1
|
Mao X, Stenuit B, Tremblay J, Yu K, Tringe SG, Alvarez-Cohen L. Structural dynamics and transcriptomic analysis of Dehalococcoides mccartyi within a TCE-Dechlorinating community in a completely mixed flow reactor. WATER RESEARCH 2019; 158:146-156. [PMID: 31035191 PMCID: PMC7053656 DOI: 10.1016/j.watres.2019.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 05/13/2023]
Abstract
A trichloroethene (TCE)-dechlorinating community (CANAS) maintained in a completely mixed flow reactor was established from a semi-batch enrichment culture (ANAS) and was monitored for 400 days at a low solids retention time (SRT) under electron acceptor limitation. Around 85% of TCE supplied to CANAS (0.13 mmol d-1) was converted to ethene at a rate of 0.1 mmol d-1, with detection of low production rates of vinyl chloride (6.8 × 10-3 mmol d-1) and cis-dichloroethene (2.3 × 10-3 mmol d-1). Two distinct Dehalococcoides mccartyi strains (ANAS1 and ANAS2) were stably maintained at 6.2 ± 2.8 × 108 cells mL-1 and 5.8 ± 1.2 × 108 cells mL-1, respectively. Electron balance analysis showed 107% electron recovery, in which 6.1% were involved in dechlorination. 16 S rRNA amplicon sequencing revealed a structural regime shift between ANAS and CANAS while maintaining robust TCE dechlorination due to similar relative abundances of D. mccartyi and functional redundancy among each functional guild supporting D. mccartyi activity. D. mccartyi transcriptomic analysis identified the genes encoding for ribosomal RNA and the reductive dehalogenases tceA and vcrA as the most expressed genes in CANAS, while hup and vhu were the most critical hydrogenases utilized by D. mccartyi in the community.
Collapse
Affiliation(s)
- Xinwei Mao
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | - Benoit Stenuit
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | | | - Ke Yu
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | - Susannah G Tringe
- DOE Joint Genome Institute, Walnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA; Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Türkowsky D, Jehmlich N, Diekert G, Adrian L, von Bergen M, Goris T. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol Ecol 2019; 94:4830072. [PMID: 29390082 DOI: 10.1093/femsec/fiy013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Organohalide respiration (OHR) is a crucial process in the global halogen cycle and of interest for bioremediation. However, investigations on OHR are hampered by the restricted genetic accessibility and the poor growth yields of many organohalide-respiring bacteria (OHRB). Therefore, genomics, transcriptomics and proteomics are often used to investigate OHRB. In general, these gene expression studies are more useful when the data of the different 'omics' approaches are integrated and compared among a wide range of cultivation conditions and ideally involve several closely related OHRB. Despite the availability of a couple of proteomic and transcriptomic datasets dealing with OHRB, such approaches are currently not covered in reviews. Therefore, we here present an integrative and comparative overview of omics studies performed with the OHRB Sulfurospirillum multivorans, Dehalococcoides mccartyi, Desulfitobacterium spp. and Dehalobacter restrictus. Genes, transcripts, proteins and the regulatory and biochemical processes involved in OHR are discussed, and a comprehensive view on the unusual metabolism of D. mccartyi, which is one of the few bacteria possibly using a quinone-independent respiratory chain, is provided. Several 'omics'-derived theories on OHRB, e.g. the organohalide-respiratory chain, hydrogen metabolism, corrinoid biosynthesis or one-carbon metabolism are critically discussed on the basis of this integrative approach.
Collapse
Affiliation(s)
- Dominique Türkowsky
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
3
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
4
|
Heavner GLW, Mansfeldt CB, Debs GE, Hellerstedt ST, Rowe AR, Richardson RE. Biomarkers' Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1 TM. Microorganisms 2018; 6:E13. [PMID: 29419787 PMCID: PMC5874627 DOI: 10.3390/microorganisms6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR) rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC) containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1TM, including several reductive dehalogenases (RDases) and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs) and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR) as a targeted approach for quantifying transcript copies in the KB-1TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10-12 to 5.9 × 10-10 microelectron equivalents per cell per hour (μeeq/cell∙h). Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA) and the hydrogenase HupL (R² = 0.83 and 0.88, respectively), but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1TM. Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1TM. The addition of oxygen induced cell stress that caused respiration rates to decline immediately (>95% decline within one hour). Although transcript levels did decline, they did so more slowly than the respiration rate observed (transcript decay rates between 0.02 and 0.03 per hour). Data from strain-specific probes on the pangenome array strains suggest that a minor DMC strain in KB-1™ that harbors a bvcA homolog preferentially recovered following oxygen stress relative to the dominant, vcrA-containing strain.
Collapse
Affiliation(s)
- Gretchen L W Heavner
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Cresten B Mansfeldt
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Garrett E Debs
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Sage T Hellerstedt
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Annette R Rowe
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|