral bone are transient of botulinum neurotoxin (Botox) injection into the masseter muscle. METHODS Botox (0.3 U) was injected into the right masseter of 6-week-old female mice (C57BL/6; n = 16). In addition, 16 mice were used as control and received no injections. Experimental and matching control mice were killed 4 or 8 weeks after the single Botox injection. Mandibles and mandibular condyles were analyzed by means of microscopic computed tomography (microCT) and histology. Sagittal sections of condyles were stained for tartrate-resistant acid phosphatase (TRAP), toluidine blue, 5-ethynyl-2'-deoxyuridine (EdU), and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling. RESULTS Bone volume fraction was significantly decreased on the subchondral bone of the Botox-injected side, compared with the control side and control mice, 4 and 8 weeks after injection. Furthermore, histologic analysis revealed decrease in mineralization, cartilage thickness, TRAP activity, and EdU-positive cells in the MCC of the Botox-injected side 4 and 8 weeks after injection. CONCLUSIONS The effects on the MCC and subchondral bone of Botox injection into the masseter muscle persisted for 8 weeks after injection and were not considered to be transient.
Collapse
Affiliation(s)
- Eliane H Dutra
- Division of Orthodontics, University of Connecticut Health Center, Farmington, Conn
| | - Sumit Yadav
- Division of Orthodontics, University of Connecticut Health Center, Farmington, Conn.
| |
Collapse
|
17
|
|
18
|
Balanta-Melo J, Toro-Ibacache V, Kupczik K, Buvinic S. Mandibular Bone Loss after Masticatory Muscles Intervention with Botulinum Toxin: An Approach from Basic Research to Clinical Findings. Toxins (Basel) 2019; 11:toxins11020084. [PMID: 30717172 PMCID: PMC6409568 DOI: 10.3390/toxins11020084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
The injection of botulinum toxin type A (BoNT/A) in the masticatory muscles, to cause its temporary paralysis, is a widely used intervention for clinical disorders such as oromandibular dystonia, sleep bruxism, and aesthetics (i.e., masseteric hypertrophy). Considering that muscle contraction is required for mechano-transduction to maintain bone homeostasis, it is relevant to address the bone adverse effects associated with muscle condition after this intervention. Our aim is to condense the current and relevant literature about mandibular bone loss in fully mature mammals after BoNT/A intervention in the masticatory muscles. Here, we compile evidence from animal models (mice, rats, and rabbits) to clinical studies, demonstrating that BoNT/A-induced masticatory muscle atrophy promotes mandibular bone loss. Mandibular bone-related adverse effects involve cellular and metabolic changes, microstructure degradation, and morphological alterations. While bone loss has been detected at the mandibular condyle or alveolar bone, cellular and molecular mechanisms involved in this process must still be elucidated. Further basic research could provide evidence for designing strategies to control the undesired effects on bone during the therapeutic use of BoNT/A. However, in the meantime, we consider it essential that patients treated with BoNT/A in the masticatory muscles be warned about a putative collateral mandibular bone damage.
Collapse
Affiliation(s)
- Julián Balanta-Melo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- School of Dentistry, Universidad del Valle, Cali 760043, Colombia.
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
- Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Independencia 8380453, Chile.
| |
Collapse
|
19
|
Balanta-Melo J, Torres-Quintana MA, Bemmann M, Vega C, González C, Kupczik K, Toro-Ibacache V, Buvinic S. Masseter muscle atrophy impairs bone quality of the mandibular condyle but not the alveolar process early after induction. J Oral Rehabil 2018; 46:233-241. [PMID: 30468522 DOI: 10.1111/joor.12747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Masseter muscle function influences mandibular bone homeostasis. As previously reported, bone resorption markers increased in the mouse mandibular condyle two days after masseter paralysis induced with botulinum toxin type A (BoNTA), followed by local bone loss. OBJECTIVE This study aimed to evaluate the bone quality of both the mandibular condyle and alveolar process in the mandible of adult mice during the early stage of a BoNTA-induced masseter muscle atrophy, using a combined 3D histomorphometrics and shape analysis approach. METHODS Adult BALB/c mice were divided into an untreated control group and an experimental group; the latter received one single BoNTA injection in the right masseter (BoNTA-right) and saline in the left masseter (Saline-left). 3D bone microstructural changes in the mandibular condyle and alveolar process were determined with high-resolution microtomography. Additionally, landmark-based geometric morphometrics was implemented to assess external shape changes. RESULTS After 2 weeks, masseter mass was significantly reduced (P-value <0.001). When compared to Saline-left and untreated condyles, BoNTA-right condyles showed significant bone loss (P-value <0.001) and shape changes. No significant bone loss was observed in the alveolar processes of any of the groups (P-value >0.05). CONCLUSION Condyle bone quality deteriorates at an early stage of BoNTA-induced masseter muscle atrophy, and before the alveolar process is affected. Since the observed bone microstructural changes resemble those in human temporomandibular joint degenerative disorders, the clinical safety of BoNTA intervention in the masticatory apparatus remains to be clarified.
