1
|
Li D, Huo C, Li G, Zhu M, Xu F, Qiao J, Sun H. The absence of luxS reduces the invasion of Avibacterium paragallinarum but is not essential for virulence. Front Vet Sci 2024; 11:1427966. [PMID: 39263678 PMCID: PMC11390136 DOI: 10.3389/fvets.2024.1427966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
The contagious respiratory pathogen, Avibacterium paragallinarum, contributes to infectious coryza in poultry. However, commercial vaccines have not shown perfect protection against infectious coryza. To search for an alternative approach, this research aimed to investigate whether the quorum-sensing system of pathogens plays a crucial role in their survival and pathogenicity. The LuxS/AI-2 quorum-sensing system in many Gram-negative and Gram-positive bacteria senses environmental changes to regulate physiological traits and virulent properties, and the role of the luxS gene in Av. paragallinarum remains unclear. To investigate the effect of the luxS gene in the quorum-sensing system of Av. paragallinarum, we constructed a luxS mutant. Bioluminescence analysis indicated that the luxS gene plays a vital role in the LuxS/AI-2 quorum-sensing system. The analysis of the LuxS/AI-2 system-related genes showed the level of pfs mRNA to be significantly increased in the mutant strain; however, lsrR, lsrK, and lsrB mRNA levels were not significantly different compared with the wild type. The ability of the luxS mutant strain to invade HD11 and DF-1 cells was significantly decreased compared with the wild-type strain. In addition, all chickens challenged with various doses of the luxS mutant strain developed infections and symptoms, and those challenged with the lowest dose exhibited only minor differences compared to chickens challenged with the wild-type strain. Thus, the deletion of the luxS gene reduces the invasion, but the luxS gene does not play an essential role in the pathogenesis of A. paragallinarum.
Collapse
Affiliation(s)
- Donghai Li
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Caiyun Huo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guiping Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Menghan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huiling Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Haque F, Diba F, Istiaq A, Siddique MA, Mou TJ, Hossain MA, Sultana M. Novel insights into the co-selection of metal-driven antibiotic resistance in bacteria: a study of arsenic and antibiotic co-exposure. Arch Microbiol 2024; 206:194. [PMID: 38538852 DOI: 10.1007/s00203-024-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 04/16/2024]
Abstract
The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.
Collapse
Affiliation(s)
- Farhana Haque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Farzana Diba
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, Savar, Dhaka, 1349, Bangladesh
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Sciences, Kyushu University, Fukuoka, Japan
| | - Mohammad Anwar Siddique
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
3
|
de Oliveira PAA, Baboghlian J, Ramos COA, Mançano ASF, Porcari ADM, Girardello R, Ferraz LFC. Selection and validation of reference genes suitable for gene expression analysis by Reverse Transcription Quantitative real-time PCR in Acinetobacter baumannii. Sci Rep 2024; 14:3830. [PMID: 38360762 PMCID: PMC10869792 DOI: 10.1038/s41598-024-51499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative bacterium considered an emerging multi-drug-resistant pathogen. Furthermore, this bacterium can survive in extreme environmental conditions, which makes it a frequent cause of nosocomial infection outbreaks. Gene expression analyses by Reverse Transcription Quantitative real-time PCR (RT-qPCR) depend on a reference gene, also called an endogenous gene, which is used to normalize the generated data and thus ensure an accurate analysis with minimal errors. Currently, gene expression analyses in A. baumannii are compromised, as there are no reports in the literature describing the identification of validated reference genes for use in RT-qPCR analyses. For this reason, we selected twelve candidate reference genes of A. baumannii and assessed their expression profile under different experimental and culture conditions. The expression stability of the candidate genes was evaluated by using statistical algorithms such as BestKeeper, geNorm, NormFinder, Delta CT, and RefFinder, in order to identify the most suitable candidate reference genes for RT-qPCR analyses. The statistical analyses indicated rpoB, rpoD, and fabD genes as the most adequate to ensure accurate normalization of RT-qPCR data in A. baumannii. The accuracy of the proposed reference genes was validated by using them to normalize the expression of the ompA gene, encoding the outer membrane protein A, in A. baumannii sensible and resistant to the antibiotic polymyxin. The present work provides suitable reference genes for precise RT-qPCR data normalization on future gene expression studies with A. baumannii.
