1
|
Wu P, Wang X, Ge C, Jin L, Ding Z, Liu F, Zhang J, Gao F, Du W. pSTAT3 activation of Foxl2 initiates the female pathway underlying temperature-dependent sex determination. Proc Natl Acad Sci U S A 2024; 121:e2401752121. [PMID: 39226347 PMCID: PMC11406301 DOI: 10.1073/pnas.2401752121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Ovarian development was traditionally recognized as a "default" sexual outcome and therefore received much less scientific attention than testis development. In turtles with temperature-dependent sex determination (TSD), how the female pathway is initiated to induce ovary development remains unknown. In this study, we have found that phosphorylation of the signal transducer and activator of transcription 3 (pSTAT3) and Foxl2 exhibit temperature-dependent sexually dimorphic patterns and tempo-spatial coexpression in early embryos of the red-eared slider turtle (Trachemys scripta elegans). Inhibition of pSTAT3 at a female-producing temperature of 31 °C induces 64.7% female-to-male sex reversal, whereas activation of pSTAT3 at a male-producing temperature of 26 °C triggers 75.6% male-to-female sex reversal. In addition, pSTAT3 directly binds to the locus of the female sex-determining gene Foxl2 and promotes Foxl2 transcription. Overexpression or knockdown of Foxl2 can rescue the sex reversal induced by inhibition or activation of pSTAT3. This study has established a direct genetic link between warm temperature-induced STAT3 phosphorylation and female pathway initiation in a TSD system, highlighting the critical role of pSTAT3 in the cross talk between female and male pathways.
Collapse
Affiliation(s)
- Pengfei Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Chutian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo315100, People’s Republic of China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo315100, People’s Republic of China
| | - Lin Jin
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo315100, People’s Republic of China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo315100, People’s Republic of China
| | - Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Fang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Ju Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| |
Collapse
|
2
|
Nicoletti G, White K. The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics (Basel) 2022; 11:antibiotics11091188. [PMID: 36139967 PMCID: PMC9495065 DOI: 10.3390/antibiotics11091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Phylogenetically diverse fungal species are an increasing cause of severe disease and mortality. Identification of new targets and development of new fungicidal drugs are required to augment the effectiveness of current chemotherapy and counter increasing resistance in pathogens. Nitroalkenyl benzene derivatives are thiol oxidants and inhibitors of cysteine-based molecules, which show broad biological activity against microorganisms. Nitropropenyl benzodioxole (NPBD), one of the most active antimicrobial derivatives, shows high activity in MIC assays for phylogenetically diverse saprophytic, commensal and parasitic fungi. NPBD was fungicidal to all species except the dermatophytic fungi, with an activity profile comparable to that of Amphotericin B and Miconazole. NPBD showed differing patterns of dynamic kill rates under different growth conditions for Candida albicans and Aspergillus fumigatus and was rapidly fungicidal for non-replicating vegetative forms and microconidia. It did not induce resistant or drug tolerant strains in major pathogens on long term exposure. A literature review highlights the complexity and interactivity of fungal tyrosine phosphate and redox signaling pathways, their differing metabolic effects in fungal species and identifies some targets for inhibition. A comparison of the metabolic activities of Amphotericin B, Miconazole and NPBD highlights the multiple cellular functions of these agents and the complementarity of many mechanisms. The activity profile of NPBD illustrates the functional diversity of fungal tyrosine phosphatases and thiol-based redox active molecules and contributes to the validation of tyrosine phosphatases and redox thiol molecules as related and complementary selective targets for antimicrobial drug development. NPBD is a selective antifungal agent with low oral toxicity which would be suitable for local treatment of skin and mucosal infections.
