1
|
Moore G, Brooks P, Pappalardo L, Boufridi A. Phenolic profiles of Australian monofloral Eucalyptus, Corymbia, Macadamia and Lophostemon honeys via HPLC-DAD analysis. Food Chem 2025; 462:140900. [PMID: 39213973 DOI: 10.1016/j.foodchem.2024.140900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Australian honey samples from four botanical genera (Lophostemon, Eucalyptus, Macadamia and Corymbia) were investigated for their phenolic content. An improved phenolic extraction and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis method allowed for the rapid and reliable identification of phenolic compounds. A concentrated liquid-liquid extraction method with an acidified aqueous solution and acetonitrile was optimised to isolate phenolic compounds from the honey matrix. The concentrated extraction method improved sensitivity and permitted the identification of phenolics present at low concentrations (LOD: 0.012-0.25 mg/kg and LOQ: 0.040-2.99 mg/kg). The optimised HPLC-DAD chromatographic conditions gave stable retention times, improved peak separation and allowed for the inexpensive detection of each of the 109 phenolic compounds at their maximum absorbance wavelength. Out of the 109 phenolic compounds included in this study, 49 were identified in the Australian honeys tested. Furthermore, 25 of the 49 compounds were determined to be markers specific to honey floral origin.
Collapse
Affiliation(s)
- Georgia Moore
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Peter Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia; Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Linda Pappalardo
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Asmaa Boufridi
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| |
Collapse
|
2
|
Fernandes KE, Dong AZ, Levina A, Cokcetin NN, Brooks P, Carter DA. Long-term stability and the physical and chemical factors predictive for antimicrobial activity in Australian honey. PLoS One 2024; 19:e0303095. [PMID: 38776281 PMCID: PMC11111008 DOI: 10.1371/journal.pone.0303095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
The growing burden of expired medicines contributes to environmental contamination and landfill waste accumulation. Medicinal honey, with its non-toxic nature and potentially long shelf-life, represents a promising and underutilised therapeutic that avoids some of these issues. However, limited knowledge on how its antimicrobial properties change over time combined with a lack of reliable processes in the honey industry for measuring antimicrobial potential, hinder its clinical adoption. Using a diverse selection of 30 Australian honey samples collected between 2005 and 2007, we comprehensively evaluated their antibacterial and antifungal activity and pertinent physical and chemical properties with the aims of assessing the effect of long-term storage on activity, pinpointing factors associated with antimicrobial efficacy, and establishing robust assessment methods. Minimum inhibitory concentration (MIC) assays proved superior to the standard phenol equivalence assay in capturing the full range of antimicrobial activity present in honey. Correlations between activity and a range of physical and chemical properties uncovered significant associations, with hydrogen peroxide, antioxidant content, and water activity emerging as key indicators in non-Leptospermum honey. However, the complex nature and the diverse composition of honey samples precludes the use of high-throughput chemical tests for accurately assessing this activity, and direct assessment using live microorganisms remains the most economical and reliable method. We provide recommendations for different methods of assaying various honey properties, taking into account their accuracy along with technical difficulty and safety considerations. All Leptospermum and fourteen of seventeen non-Leptospermum honey samples retained at least some antimicrobial properties after 15-17 years of storage, suggesting that honey can remain active for extended periods. Overall, the results of this study will help industry meet the growing demand for high-quality, medicinally active honey while ensuring accurate assessment of its antimicrobial potential.