Collapse
Affiliation(s)
| | - Juliana Baboghlian
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | | | | | - Andréia de Melo Porcari
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | - Raquel Girardello
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, SP, CEP 12916-900, Brazil.
| |
Collapse
|
4
|
Abo-Elghiet F, Rushdi A, Ibrahim MH, Mahmoud SH, Rabeh MA, Alshehri SA, El Menofy NG. Chemical Profile, Antibacterial, Antibiofilm, and Antiviral Activities of Pulicaria crispa Most Potent Fraction: An In Vitro and In Silico Study. Molecules 2023; 28:molecules28104184. [PMID: 37241923 DOI: 10.3390/molecules28104184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Infectious diseases caused by viruses and bacteria are a major public health concern worldwide, with the emergence of antibiotic resistance, biofilm-forming bacteria, viral epidemics, and the lack of effective antibacterial and antiviral agents exacerbating the problem. In an effort to search for new antimicrobial agents, this study aimed to screen antibacterial and antiviral activity of the total methanol extract and its various fractions of Pulicaria crispa (P. crispa) aerial parts. The P. crispa hexane fraction (HF) was found to have the strongest antibacterial effect against both Gram-positive and Gram-negative bacteria, including biofilm producers. The HF fraction reduced the expression levels of penicillin binding protein (PBP2A) and DNA gyrase B enzymes in Staphylococcus aureus and Pseudomonas aeruginosa, respectively. Additionally, the HF fraction displayed the most potent antiviral activity, especially against influenza A virus, affecting different stages of the virus lifecycle. Gas chromatography/mass spectrometry (GC/MS) analysis of the HF fraction identified 27 compounds, mainly belonging to the sterol class, with β-sitosterol, phytol, stigmasterol, and lupeol as the most abundant compounds. The in silico study revealed that these compounds were active against influenza A nucleoprotein and polymerase, PBP2A, and DNA gyrase B. Overall, this study provides valuable insights into the chemical composition and mechanism of action of the P. crispa HF fraction, which may lead to the development of more effective treatments for bacterial and viral infections.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Areej Rushdi
- Department of Medical Microbiology and Immunology, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, Environmental Research and Climate Changes Institute, National Research Center, Giza 12622, Egypt
| | - Mohamed A Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62514, Saudi Arabia
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62514, Saudi Arabia
| | - Nagwan Galal El Menofy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
5
|
The Protective Efficacy of an Inactivated Vaccine against Avibacterium paragallinarum Field Isolates. Vet Sci 2022; 9:vetsci9090458. [PMID: 36136674 PMCID: PMC9506203 DOI: 10.3390/vetsci9090458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Infectious coryza (IC) is an acute respiratory disease caused by Avibacterium paragallinarum (Av. paragallinarum). In recent years, there have been frequent outbreaks of IC in chickens vaccinated with an inactivated vaccine, causing huge losses to the poultry industry. In this study, the protective efficacy of the trivalent inactivated IC vaccine (PT Medion Farma Jaya) against the field isolates of three serovars of Av. paragallinarum was verified. After vaccination, the hemagglutination inhibition antibody titers in double-vaccinated groups (A2, B2, and C2) were higher than those in single-vaccinated groups (A1, B1, and C1). The highest antibody titer was 213.1 at 3 weeks after the booster vaccination in group A2. Consistent with the trend in hemagglutination inhibition antibody titers, the protective efficacy of double vaccination was better than that of single vaccination. The clinical symptoms and pathological changes were alleviated, or the bacterial shedding was significantly reduced with double vaccination after challenge with field isolates of three serovars (p < 0.05). In particular, the chickens with double vaccination showed no clinical symptoms, pathological changes, or bacterial shedding after challenge by the serovar C strain. There was no significant difference in body weight and egg production between the double-vaccinated groups and the negative control group (p > 0.05). Therefore, we recommend that the commercial IC vaccine should be double-vaccinated in clinical applications.
