1
|
Thakur R, Collens A, Greco M, Sleith RS, Grattepanche JD, Katz LA. Newly designed foraminifera primers identify habitat-specific lineages through metabarcoding analyses. J Eukaryot Microbiol 2022; 69:e12913. [PMID: 35332619 DOI: 10.1111/jeu.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Foraminifera include diverse shell-building lineages found in a wide array of aquatic habitats from the deep-sea to intertidal zones to brackish and freshwater ecosystems. Recent estimates of morphological and molecular foraminifera diversity have increased the knowledge of foraminiferal diversity, which is critical as these lineages are used as bioindicators of past and present environmental perturbation. However, a comparative analysis of foraminiferal biodiversity between their major habitats (freshwater, brackish, intertidal, and marine) is underexplored, particularly using molecular tools. Here, we present metabarcoding survey of foraminiferal diversity across different ecosystems using newly designed foraminifera-specific primers that target the hypervariable regions of the foraminifera SSU-rRNA gene (~250-300bp long). We tested these primer sets on four foraminifera species and then across several environments: the intertidal zone, coastal ecosystems, and freshwater vernal pools. We retrieved 655 operational taxonomic units (OTUs); the majority are undetermined taxa that have no closely-matching sequences in the database. Furthermore, we identified 163 OTUs with distinct habitat preferences. Most of the observed OTUs belonged to lineages of single-chambered foraminifera, including poorly explored freshwater foraminifera which encompass a clade of Reticulomyxa-like forms. Our pilot study provides the community with an additional set of newly designed and taxon-specific primers to elucidate foraminiferal diversity across different habitats.
Collapse
Affiliation(s)
- Rabindra Thakur
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA.,University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Adena Collens
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA
| | - Mattia Greco
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA.,Temple University, Department of Biology, Philadelphia, Pennsylvania, USA
| | - Robin S Sleith
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA
| | - Jean-David Grattepanche
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA.,Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Laura A Katz
- Smith College, Department of Biological Science, Northampton, Massachusetts, USA.,University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Liu W, McManus GB, Lin X, Huang H, Zhang W, Tan Y. Distribution Patterns of Ciliate Diversity in the South China Sea. Front Microbiol 2021; 12:689688. [PMID: 34539599 PMCID: PMC8446678 DOI: 10.3389/fmicb.2021.689688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Ciliates are abundant microplankton that are widely distributed in the ocean. In this paper, the distribution patterns of ciliate diversity in the South China Sea (SCS) were analyzed by compiling community data from previous publications. Based on morphological identification, a total of 592 ciliate species have been recorded in the SCS. The ciliate communities in intertidal, neritic and oceanic water areas were compared in terms of taxonomy, motility and feeding habit composition, respectively. Significant community variation was revealed among the three areas, but the difference between the intertidal area and the other two areas was more significant than that between neritic and oceanic areas. The distributions of ciliates within each of the three areas were also analyzed. In the intertidal water, the community was not significantly different among sites but did differ among habitat types. In neritic and oceanic areas, the spatial variation of communities among different sites was clearly observed. Comparison of communities by taxonomic and ecological traits (motility and feeding habit) indicated that these traits similarly revealed the geographical pattern of ciliates on a large scale in the SCS, but to distinguish the community variation on a local scale, taxonomic traits has higher resolution than ecological traits. In addition, we assessed the relative influences of environmental and spatial factors on assembly of ciliate communities in the SCS and found that environmental selection is the major process structuring the taxonomic composition in intertidal water, while spatial processes played significant roles in influencing the taxonomic composition in neritic and oceanic water. Among ecological traits, environmental selection had the most important impact on distributions.
Collapse
Affiliation(s)
- Weiwei Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - George B. McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Xiaofeng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Honghui Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P. R. China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wenjing Zhang
- State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
3
|
Liu W, Shin MK, Yi Z, Tan Y. Progress in studies on the diversity and distribution of planktonic ciliates (Protista, Ciliophora) in the South China Sea. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:28-43. [PMID: 37073391 PMCID: PMC10077177 DOI: 10.1007/s42995-020-00070-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/01/2020] [Indexed: 05/03/2023]
Abstract
As an important component of microzooplankton, ciliates play a key role in matter cycling and energy flow in marine planktonic ecosystems. Studies of planktonic ciliate have been extensive in the South China Sea (SCS) over the last 20 years. Here, we summarize the recent progress on the diversity and distribution of this group in the SCS. This includes that in: (1) the waters covering the intertidal zone of the northern SCS, most studies have focused on taxonomy, with 71 species collected, identified, and described (with ~ 40% new species); (2) neritic waters distribution patterns have been examined at a regional scale, with ciliates displaying significant spatial variations and seasonal dynamics; (3) in oceanic waters, there has been a focus on ciliate distribution in north, centre, and south regions, where mesoscale physical processes play roles in controlling distributions, and noticeable vertical variations occur. More generally, some studies examine the influences of environment variables on ciliates, and indicate that chlorophyll a concentration is commonly positively correlated with ciliates abundance. In addition, some significant findings are summarized, the limitations of past studies are considered, and recommendations are made for future work on planktonic ciliates in SCS.