Collapse
|
3
|
The Anti-Proliferative and Apoptotic Effects of Rutaecarpine on Human Esophageal Squamous Cell Carcinoma Cell Line CE81T/VGH In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23052843. [PMID: 35269987 PMCID: PMC8911365 DOI: 10.3390/ijms23052843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
The overall five-year survival rate for patients with esophageal cancer is low (15 to 25%) because of the poor prognosis at earlier stages. Rutaecarpine (RTP) is a bioalkaloid found in the traditional Chinese herb Evodia rutaecarpa and has been shown to exhibit anti-proliferative effect on tumor cells. However, the mechanisms by which RTP confer these effects and its importance in esophageal squamous cell carcinoma treatment remain unclear. Thus, in the present study, we first incubated human esophageal squamous cell carcinoma cell line, CE81T/VGH, with RTP to evaluate RTP’s effects on tumor cell growth and apoptosis. We also performed a xenograft study to confirm the in vitro findings. Furthermore, we determined the expression of p53, Bax, bcl-2, caspase-3, caspase-9, and PCNA in CE81T/VGH cells or the tumor tissues to investigate the possible mechanisms. All the effects of TRP were compared with that of cisplatin. The results showed that RTP significantly inhibits CE81T/VGH cell growth, promotes arrest of cells in the G2/M phase, and induces apoptosis. Consistently, the in vivo study showed that tumor size, tumor weight, and proliferating cell nuclear antigen protein expression in tumor tissue are significantly reduced in the high-dose RTP treatment group. Furthermore, the in vitro and in vivo studies showed that RTP increases the expression of p53 and Bax proteins, while inhibiting the expression of Bcl-2 in cancer cells. In addition, RTP significantly increases the expression of cleaved caspase-9 and cleaved caspase-3 proteins in tumor tissues in mice. These results suggest that RTP may trigger the apoptosis and inhibit growth in CE81T/VGH cells by the mechanisms associated with the regulation of the expression of p53, Bax, Bcl-2, as well as caspase-9 and caspase-3.
Collapse
|
4
|
Zhang LY, Shen ZX, Guo L. Inhibiting L1CAM Reverses Cisplatin Resistance of Triple Negative Breast Cancer Cells by Blocking AKT Signaling Pathway. Cancer Invest 2022; 40:313-324. [PMID: 35040385 DOI: 10.1080/07357907.2021.2016801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DDP-resistant MDA-MB-231 cells (MDA-MB-231/DDP) cells had higher expression of L1CAM than their parental cells. L1CAM siRNA decreased the IC50 of MDA-MB-231/DDP cells to DDP. L1CAM inhibition down-regulated p-AKT/AKT in MDA-MB-231/DDP cells; meanwhile, it could promote MDA-MB-231/DDP cell apoptosis, inhibit cell EMT, invasion, and migration. Moreover, SC79 (an AKT activator) increased the DDP-resistance of MDA-MB-231/DDP cells, which was reversed by L1CAM inhibition. Furthermore, co-treatment of L1CAM shRNA and cisplatin injection had better anti-tumor effects in vivo than these two single treatments with decreased p-AKT/AKT. Thus, silencing L1CAM reversed the DDP resistance by inhibiting the AKT pathway.
Collapse
Affiliation(s)
- Lu-Yao Zhang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhi-Xin Shen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lu Guo
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
5
|
Spitzner M, Emons G, Schütz KB, Wolff HA, Rieken S, Ghadimi BM, Schneider G, Grade M. Inhibition of Wnt/β-Catenin Signaling Sensitizes Esophageal Cancer Cells to Chemoradiotherapy. Int J Mol Sci 2021; 22:ijms221910301. [PMID: 34638639 PMCID: PMC8509072 DOI: 10.3390/ijms221910301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
The standard treatment of locally advanced esophageal cancer comprises multimodal treatment concepts including preoperative chemoradiotherapy (CRT) followed by radical surgical resection. However, despite intensified treatment approaches, 5-year survival rates are still low. Therefore, new strategies are required to overcome treatment resistance, and to improve patients’ outcome. In this study, we investigated the impact of Wnt/β-catenin signaling on CRT resistance in esophageal cancer cells. Experiments were conducted in adenocarcinoma and squamous cell carcinoma cell lines with varying expression levels of Wnt proteins and Wnt/β-catenin signaling activities. To investigate the effect of Wnt/β-catenin signaling on CRT responsiveness, we genetically or pharmacologically inhibited Wnt/β-catenin signaling. Our experiments revealed that inhibition of Wnt/β-catenin signaling sensitizes cell lines with robust pathway activity to CRT. In conclusion, Wnt/β-catenin activity may guide precision therapies in esophageal carcinoma patients.