Collapse
|
6
|
Sánchez-Osuna M, Cortés P, Lee M, Smith AT, Barbé J, Erill I. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Nucleic Acids Res 2021; 49:11050-11066. [PMID: 34614190 PMCID: PMC8565304 DOI: 10.1093/nar/gkab773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Ivan Erill
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
7
|
Huo C, Li D, Hu Z, Li G, Hu Y, Sun H. A Novel Lateral Flow Assay for Rapid and Sensitive Nucleic Acid Detection of Avibacterium paragallinarum. Front Vet Sci 2021; 8:738558. [PMID: 34708102 PMCID: PMC8542899 DOI: 10.3389/fvets.2021.738558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023] Open
Abstract
Avibacterium paragallinarum, the pathogen of infectious coryza, caused a highly contagious respiratory disease that poses a serious threat to chickens. Hence, it is necessary to do diagnostic screening for Av. paragallinarum. Existing technologies have been used for Av. paragallinarum testing, which, however, have some drawbacks such as time consuming and expensive that require well-trained personnel and sophisticated infrastructure, especially when they are limitedly feasible in some places for lack of resources. Nucleic acid hybridization-based lateral flow assay (LFA) is capable of dealing with these drawbacks, which is attributed to the advantages, such low cost, rapid, and simple. However, nucleic acid determination of Av. paragallinarum through LFA method has not been reported so far. In this study, we developed a novel LFA method that employed gold nanoparticle probes to detect amplified Av. paragallinarum dsDNA. Compared with agarose gel electrophoresis, this LFA strip was inexpensive, simple- to- use, and time- saving, which displayed the visual results within 5–8 min. This LFA strip had higher sensitivity that achieved the detection limit of 101 CFU/ml compared with 102 CFU/ml in agarose gel electrophoresis. Besides, great sensitivity was also shown in the LFA strip, and no cross reaction existed for other bacteria. Furthermore, Av. paragallinarum in clinical chickens with infectious coryza were perfectly detected by our established LFA strip. Our study is the first to develop the LFA integrated with amplification and sample preparation techniques for better nucleic acid detection of Av. paragallinarum, which holds great potential for rapid, accurate, and on-site determination methods for early diagnosis of Av. paragallinarum to control further spreading.
Collapse
Affiliation(s)
- Caiyun Huo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Donghai Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenguo Hu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guiping Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huiling Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
8
|
Guo M, Liu D, Chen X, Wu Y, Zhang X. Pathogenicity and innate response to Avibacterium paragallinarum in chickens. Poult Sci 2021; 101:101523. [PMID: 34784516 PMCID: PMC8591499 DOI: 10.1016/j.psj.2021.101523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Infectious coryza (IC) is an acute infectious upper respiratory disease in chickens. Recently, the prevalence of IC has increased in China. In this study, to clarify the pathogenic mechanism and innate immune response of Avibacterium paragallinarum (A. paragallinarum), an infection experiment with A. paragallinarum was conducted. Our results showed that the whole course of IC was approximately 7 d. The clinical signs score was highest at 3 dpi and decreased from 5 dpi. A large amount of mucus and exudates was found in the infraorbital sinuses and nasal cavity. The A. paragallinarum contents in blood remained the highest, reaching 9.16 × 105 CFU/g at 5 dpi, which indicated that A. paragallinarum could rapidly invade the host, replicate in the blood and cause bacteremia. A. paragallinarum targets the upper respiratory tract. The infiltration of inflammatory cells, macrophages, and heterophilic granulocytes was only observed in the nasal cavity and infraorbital sinus. The Tlr4 and Nod1 pathways were activated and induced proinflammatory responses in chickens after infection with A. paragallinarum. The expression of Il1β and Il6 in the nasal cavity was significantly higher than that in the spleen, and it was consistent with the gross lesions and pathological changes. In particular, the expression of Il6 increased 229.07-fold at 1 dpi in the nasal cavity and increased 3.12-fold in the spleen. The high level of proinflammatory cytokines in the nasal cavity at an early stage of infection may be the main factor related to acute upper respiratory inflammation in chickens. These findings provide a reference for the occurrence and development of diseases mediated by A. paragallinarum.