Collapse
Affiliation(s)
- Julián Balanta-Melo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,School of Dentistry, Universidad del Valle, Cali, Colombia.,Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Maximilian Bemmann
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Carolina Vega
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Center for Quantitative Analysis in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Dutra EH, O'Brien MH, Logan C, Tadinada A, Nanda R, Yadav S. Loading of the Condylar Cartilage Can Rescue the Effects of Botox on TMJ. Calcif Tissue Int 2018; 103:71-79. [PMID: 29327231 DOI: 10.1007/s00223-017-0385-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/29/2017] [Indexed: 01/30/2023]
Abstract
The purpose of this study is to evaluate whether the effects of botulinum neurotoxin (botox) injection into the masseter in the mandibular condylar cartilage (MCC) and subchondral bone could be rescued by compressive loading of the temporomandibular joint (TMJ). Twenty-four 6-week-old female mice (C57BL/6J) were used. Mice were divided in three groups: (1) Botox (n = 8); (2) Botox plus loading (n = 8); (3) Pure control (n = 8). Bone labels (3 and 1 day before sacrifice) and the proliferation marker EdU (2 and 1 day before sacrifice) were intraperitoneally injected into all groups of mice. Condyles were dissected and examined by micro-CT and histology. Sagittal sections of condyles were stained for TRAP, alkaline phosphatase, EdU, TUNEL, and toluidine blue. In addition, immunostaining for pSmad, VEGF, and Runx2 was performed. Bone volume fraction, tissue density, and trabecular thickness were significantly decreased on the subchondral bone of botox-injected side when compared to control side and control mice, 4 weeks after injection. Furthermore, histological analysis revealed decrease in mineralization, matrix deposition, TRAP activity, EdU, and TUNEL-positive cells in the MCC of the botox-injected side, 4 weeks after injection. However, compressive loading reversed the reduced bone volume and density and the cellular changes in the MCC caused by Botox injection. TMJ compressive loading rescues the negative effects of botox injection into the masseter in the MCC and subchondral bone.
Collapse
Affiliation(s)
- Eliane H Dutra
- Department of Orthodontics, University of Connecticut Health Center, 263 Farmington Avenue, MC1725, Farmington, CT, 06030, USA
| | - Mara H O'Brien
- Department of Orthodontics, University of Connecticut Health Center, 263 Farmington Avenue, MC1725, Farmington, CT, 06030, USA
| | - Candice Logan
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Aditya Tadinada
- Department of Oral/Maxillofacial Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Ravindra Nanda
- Department of Orthodontics, University of Connecticut Health Center, 263 Farmington Avenue, MC1725, Farmington, CT, 06030, USA
| | - Sumit Yadav
- Department of Orthodontics, University of Connecticut Health Center, 263 Farmington Avenue, MC1725, Farmington, CT, 06030, USA.
| |
Collapse
|
21
|
Condylar Degradation from Decreased Occlusal Loading following Masticatory Muscle Atrophy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6947612. [PMID: 29992158 PMCID: PMC5994330 DOI: 10.1155/2018/6947612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Objective The masticatory muscles are the most important contributor to bite force, and the temporomandibular joint (TMJ) receives direct occlusal loading. The present study aimed to investigate condylar remodeling after masseter muscle atrophy in rats. Methods Sixty 5-week-old female Sprague-Dawley rats were divided into the following 3 groups: the control group, soft diet (SD) group, and botulinum toxin (BTX) group. The cross-sectional area (CSA) of the masseter muscles was investigated as well as atrogin-1/MuRF-1 expression. Changes in the condylar head were evaluated by H-E, toluidine blue staining, and contour measurements. The biomechanical sensitive factors PTHrP Ihh, Col2a1, and ColX of condylar cartilage were detected by immunohistochemical staining and western blotting. Furthermore, micro-CT and tartrate-resistant acid phosphatase (TRAP) staining were performed to determine the osteopenia in subchondral bone. Results The histological and protein analysis demonstrated muscle hypofunction in the SD and BTX groups. Condylar cartilage contour was diminished due to different treatments; the immunohistochemistry and protein examination showed that the expressions of PTHrP, Ihh, Col2a1, and ColX were suppressed in condylar cartilage. A steady osteoporosis in subchondral bone was found only in the BTX group. Conclusion The current results suggested that a steady relationship between muscular dysfunction and condylar remodeling exists.