Collapse
Affiliation(s)
- Melanie Spitzner
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
| | - Georg Emons
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
| | - Karl Burkhard Schütz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
- Department of Urology and Andrology, Sankt Georg Medical Centre and Hospital, 04129 Leipzig, Germany
| | - Hendrik A. Wolff
- Department of Radiotherapy and Radiooncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (H.A.W.); (S.R.)
- Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, 80331 Munich, Germany
| | - Stefan Rieken
- Department of Radiotherapy and Radiooncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (H.A.W.); (S.R.)
| | - B. Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany; (M.S.); (G.E.); (K.B.S.); (B.M.G.); (G.S.)
- Correspondence: ; Tel.: +49-551-39-67809
| |
Collapse
|
6
|
Li H, Luo D, Huttad L, Zhang M, Wang Y, Feng J, Ding Y, Han B. RIPK4 Suppresses the Invasion and Metastasis of Hepatocellular Carcinoma by Inhibiting the Phosphorylation of STAT3. Front Mol Biosci 2021; 8:654766. [PMID: 34222329 PMCID: PMC8249771 DOI: 10.3389/fmolb.2021.654766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Receptor interacting serine/threonine kinase 4 (RIPK4) is a member of the threonine/serine protein kinase family; it plays related functions in a variety of tumours, but its biological function has not been fully revealed. It has been reported that it is differentially expressed in hepatocellular carcinoma (HCC). Our research aimed to reveal the role of RIPK4 in the progression of HCC and to reveal the biological behaviour of RIPK4 in HCC. We analysed the differences in RIPK4 expression in HCC by using a publicly available data set. By using PCR, Western blotting and immunohistochemical staining methods, we detected the expression level of RIPK4 in HCC patient specimens and studied the relationship between the expression of RIPK4 and the clinicopathological features of HCC patients. The prognostic data were combined to analyse the relationship between RIPK4 and HCC patient survival and tumour recurrence. We found that the expression level of RIPK4 in nontumour tissues was significantly higher than that in tumour tissues, and the level of RIPK4 was significantly positively correlated with postoperative survival and recurrence in HCC patients. Further, our study found that RIPK4 inhibits the progression of HCC by influencing the invasion and metastasis of HCC and that overexpression of RIPK4 reduces the invasion and metastasis of HCC by inhibiting epithelial-mesenchymal transition (EMT) and the STAT3 pathway. In in vivo experiments, overexpression of RIPK4 stably inhibited HCC metastasis. To summarize, our research revealed the relationship between RIPK4 and the prognosis of patients with HCC. We discovered that RIPK4 affects the invasion and metastasis of HCC through the EMT and STAT3 pathways. Targeted inhibition of the RIPK4 gene and the STAT3 pathway may be potential therapeutic strategies for inhibiting the postoperative recurrence and metastasis of HCC.
Collapse
Affiliation(s)
- Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dingan Luo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lakshmi Huttad
- Asian Liver Center, Department of Surgery, Stanford University, Palo Alto, CA, United States
| | - Mao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Juan Feng
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunfeng Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Park S, Yoon S, Min S. Metal‐free Synthesis of
β‐Nitrostyrenes
via
DDQ‐Catalyzed
Nitration. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sangwoon Park
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea
| | - Seungri Yoon
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea
| | - Sun‐Joon Min
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea
- Department of Chemical and Molecular Engineering Hanyang University Ansan Gyeonggi‐do 15588 Republic of Korea
| |
Collapse
|
8
|
Li S, Xu Z, Guo J, Zheng J, Sun X, Yu J. Farnesoid X receptor activation induces antitumour activity in colorectal cancer by suppressing JAK2/STAT3 signalling via transactivation of SOCS3 gene. J Cell Mol Med 2020; 24:14549-14560. [PMID: 33164339 PMCID: PMC7754034 DOI: 10.1111/jcmm.16083] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR, encoded by NR1H4), a bile acid‐activated nuclear receptor, is widely implicated in human tumorigenesis. The FXR agonist obeticholic acid (OCA) has preliminarily displayed tumour suppressor potential. However, the anticancer effects of this agent on colorectal cancer (CRC) remain unclear. In this study, the treatment of colon cancer cells with OCA inhibited cell proliferation and invasion in vitro, retarded tumour growth in vivo and prevented the G0/G1 to S phase transition. Moreover, the expression of active caspase‐3, p21 and E‐cadherin was up‐regulated and the expression of cyclin D1, c‐Myc, vimentin, N‐cadherin and MMP9 was down‐regulated in OCA‐treated colon cancer cells. Mechanistic studies indicated that OCA treatment suppressed the activity of JAK2/STAT3 pathway by up‐regulating SOCS3 expression. Colivelin, an agonist of JAK2/STAT3 pathway, antagonized the tumour‐suppressive effect of OCA on colon cancer cells. Dual‐luciferase reporter and quantitative chromatin immunoprecipitation (qChIP) assays further confirmed that OCA promoted SOCS3 transcription by enhancing the binding of FXR to the FXRE/IR9 of the SOCS3 promoter. In conclusion, our study demonstrates that targeting FXR and improving its function might be a promising strategy for CRC treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhengshui Xu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Guo