Collapse
Affiliation(s)
- Mengjiao Guo
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Donghui Liu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufang Chen
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Kuchipudi SV, Yon M, Surendran Nair M, Byukusenge M, Barry RM, Nissly RH, Williams J, Pierre T, Mathews T, Walner-Pendleton E, Dunn P, Barnhart D, Loughrey S, Davison S, Kelly DJ, Tewari D, Jayarao BM. A Highly Sensitive and Specific Probe-Based Real-Time PCR for the Detection of Avibacterium paragallinarum in Clinical Samples From Poultry. Front Vet Sci 2021; 8:609126. [PMID: 33912603 PMCID: PMC8071849 DOI: 10.3389/fvets.2021.609126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
Avibacterium paragallinarum (historically called Hemophilus paragallinarum) causes infectious coryza (IC), which is an acute respiratory disease of chickens. Recently, outbreaks of IC have been reported in Pennsylvania (PA) in broilers, layer pullets, and laying hens, causing significant respiratory disease and production losses. A tentative diagnosis of IC can be made based on history, clinical signs, and characteristic gross lesions. However, isolation and identification of the organism are required for a definitive diagnosis. Major challenges with the bacteriological diagnosis of A. paragallinarum include that the organism is difficult to isolate, slow-growing, and can only be successfully isolated during the acute stage of infection and secondary bacterial infections are also common. As there were very limited whole genomes of A. paragallinarum in the public databases, we carried out whole-genome sequencing (WGS) of PA isolates and based on the WGS data analysis; we designed a novel probe-based PCR assay targeting a highly conserved sequence in the recN, the DNA repair protein gene of A. paragallinarum. The assay includes an internal control, with a limit of detection (LOD) of 3.93 genomic copies. The PCR efficiency ranged between 90 and 97%, and diagnostic sensitivity of 98.5% compared with conventional gel-based PCR. The test was highly specific, and no cross-reactivity was observed with other species of Avibacterium and a range of other common poultry respiratory viral and bacterial pathogens. Real-time PCR testing on 419 clinical samples from suspected flocks yielded 94 positives and 365 negatives in agreement with diagnostic bacterial culture-based detection. We also compared the recN PCR assay with a previous HPG-2 based real-time PCR assay which showed a PCR efficiency of 79%.