Collapse
Affiliation(s)
- Kenya E. Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Z. Dong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Aviva Levina
- School of Chemistry, University of Sydney, Sydney, New South Wales, Australia
| | - Nural N. Cokcetin
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Dee A. Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. Monitoring the Release of Methylglyoxal (MGO) from Honey and Honey-Based Formulations. Molecules 2023; 28:molecules28062858. [PMID: 36985830 PMCID: PMC10051060 DOI: 10.3390/molecules28062858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Methylglyoxal (MGO) is considered to be one of the vital components responsible for the anti-bacterial activity of Leptospermum spp. (Manuka) honey. While many studies have demonstrated a dose-dependent antibacterial activity for MGO in vitro, from a therapeutic viewpoint, it is also important to confirm its release from Manuka honey and also from Manuka honey-based formulations. This study is the first to report on the release profile of MGO from five commercial products containing Manuka honey using a Franz diffusion cell and High-Performance Liquid Chromatography (HPLC) analysis. The release of MGO expressed as percentage release of MGO content at baseline was monitored over a 12 h period and found to be 99.49 and 98.05% from an artificial honey matrix and NZ Manuka honey, respectively. For the investigated formulations, a time-dependent % MGO release between 85% and 97.18% was noted over the 12 h study period.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia
| | - Dhanushka Hettiarachchi
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Perth 6035, Australia
| |
Collapse
|
4
|
Green KJ, Lawag IL, Locher C, Hammer KA. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. PLoS One 2022; 17:e0272376. [PMID: 35901185 PMCID: PMC9333225 DOI: 10.1371/journal.pone.0272376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Variation in the antibacterial potency of manuka honey has been reported in several published studies. However, many of these studies examine only a few honey samples, or test activity against only a few bacterial isolates. To address this deficit, a collection of 29 manuka/Leptospermum honeys was obtained, comprising commercial manuka honeys from Australia and New Zealand and several Western Australian Leptospermum honeys obtained directly from beekeepers. The antibacterial activity of honeys was quantified using several methods, including the broth microdilution method to determine minimum inhibitory concentrations (MICs) against four species of test bacteria, the phenol equivalence method, determination of antibacterial activity values from optical density, and time kill assays. Several physicochemical parameters or components were also quantified, including methylglyoxal (MGO), dihydroxyacetone (DHA), hydroxymethylfurfural (HMF) and total phenolics content as well as pH, colour and refractive index. Total antioxidant activity was also determined using the DPPH* (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing–antioxidant power) assays. Levels of MGO quantified in each honey were compared to the levels stated on the product labels, which revealed mostly minor differences. Antibacterial activity studies showed that MICs varied between different honey samples and between bacterial species. Correlation of the MGO content of honey with antibacterial activity showed differing relationships for each test organism, with Pseudomonas aeruginosa showing no relationship, Staphylococcus aureus showing a moderate relationship and both Enterococcus faecalis and Escherichia coli showing strong positive correlations. The association between MGO content and antibacterial activity was further investigated by adding known concentrations of MGO to a multifloral honey and quantifying activity, and by also conducting checkerboard assays. These investigations showed that interactions were largely additive in nature, and that synergistic interactions between MGO and the honey matrix did not occur.
Collapse
Affiliation(s)
- Kathryn J. Green
- School of Biomedical Sciences, The University of Western Australia (UWA), Crawley, Western Australia, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
| | - Ivan L. Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- Division of Pharmacy, School of Allied Health, UWA, Crawley, WA, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- Division of Pharmacy, School of Allied Health, UWA, Crawley, WA, Australia
| | - Katherine A. Hammer
- School of Biomedical Sciences, The University of Western Australia (UWA), Crawley, Western Australia, Australia
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), Yanchep, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, UWA, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|
5
|
Hegazi NM, Elghani GEA, Farag MA. The super-food Manuka honey, a comprehensive review of its analysis and authenticity approaches. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 59:2527-2534. [DOI: 10.1007/s13197-021-05181-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
|
6
|
Kato Y, Kishi Y, Okano Y, Kawai M, Shimizu M, Suga N, Yakemoto C, Kato M, Nagata A, Miyoshi N. Methylglyoxal binds to amines in honey matrix and 2'-methoxyacetophenone is released in gaseous form into the headspace on the heating of manuka honey. Food Chem 2020; 337:127789. [PMID: 32795863 DOI: 10.1016/j.foodchem.2020.127789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Reports on the thermal stability of manuka honey in terms of food processing have been few. This study investigated changes in nine characteristic chemicals of manuka honey during heating. Among these, methylglyoxal (MGO) and 2'-methoxyacetophenone (MAP) were significantly decreased by heating at 90 °C. To elucidate the mechanism for this decrease, artificial honey was prepared from sugars and water with MAP or MGO and then heated. The decrease of MGO was enhanced with l-proline, lysine, or arginine derivatives, accompanied by formation of 2-acetyl-1-pyrroline, MGO-derived lysine dimer, or argpyrimidine, respectively, suggesting that an amino-carbonyl reaction is one pathway for the loss of MGO. The decrease of MAP in the artificial honey depended on the volume of headspace in a vessel. MAP from heated manuka honey was also detected in the gas phase, indicating that MAP was vaporized. Heating could thus reduce the beneficial and/or signature molecules in honey.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan; Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo 670-0092, Japan.