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Chiu WC, Fang PT, Lee YC, Wang YY, Su YH, Hu SCS, Chen YK, Tsui YT, Kao YH, Huang MY, Yuan SSF. DNA Repair Protein Rad51 Induces Tumor Growth and Metastasis in Esophageal Squamous Cell Carcinoma via a p38/Akt-Dependent Pathway. Ann Surg Oncol 2019; 27:2090-2101. [PMID: 31749080 DOI: 10.1245/s10434-019-08043-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rad51 is a protein which plays a vital role in DNA double-strand break repair and maintenance of telomeres. However, the underlying mechanism for its action in esophageal squamous cell carcinoma (ESCC) remains unclear. PATIENTS AND METHODS Eighty-seven patients with ESCC were enrolled in this study. Expression of Rad51 in ESCC was determined by immunohistochemistry and correlated with clinicopathological variables by Chi square test. The role of Rad51 in patient survival was determined by Kaplan-Meier estimates. The effects of Rad51 knockdown and overexpression on esophageal cancer growth, migration, and invasion were examined using TE8, CE81T, and KYSE70 cells. The mechanisms involved were also analyzed. Nude mice models were used for assessment of tumor growth. RESULTS Rad51 staining was predominantly observed in ESCC patients. ESCC patients with high Rad51 expression had significantly decreased survival (P < 0.001) combined with increased tumor size (P = 0.034) and lymph node metastasis (P = 0.039). Rad51 overexpression promoted, while its knockdown attenuated, esophageal cancer cell viability through cell cycle entry and migration/invasion via epithelial-mesenchymal transition. Moreover, Rad51 overexpression increased colony formation in vitro and tumor growth in vivo. In addition, high Rad51 expression increased cancer progression through the p38/Akt/Snail signaling pathway. CONCLUSIONS This study indicates a new biological role for Rad51 in ESCC progression. Rad51 may serve as a potential prognostic biomarker and therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Wen-Chin Chiu
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pen-Tzu Fang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Han Su
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Oral Pathology and Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Oral and Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tong Tsui
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shyng-Shiou F Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan. .,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Chen B, Hu Z, Li B, Lin X, Luo Z, Hu Z. The expressions of Hedgehog and PI3K-AKT pathway components correlate with invasion and metastasis in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2381-2388. [PMID: 31934065 PMCID: PMC6949613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the expression and clinical significance of Shh, Gli1, FAK, p-FAK and p-AKT in HCC. METHODS Immunohistochemistry was used to measure Shh, Gli1, FAK, p-FAK, and p-AKT expressions in 50 cases of HCC and paracancerous tissues. The Shh, Gli1, and FAK mRNA levels were determined by qRT-PCR in 20 HCCs. The correlations between the expressions of these target genes and the clinicopathological factors were analyzed in HCC. RESULTS The immunohistochemical results showed that the expressions of Shh, Gli1, FAK, p-FAK, and p-AKT in 50 HCC tissues were significantly higher than those of the paracancerous tissues (P < 0.05). Shh and p-FAK expressions were associated with portal vein invasion, capsular integrity, and distant metastasis (P < 0.05). Gli1, FAK, and p-AKT expressions were closely related to tumor diameter, tumor differentiation, portal vein invasion, capsular integrity, TNM stage and distant metastasis (P < 0.05). Shh was related to Gli1 and p-FAK (r = 0.67, 0.30; P = 0.00, 0.03), Gli1 was positively related to p-FAK and p-AKT (r = 0.52, 0.49; P = 0.00, 0.00), and there was a positive correlation between p-FAK and p-AKT (r = 0.36, P = 0.00). Furthermore, the Shh, Gli1, and FAK mRNA levels in the HCC tissues were significantly higher than those in the paracancerous tissues (P < 0.0001), and the high TNM stages (III and IV) or distant metastasis were significantly higher than those in the low TNM stages (I and II) (P < 0.05) or without distant metastasis (P < 0.05). CONCLUSION In HCC, the Hh and PI3K-AKT signaling pathways are both abnormally activated, and Shh, Gli1, FAK, p-FAK and p-AKT can serve as indicators to predict the prognosis of liver cancer.