Collapse
Affiliation(s)
- Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Michele Yon
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Maurice Byukusenge
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Rhiannon M Barry
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Jen Williams
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Traci Pierre
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Tammy Mathews
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Eva Walner-Pendleton
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Patricia Dunn
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Denise Barnhart
- Pennsylvania Animal Diagnostic Laboratory, New Bolton Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Sean Loughrey
- Pennsylvania Animal Diagnostic Laboratory, New Bolton Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Sherrill Davison
- Pennsylvania Animal Diagnostic Laboratory, New Bolton Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Dona J Kelly
- Pennsylvania Animal Diagnostic Laboratory, New Bolton Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Harrisburg, PA, United States
| | - Bhushan M Jayarao
- Animal Diagnostic Laboratory, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
10
|
Huo C, Zeng X, Xu F, Li F, Li D, Li G, Hu Z, Hu Y, Lin J, Sun H. The Transcriptomic and Bioinformatic Characterizations of Iron Acquisition and Heme Utilization in Avibacterium paragallinarum in Response to Iron-Starvation. Front Microbiol 2021; 12:610196. [PMID: 33746913 PMCID: PMC7970244 DOI: 10.3389/fmicb.2021.610196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Avibacterium paragallinarum is the pathogen of infectious coryza, which is a highly contagious respiratory disease of chickens that brings a potentially serious threat to poultry husbandry. Iron is an important nutrient for bacteria and can be obtained from surroundings such as siderophores and hemophores. To date, the mechanisms of iron acquisition and heme utilization as well as detailed regulation in A. paragallinarum have been poorly understood. In this study, we investigated the transcriptomic profiles in detail and the changes of transcriptomes induced by iron restriction in A. paragallinarum using RNA-seq. Compared with the iron-sufficiency control group, many more differentially expressed genes (DEGs) and cellular functions as well as signaling pathways were verified in the iron-restriction group. Among these DEGs, the majority of genes showed decreased expression and some were found to be uniquely present in the iron-restriction group. With an in-depth study of bioinformatic analyses, we demonstrated the crucial roles of the Hut protein and DUF domain-containing proteins, which were preferentially activated in bacteria following iron restriction and contributed to the iron acquisition and heme utilization. Consequently, RT-qPCR results further verified the iron-related DEGs and were consistent with the RNA-seq data. In addition, several novel sRNAs were present in A. paragallinarum and had potential regulatory roles in iron homeostasis, especially in the regulation of Fic protein to ensure stable expression. This is the first report of the molecular mechanism of iron acquisition and heme utilization in A. paragallinarum from the perspective of transcriptomic profiles. The study will contribute to a better understanding of the transcriptomic response of A. paragallinarum to iron starvation and also provide novel insight into the development of new antigens for potential vaccines against infectious coryza by focusing on these iron-related genes.
Collapse
Affiliation(s)
- Caiyun Huo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ximin Zeng
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangbing Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Donghai Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guiping Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhenguo Hu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Lin
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Huiling Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
11
|
Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP, Yasuda M, Sato S, Kaneko T, Hayashi M, Giraud E, Okazaki S. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci Rep 2021; 11:2034. [PMID: 33479414 PMCID: PMC7820406 DOI: 10.1038/s41598-021-81598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023] Open
Abstract
Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Albin Teulet
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Hiroki Miwa
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Sachiko Masuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Michiko Yasuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, 603-8555, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Eric Giraud
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
12
|
Liu X, Zhang Y, Huang K, Yin T, Li Q, Zou Q, Guo D, Zhang X. rpoB and efp are stable candidate reference genes for quantitative real-time PCR analysis in Saccharopolyspora spinosa. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1899852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xiaomeng Liu
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Nutrition and Health Research Institute, COFCO, Beijing, PR China
| | - Yunpeng Zhang