| | - Yui Kishi
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Yayako Okano
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Masaki Kawai
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Michiyo Shimizu
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Naoko Suga
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Chisato Yakemoto
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Mai Kato
- School of Food and Nutritional Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akika Nagata
- School of Food and Nutritional Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- School of Food and Nutritional Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
7
|
Tang JS, Compton BJ, Marshall A, Anderson R, Li Y, van der Woude H, Hermans IF, Painter GF, Gasser O. Mānuka honey-derived methylglyoxal enhances microbial sensing by mucosal-associated invariant T cells. Food Funct 2020; 11:5782-5787. [PMID: 32618294 DOI: 10.1039/d0fo01153c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MGO) is the main antimicrobial determinant associated with using Mānuka Honey as a topical dressing. While direct mechanisms of Mānuka honey MGO's antimicrobial activity have been demonstrated, such as disruption of bacterial fimbria and flagella, no interaction of Mānuka honey-derived MGO with antimicrobial effector cells of the immune system, such as mucosal-associated invariant T cells (MAIT cells), has yet been reported. MAIT cells are an abundant subset of human T cells, critical for regulating a diverse range of immune functions, including antimicrobial defense mechanisms but also mucosal barrier integrity. MAIT cells become activated by recognition of an important microbial metabolite, 5-amino-6-d-ribitylaminouracil (5-A-RU), which is produced by a wide range of microbial pathogens and commensals. Recognition is afforded when 5-A-RU condenses with mammalian-cell derived MGO to form the potent MAIT cell activator, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU). Formation of 5-OP-RU and its subsequent presentation to MAIT cells by major histocompatibility (MHC)-related molecule 1 (MR1) facilitates host-pathogen and host-commensal interactions. While MGO is a metabolite naturally present in mammalian cells, it is unclear whether exogenous dietary MGO sources, such as those obtained from Mānuka honey intake, can contribute to 5-OP-RU formation and enhance MAIT cell activation. In this work, we report that endogenous MGO is the rate-limiting substrate for converting microbial 5-A-RU to 5-OP-RU and that Mānuka honey-derived MGO significantly enhances MAIT cell activation in vitro. Our findings posit a novel mechanism by which intake of a food item, such as Mānuka honey, can potentially support immune homeostasis by enhancing MAIT cell-specific microbial sensing.
Collapse
Affiliation(s)
- Jeffry S Tang
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6242, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Woodward Z, Brooks P, Morris-Smith B, Wallis M, Ogbourne SM. Adsorption and Leachable Contamination of Flucloxacillin, Cyclosporin and Amiodarone Following Delivery Through an Intravenous Administration Set. Pharm Res 2018; 35:121. [PMID: 29675679 DOI: 10.1007/s11095-018-2409-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/13/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE Interactions between a pharmaceutical drug and its delivery device can result in changes in drug concentration and leachable contamination. Flucloxacillin, amiodarone and cyclosporin were investigated for drug concentration changes and leachable contamination after delivery through an intravenous administration set. METHODS Flucloxacillin, amiodarone and cyclosporin were delivered through an intravenous administration set and the eluate analysed by HPLC-UV and HPLC-MS. RESULTS The average recovery of flucloxacillin was 99.7% and no leachable compounds were identified. The average recovery of cyclosporin was 96.1%, which contrasts previous findings that have reported up to 50% loss of cyclosporin. This is likely due to the use of DEHP-free administration sets in this study, as adsorption of cyclosporin is linearly related to DEHP content. The average recovery of amiodarone was 91.5%. 5-hydroxymethylfurfural was identified in the amiodarone solution following delivery through the administration set as well as the 5% glucose solution used for delivery. CONCLUSIONS Drug/administration set interactions may modify pharmaceuticals during delivery. In this study, only 90% of the amiodarone was delivered through a generic administration set. Given the growing use of generic administration sets in hospital settings, validation of the suitability of their use is required to ensure patient safety and expected levels of efficacy.
Collapse
Affiliation(s)
- Zachary Woodward
- Genecology Research Centre, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia
| | - Peter Brooks
- Genecology Research Centre, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia
| | - Bernadette Morris-Smith
- Sunshine Coast Hospital Health Service, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia
| | - Marianne Wallis
- Nursing and Midwifery Cluster for Research Excellence, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Steven M Ogbourne
- Genecology Research Centre, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|
9
|
Sun J, Gao W, Qi L, Song Y, Hui P, Liu Z, Xu G. Detection of 1,3-dihydroxyacetone by tris(2,2'-bipyridine)ruthenium(II) electrochemiluminescence. Anal Bioanal Chem 2018; 410:2315-2320. [PMID: 29430601 DOI: 10.1007/s00216-017-0833-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/16/2017] [Accepted: 12/15/2017] [Indexed: 11/26/2022]
Abstract
1,3-Dihydroxyacetone, a common cosmetic material and food additive, has been successfully explored as an efficient electrochemiluminescence coreactant of Ru(bpy)32+ for the first time. It is about 25 times more effective than the well-known coreactant sodium oxalate. The high electrochemiluminescence efficiency allows sensitive detection of 1,3-dihydroxyacetone without any derivatization. The electrochemiluminescence method shows two linear electrochemiluminescence responses over the range of 5.0-500 μM and 500 μM-6.0 mM with a detection limit of 1.79 μM. The proposed method is at least two orders of magnitude more sensitive than other reported methods. Graphical abstract ECL intensity-potential profile of 1,3-dihydroxyacetone (DHA) and oxalate.
Collapse
Affiliation(s)
- Jianrui Sun
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130022, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Wenyue Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing, 100049, China
| | - Liming Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing, 100049, China
| | - Yufeng Song
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130022, People's Republic of China
| | - Pan Hui
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhongyuan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| |
Collapse
|