Collapse
Affiliation(s)
- Bin Chen
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| | - Zeming Hu
- Postgraduate Student, Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| | - Bofei Li
- Department of General Surgery, Rucheng County People’s HospitalChenzhou 424100, Hunan Province, China
| | - Xuan Lin
- Postgraduate Student, Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| | - Zhijiang Luo
- Postgraduate Student, Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| | - Zhiqiang Hu
- Postgraduate Student, Gannan Medical UniversityGanzhou 341000, Jiangxi Province, China
| |
Collapse
|
11
|
Wang B, Hao D, Zhang Z, Gao W, Pan H, Xiao Y, He B, Kong L. Inhibition effects of a natural inhibitor on RANKL downstream cellular signalling cascades cross-talking. J Cell Mol Med 2018; 22:4236-4242. [PMID: 29911332 PMCID: PMC6111857 DOI: 10.1111/jcmm.13703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023] Open
Abstract
Myricitrin is a natural occurring flavonoid glycoside that possesses effects on inhibiting nitric oxide (NO) transmission and preventing inflammatory reaction. Although previous study showed the myricitrin possesses antibone loss effects via reducing the expression of IL-6 and partially suppressing reactive oxygen species (ROS) production. However, the effects of myricitrin on nuclear factor-kappaB ligand (RANKL)-stimulated osteoclastogenesis have not yet been further investigated. The current study was aimed to demonstrating the inhibitory effects of myricitrin on RANKL-stimulated osteoclastogenesis and relevant mechanisms. We found myricitrin significantly suppressed osteoclastogenesis suggesting that it may acts on RANKL/RANK induced downstream signal cross cascading in osteoclast precursors. In that, our Western blotting results showed myricitrin significantly attenuated RNAKL/MAPKs (phosphorylation of p38, ERK, JNK) and AKT signal cascading. Complementing previous study, our results suggesting as a natural inhibitor, myricitrin possesses the potential therapeutic effects on inflammatory osteolysis.
Collapse
Affiliation(s)
- Biao Wang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Dingjun Hao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Zhen Zhang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Wenjie Gao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Hu Pan
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Yuan Xiao
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Lingbo Kong
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
12
|
Supplementation with IL-6 and Muscle Cell Culture Conditioned Media Enhances Myogenic Differentiation of Adipose Tissue-Derived Stem Cells through STAT3 Activation. Int J Mol Sci 2018; 19:ijms19061557. [PMID: 29882916 PMCID: PMC6032255 DOI: 10.3390/ijms19061557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Mature skeletal muscle cells cannot be expanded in culture systems. Therefore, it is difficult to construct an in vitro model for muscle diseases. To establish an efficient protocol for myogenic differentiation of human adipose tissue-derived stem cells (hADSCs), we investigated whether addition of IL-6 and/or myocyte-conditioned media (CM) to conventional differentiation media can shorten the differentiation period. hADSCs were differentiated to myocytes using the conventional protocol or modified with the addition of 25 pg/mL IL-6 and/or C2C12 CM (25% v/v). The expression of MyoD and myogenine mRNA was significantly higher at 5⁻6 days after differentiation using the modified protocol than with the conventional protocol. mRNA and protein expression of myosin heavy chain, a marker of myotubes, was significantly upregulated at 28 and 42 days of differentiation using the modified protocol, and the level achieved after a 4-week differentiation period was similar to that achieved at 6 weeks using the conventional protocol. The expression of p-STAT3 was significantly increased when the modified protocol was used. Similarly, addition of colivelin, a STAT3 activator, instead of IL-6 and C2C12 CM, promoted the myogenic differentiation of ADSCs. The modified protocol improved differentiation efficiency and reduced the time required for differentiation of myocytes. It might be helpful to save cost and time when preparing myocytes for cell therapies and drug discovery.