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Nutrition and Health Research Institute, COFCO, Beijing, PR China
| | - Kexue Huang
- Qilu Pharmaceutical (Inner Mongolia) Co., Ltd, Hohhot, Inner Mongolia, PR China
| | - Tie Yin
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Nutrition and Health Research Institute, COFCO, Beijing, PR China
| | - Qi Li
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Nutrition and Health Research Institute, COFCO, Beijing, PR China
| | - Qiulong Zou
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Nutrition and Health Research Institute, COFCO, Beijing, PR China
| | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, PR China
| | - Xiaolin Zhang
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Nutrition and Health Research Institute, COFCO, Beijing, PR China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
13
|
Gallardo RA, Da Silva AP, Egaña-Labrin S, Stoute S, Kern C, Zhou H, Cutler G, Corsiglia C. Infectious Coryza: Persistence, Genotyping, and Vaccine Testing. Avian Dis 2020; 64:157-165. [PMID: 32550616 DOI: 10.1637/0005-2086-64.2.157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/15/2020] [Indexed: 11/05/2022]
Abstract
The reemergence of infectious coryza (IC) caused by Avibacterium paragallinarum (AP) as an acute and occasionally chronic respiratory disease in domestic poultry has caused severe losses in several U.S. states. The disease is also associated with decreased egg production in layers and increased condemnations from air sac infections in broilers. A series of applied experiments were performed to elucidate the persistence of AP in infected broiler flocks, to genotype AP strains isolated from field cases, and to evaluate commercial and autogenous vaccine protection in commercial and specific-pathogen-free (SPF) chickens. Experimental evaluation of environmental persistence suggests that AP did not persist more than 12 hr in a hypothetically contaminated environment. Additionally, other detected potential pathogens such as Gallibacterium anatis and infectious bronchitis virus caused mild respiratory signs in the exposed birds. The HMTp210 and HagA genes of four IC field strains were sequenced and compared with published sequences of HMTp210 and HagA. The HMTp210 phylogeny showed a marginally imperfect clustering of the sequences in genogroups A, B, and C. Although not definitive, this phylogeny provided evidence that the four field strains aligned with previously characterized serovar C strains. Moreover, the base pair homology of the four strains was 100% identical to serovar C reference strains (H-18 and Modesto). HagA phylogeny was unclear, but interestingly, the IC field strains were 100% homologous to C-1 strains reported from Mexico and Ecuador. Finally, vaccine protection studies in commercial hens indicate that clinical signs are induced by a combination of IC and other concomitant pathogens infecting commercial birds. Additionally, vaccine protection experiments performed in SPF hens indicated that protection provided by the two commercial vaccines tested provided a reduction in clinical signs and bacterial shedding after two applications.
Collapse
Affiliation(s)
- R A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616,
| | - A P Da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - S Egaña-Labrin
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - S Stoute
- California Animal Health and Food Safety Laboratory System, Turlock Branch, University of California, Davis, Turlock, CA 95380
| | - C Kern
- College of Agriculture, Department of Animal Sciences, University of California, Davis, Davis, CA 95616
| | - H Zhou
- College of Agriculture, Department of Animal Sciences, University of California, Davis, Davis, CA 95616
| | - G Cutler
- Cutler Veterinary Associates International, Moorpark, CA 93020
| | | |
Collapse
|
14
|
Ning Y, Chen S, Hu J, Li L, Cheng L, Lu F. Fluorometric determination of agrA gene transcription in methicillin-resistant Staphylococcus aureus with a graphene oxide-based assay using strand-displacement polymerization recycling and hybridization chain reaction. Mikrochim Acta 2020; 187:372. [PMID: 32504215 DOI: 10.1007/s00604-020-04347-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023]
Abstract
A graphene oxide (GO)-based fluorescent bioassay was developed to quantify agrA gene transcription (its mRNA) in methicillin-resistant Staphylococcus aureus (MRSA). This method is based on the use of Klenow fragment (KF)-assisted target recycling amplification and hybridization chain reaction (HCR). A triple complex was designed that contained a capture probe (CP), a trigger probe (TP), and a help probe (HP), which were partially complementary to one another. In the absence of the target, all the oligonucleotides labeled with carboxyfluorescein (FAM) are adsorbed onto the surface of GO by π-stacking interactions. This adsorption quenches the FAM signal. On the contrary, the target RNA causes the triple complex to disintegrate and initiates strand-displacement polymerization reaction (SDPR) and HCR in the presence of the appropriate raw materials, including the primer, KF, dNTPs, hairpin 1 (H1), and hairpin 2 (H2), generating double-stranded DNA (dsDNA) products. These dsDNA products are repelled by GO and produce strong fluorescence, measured at excitation/emission wavelengths of 480/514 nm. The fluorescent signal is greatly amplified by SYBR Green I (SGI) due to the synergistic effect of dsDNA-SGI. The target was assayed with this method at concentrations in the range 10 fM to 100 pM, and the detection limit (LOD) was 10 fM. This method also displayed good applicability in the analysis of real samples. It provides a new way of monitoring biofilm formation and studying the mechanisms of drug actions. Graphical abstract Schematic representation of the graphene oxide-based fluorescent bioassay for agrA gene transcription in methicillin-resistant Staphylococcus aureus by using strand-displacement polymerization recycling and hybridization chain reaction.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Shanquan Chen