Collapse
|
22
|
Ali DM, Abdelzaher WY, Abdel-Hafez S. Evaluation of the rivastigmine role against botulinum toxin-A-induced osteoporosis in albino rats: A biochemical, histological, and immunohistochemical study. Hum Exp Toxicol 2018; 37:1323-1335. [PMID: 29739252 DOI: 10.1177/0960327118774941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study aimed to evaluate the role of rivastigmine against the effect of a single unilateral botulinum toxin-A (BTX-A) injection on the bone and bone marrow of adult albino rats 4 weeks after injection. Twenty-four Wistar albino rats were divided into four equal groups: group I, which received distilled water; group II, which received rivastigmine (0.3 mg/kg daily, intraperitoneally for 4 weeks); group III, which received BTX-A (4 IU in 0.2 mL physiological saline) single dose, intramuscularly; and group IV, which received BTX-A + rivastigmine. The results revealed that BTX-A induced a significant decrease in the calcium level with a significant increase in the phosphorus, alkaline phosphatase, C-reactive protein, and tumor necrosis factor α levels in serum. Furthermore, a significant increase in malondialdehyde with a significant decrease in reduced glutathione activities in both bone and bone marrow. Histologically, a distortion and thinning out of the compact bone and trabeculae of cancellous bone of the rat femur in the BTX-A group with an increase in adipocytes in adjacent bone marrow were detected. Immunohistochemically, Cluster of Differentiation 68 (CD68) showed a significant increase in both osteoclasts and bone marrow macrophage. Rivastigmine treatment could relieve the toxic effects induced by BTX-A. In conclusion, rivastigmine has a protective effect against the hazardous effects of BTX-A on bone and bone marrow.
Collapse
Affiliation(s)
- D M Ali
- 1 Department of Forensic Medicine & Toxicology, Faculty of Medicine, Minia University, Minia, Egypt
| | - W Y Abdelzaher
- 2 Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Smn Abdel-Hafez
- 3 Department of Histology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
23
|
Dutra EH, O'Brien MH, Lima A, Nanda R, Yadav S. A Morphometric and Cellular Analysis Method for the Murine Mandibular Condyle. J Vis Exp 2018. [PMID: 29364273 DOI: 10.3791/55998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The temporomandibular joint (TMJ) has the capacity to adapt to external stimuli, and loading changes can affect the position of condyles, as well as the structural and cellular components of the mandibular condylar cartilage (MCC). This manuscript describes methods for analyzing these changes and a method for altering the loading of the TMJ in mice (i.e., compressive static TMJ loading). The structural evaluation illustrated here is a simple morphometric approach that uses the Digimizer software and is performed in radiographs of small bones. In addition, the analysis of cellular changes leading to alterations in collagen expression, bone remodeling, cell division, and proteoglycan distribution in the MCC is described. The quantification of these changes in histological sections - by counting the positive fluorescent pixels using image software and measuring the distance mapping and stained area with Digimizer - is also demonstrated. The methods shown here are not limited to the murine TMJ, but could be used on additional bones of small experimental animals and in other regions of endochondral ossification.