Collapse
Affiliation(s)
- Weiwei Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Mann Kyoon Shin
- Department of Biological Science, University of Ulsan, Ulsan, 680749 South Korea
| | - Zhenzhen Yi
- Laboratory of Protozoology, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| |
Collapse
|
4
|
Grattepanche JD, Juarez DL, Wood CC, McManus GB, Katz LA. Incubation and grazing effects on spirotrich ciliate diversity inferred from molecular analyses of microcosm experiments. PLoS One 2019; 14:e0215872. [PMID: 31059530 PMCID: PMC6502329 DOI: 10.1371/journal.pone.0215872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
We used an experimental approach of analyzing marine microcosms to evaluate the impact of both predation (top-down) and food resources (bottom-up) on spirotrich ciliate communities. To assess the diversity, we used two molecular methods–denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (HTS). We carried out two types of experiments to measure top-down (adult copepods as predators) and bottom-up effects (phytoplankton as food resources) on the spirotrich ciliates. We observed both strong incubation effects (untreated controls departed from initial assessment of diversity) and high variability across replicates within treatments, particularly for the bottom-up experiments. This suggests a rapid community turn-over during incubation and differential susceptibility to the effects of experimental manipulation. Despite the variability, our analyses reveal some broad patterns such as (1) increasing adult copepod predator abundance had a greater impact on spirotrich ciliates than on other microbial eukaryotes; (2) there was no evidence for strong food selection by the dominant spirotrich ciliates.
Collapse
Affiliation(s)
- Jean-David Grattepanche
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- * E-mail: (JDG); (LAK)
| | - Doris L. Juarez
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Cameah C. Wood
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - George B. McManus
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (JDG); (LAK)
| |
Collapse
|
5
|
Wang Y, Wang C, Jiang Y, Katz LA, Gao F, Yan Y. Further analyses of variation of ribosome DNA copy number and polymorphism in ciliates provide insights relevant to studies of both molecular ecology and phylogeny. SCIENCE CHINA-LIFE SCIENCES 2019; 62:203-214. [PMID: 30671886 DOI: 10.1007/s11427-018-9422-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022]
Abstract
Sequence-based approaches, such as analyses of ribosome DNA (rDNA) clone libraries and high-throughput amplicon sequencing, have been used extensively to infer evolutionary relationships and elucidate the biodiversity in microbial communities. However, recent studies demonstrate both rDNA copy number variation and intra-individual (intra-genomic) sequence variation in many organisms, which challenges the application of the rDNA-based surveys. In ciliates, an ecologically important clade of microbial eukaryotes, rDNA copy number and sequence variation are rarely studied. In the present study, we estimate the intraindividual small subunit rDNA (SSU rDNA) copy number and sequence variation in a wide range of taxa covering nine classes and 18 orders of the phylum Ciliophora. Our studies reveal that: (i) intra-individual sequence variation of SSU rDNA is ubiquitous in all groups of ciliates detected and the polymorphic level varies among taxa; (ii) there is a most common version of SSU rDNA sequence in each cell that is highly predominant and may represent the germline micronuclear template; (iii) compared with the most common version, other variant sequences differ in only 1-3 nucleotides, likely generated during macronuclear (somatic) amplification; (iv) the intra-cell sequence variation is unlikely to impact phylogenetic analyses; (v) the rDNA copy number in ciliates is highly variable, ranging from 103 to 106, with the highest record in Stentor roeselii. Overall, these analyses indicate the need for careful consideration of SSU rDNA variation in analyses of the role of ciliates in ecosystems.
Collapse
Affiliation(s)
- Yurui Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Chundi Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Yaohan Jiang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, 01063, USA
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China.
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China.
- Department of Biological Sciences, Smith College, Northampton, MA, 01063, USA.
| |
Collapse
|
6
|
Tucker SJ, McManus GB, Katz LA, Grattepanche JD. Distribution of Abundant and Active Planktonic Ciliates in Coastal and Slope Waters Off New England. Front Microbiol 2017; 8:2178. [PMID: 29250036 PMCID: PMC5715329 DOI: 10.3389/fmicb.2017.02178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/23/2017] [Indexed: 11/18/2022] Open
Abstract
Despite their important role of linking microbial and classic marine food webs, data on biogeographical patterns of microbial eukaryotic grazers are limited, and even fewer studies have used molecular tools to assess active (i.e., those expressing genes) community members. Marine ciliate diversity is believed to be greatest at the chlorophyll maximum, where there is an abundance of autotrophic prey, and is often assumed to decline with depth. Here, we assess the abundant (DNA) and active (RNA) marine ciliate communities throughout the water column at two stations off the New England coast (Northwest Atlantic)—a coastal station 43 km from shore (40 m depth) and a slope station 135 km off shore (1,000 m). We analyze ciliate communities using a DNA fingerprinting technique, Denaturing Gradient Gel Electrophoresis (DGGE), which captures patterns of abundant community members. We compare estimates of ciliate communities from SSU-rDNA (abundant) and SSU-rRNA (active) and find complex patterns throughout the water column, including many active lineages below the photic zone. Our analyses reveal (1) a number of widely-distributed taxa that are both abundant and active; (2) considerable heterogeneity in patterns of presence/absence of taxa in offshore samples taken 50 m apart throughout the water column; and (3) three distinct ciliate assemblages based on position from shore and depth. Analysis of active (RNA) taxa uncovers biodiversity hidden to traditional DNA-based approaches (e.g., clone library, rDNA amplicon studies).
Collapse
Affiliation(s)
- Sarah J Tucker
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, United States.,Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, United States
| | | |
Collapse
|