Collapse
|
13
|
León IE, Díez P, Baran EJ, Etcheverry SB, Fuentes M. Decoding the anticancer activity of VO-clioquinol compound: the mechanism of action and cell death pathways in human osteosarcoma cells. Metallomics 2018; 9:891-901. [PMID: 28581009 DOI: 10.1039/c7mt00068e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vanadium compounds were studied in recent years by considering them as a representative of a new class of non-platinum metal anticancer drugs. However, a few challenges still remain in the discovery of new molecular targets of these new metallodrugs. Studies on cell signaling pathways related to vanadium compounds have scarcely been reported and so far this information is highly critical for identifying novel targets that play a key role in the antitumor actions of vanadium complexes. This research deals with the alterations in the intracellular signaling pathways promoted by an oxovanadium(iv) complex with the clioquinol (5-chloro-7-iodo-8-quinolinol), VO(CQ)2, on a human osteosarcoma cell line (MG-63). Herein are reported, for the first time, the antitumor properties of VO(CQ)2 and the relative abundance of 224 proteins (which are involved in most of the common intracellular pathways) to identify novel targets of the studied complex. Besides, full-length human recombinant AKT1 kinase was produced by using an IVTT system to evaluate the variation of relative tyrosin-phosphorylation levels caused by this compound. The results of the differential protein expression levels reveal several up-regulated proteins such as CASP3, CASP6, CASP7, CASP10, CASP11, Bcl-x, DAPK and down-regulated ones, such as PKB/AKT, DIABLO, among others. Moreover, cell signaling pathways involved in several altered pathways related to the PKC and AP2 family have been identified in both treatments (2.5 and 10 μM) suggesting the crucial antitumoral role of VO(CQ)2. Finally, it has been demonstrated that this compound (10 μM, 6 h) triggers a decrease of 2-fold in in situ AKT1 expression.
Collapse
Affiliation(s)
- Ignacio E León
- Chair of Patologic Biochemistry, Exact School Sciences, National University of La Plata, 47 y 115, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
14
|
Xia M, Li X, Yang L, Ren J, Sun G, Qi S, Verkhratsky A, Li B. The ameliorative effect of fluoxetine on neuroinflammation induced by sleep deprivation. J Neurochem 2017; 146:63-75. [PMID: 29222907 DOI: 10.1111/jnc.14272] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
It is well known that sleep disorders are harmful to people's health and performance, and growing evidence suggests that sleep deprivation (SD) can trigger neuroinflammation in the brain. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome is reported to be relevant to the neuroinflammation induced by SD, but the regulatory signaling that governs the NLRP3 inflammasome in SD is still unknown. Meanwhile, whether the regulatory action of antidepressants in astrocytes could affect the neuroinflammation induced by SD also remains obscure. In this study, we were the first to discover that the antidepressant fluoxetine, a type of specific serotonin reuptake inhibitor widely used in clinical practice, could suppress the neuroinflammation and neuronal apoptosis induced by SD. The main findings from this study are as follows: (i) SD stimulated the expression of activated NLRP3 inflammasomes and the maturation of IL-1β/18 via suppressing the phosphorylation of STAT3 in astrocytes; (ii) SD decreased the activation of AKT and stimulated the phosphorylation of GSK-3β, which inhibited the phosphorylation of STAT3; (iii) the NLRP3 inflammasome expression stimulated by SD was partly mediated by the P2X7 receptor; (iv) an agonist of STAT3 could significantly abolish the expression of NLRP3 inflammasomes induced by an agonist of the P2X7 receptor in primary cultured astrocytes; (v) the administration of fluoxetine could reverse the stimulation of NLRP3 inflammasome expression and function by SD through elevating the activation of STAT3. In conclusion, our present research suggests the promising possibility that fluoxetine could ameliorate the neuronal impairment induced by SD.
Collapse
Affiliation(s)
- Maosheng Xia
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Xiaowei Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Li Yang
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Jiaan Ren
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Guangfeng Sun
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Shuang Qi
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|