Collapse
Affiliation(s)
- Eliane H Dutra
- Division of Orthodontics, University of Connecticut Health Center
| | - Mara H O'Brien
- Division of Orthodontics, University of Connecticut Health Center
| | - Alexandro Lima
- Division of Orthodontics, University of Connecticut Health Center
| | - Ravindra Nanda
- Division of Orthodontics, University of Connecticut Health Center
| | - Sumit Yadav
- Division of Orthodontics, University of Connecticut Health Center;
| |
Collapse
|
24
|
Correction of Malocclusion by Botulinum Neurotoxin Injection into Masticatory Muscles. Toxins (Basel) 2018; 10:toxins10010027. [PMID: 29301317 PMCID: PMC5793114 DOI: 10.3390/toxins10010027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/17/2022] Open
Abstract
Botulinum toxin (BTX) is a neurotoxin, and its injection in masticatory muscles induces muscle weakness and paralysis. This paralytic effect of BTX induces growth retardation of the maxillofacial bones, changes in dental eruption and occlusion state, and facial asymmetry. Using masticatory muscle paralysis and its effect via BTX, BTX can be used for the correction of malocclusion after orthognathic surgery and mandible fracture. The paralysis of specific masticatory muscles by BTX injection reduces the tensional force to the mandible and prevents relapse and changes in dental occlusion. BTX injection in the anterior belly of digastric and mylohyoid muscle prevents the open-bite and deep bite of dental occlusion and contributes to mandible stability after orthognathic surgery. The effect of BTX injection in masticatory muscles for maxillofacial bone growth and dental occlusion is reviewed in this article. The clinical application of BTX is also discussed for the correction of dental malocclusion and suppression of post-operative relapse after mandibular surgery.
Collapse
|
25
|
Balanta-Melo J, Toro-Ibacache V, Torres-Quintana MA, Kupczik K, Vega C, Morales C, Hernández-Moya N, Arias-Calderón M, Beato C, Buvinic S. Early molecular response and microanatomical changes in the masseter muscle and mandibular head after botulinum toxin intervention in adult mice. Ann Anat 2017; 216:112-119. [PMID: 29289710 DOI: 10.1016/j.aanat.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Masseter muscle paralysis induced by botulinum toxin type A (BoNTA) evokes subchondral bone loss in mandibular heads of adult rats and growing mice after 4 weeks. However, the primary cellular and molecular events leading to altered bone remodeling remain unexplored. Thus, the aim of the current work has been to assess the molecular response that precedes the early microanatomical changes in the masseter muscle and subchondral bone of the mandibular head in adult mice after BoNTA intervention. METHODS A pre-clinical in vivo study was performed by a single intramuscular injection of 0.2 U BoNTA in the right masseter (experimental) of adult BALB/c mice. The contralateral masseter was injected with vehicle (control). Changes in mRNA levels of molecular markers of bone loss or muscle atrophy/regeneration were addressed by qPCR at day 2 or 7, respectively. mRNA levels of receptor activator of nuclear factor-κB ligand (RANKL) was assessed in mandibular heads, whilst mRNA levels of Atrogin-1/MAFbx, MuRF-1 and Myogenin were addressed in masseter muscles. In order to identify the early microanatomical changes at day 14, fiber diameters in transversal sections of masseter muscles were quantified, and histomorphometric analysis was used to determine the bone per tissue area and the trabecular thickness of subchondral bone of the mandibular heads. RESULTS An increase of up to 4-fold in RANKL mRNA levels were detected in mandibular heads of the BoNTA-injected sides as early as 2 days after intervention. Moreover, a 4-6 fold increase in Atrogin-1/MAFbx and MuRF-1 and an up to 25 fold increase in Myogenin mRNA level were detected in masseter muscles 7 days after BoNTA injections. Masseter muscle mass, as well as individual muscle fiber diameter, were significantly reduced in BoNTA-injected side after 14 days post-intervention. At the same time, in the mandibular heads from the treated side, the subchondral bone loss was evinced by a significant reduction in bone per tissue area (-40%) and trabecular thickness (-55%). CONCLUSIONS Our results show that masseter muscle paralysis induced by BoNTA leads to significant microanatomical changes by day 14, preceded by molecular changes as early as 2 days in bone, and 7 days in muscle. Therefore, masseter muscle atrophy and subchondral bone loss detected at 14 days are preceded by molecular responses that occur during the first week after BoNTA intervention.
Collapse
Affiliation(s)
- Julián Balanta-Melo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile; School of Dentistry, Universidad del Valle, Colombia
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile; Quantitative Analysis Center in Dental Anthropology, Faculty of Dentistry, Universidad de Chile, Chile; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Germany
| | | | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Germany
| | - Carolina Vega
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile
| | - Camilo Morales
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile; Department of Basic Sciences, Health Faculty, Pontificia Universidad Javeriana, Colombia; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Chile
| | - Nadia Hernández-Moya
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile
| | - Manuel Arias-Calderón
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Chile
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Chile.
| |
Collapse
|