- Department of General Education, The School of Humanities and Social Science, The Chinese University of Hong Kong (Shenzhen campus), Shenzhen, 518172, Guangdong, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Ling Li
- Experimental Center of molecular biology, The Chinese Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Lijuan Cheng
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Saha J, Saha BK, Pal Sarkar M, Roy V, Mandal P, Pal A. Comparative Genomic Analysis of Soil Dwelling Bacteria Utilizing a Combinational Codon Usage and Molecular Phylogenetic Approach Accentuating on Key Housekeeping Genes. Front Microbiol 2019; 10:2896. [PMID: 31921071 PMCID: PMC6928123 DOI: 10.3389/fmicb.2019.02896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
Soil is a diversified and complex ecological niche, home to a myriad of microorganisms particularly bacteria. The physico-chemical complexities of soil results in a plethora of physiological variations to exist within the different types of soil dwelling bacteria, giving rise to a wide variation in genome structure and complexity. This serves as an attractive proposition to analyze and compare the genome of a large number soil bacteria to comprehend their genome complexity and evolution. In this study a combination of codon usage and molecular phylogenetics of the whole genome and key housekeeping genes like infB (translation initiation factor 2), trpB (tryptophan synthase, beta subunit), atpD (ATP synthase, beta subunit), and rpoB (RNA polymerase, beta subunit) of 92 soil bacterial species spread across the entire eubacterial domain and residing in different soil types was performed. The results indicated the direct relationship of genome size with codon bias and coding frequency in the studied bacteria. The codon usage profile demonstrated by the gene trpB was found to be relatively different from the rest of the housekeeping genes with a large number of bacteria having a greater percentage of genes with Nc values less than the Nc of trpB. The results from the overall codon usage bias profile also depicted that the codon usage bias in the key housekeeping genes of soil bacteria was majorly due to selectional pressure and not mutation. The analysis of hydrophobicity of the gene product encoded by the rpoB coding sequences demonstrated tight clustering across all the soil bacteria suggesting conservation of protein structure for maintenance of form and function. The phylogenetic affinities inferred using 16S rRNA gene and the housekeeping genes demonstrated conflicting signals with trpB gene being the noisiest one. The housekeeping gene atpD was found to depict the least amount of evolutionary change in the soil bacteria considered in this study except in two Clostridium species. The phylogenetic and codon usage analysis of the soil bacteria consistently demonstrated the relatedness of Azotobacter chroococcum with different species of the genus Pseudomonas.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Barnan K. Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
16
|
Erfan AM, Marouf S. Cinnamon oil downregulates virulence genes of poultry respiratory bacterial agents and revealed significant bacterial inhibition: An in vitro perspective. Vet World 2019; 12:1707-1715. [PMID: 32009749 PMCID: PMC6925043 DOI: 10.14202/vetworld.2019.1707-1715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Respiratory bacterial agents represent one of the most harmful factors that ordinarily threaten the poultry industry and usually lead to great economic losses. Meanwhile, there is a global demand to avoid the highly emerging antibiotic resistance and antibiotic residues in edible meat. Whereas, the use of alternatives became of great priority, especially for those substances extracted from natural plant origin. The study aimed to evaluate the antibacterial effect of cinnamon oil as a herbal extract on different respiratory bacterial agents. Materials and Methods: One hundred and fifty biological samples were collected through targeted surveillance for respiratory diseased poultry farms representing three governorates, from which bacterial isolation and identification, DNA sequencing of representative strains were performed. Furtherly, phenotypic and genotypic evaluation of the antibacterial effect of cinnamon oil was performed by minimum inhibitory concentration, agar disk diffusion, and virulence genes expression real-time polymerase chain reaction. Results: Cinnamon oil gave rise to acceptable degrees of virulence genes downregulation of 0.15, 0.19, 0.37, 0.41, 0.77, and 0.85 for Staphylococcus aureus sed gene, Escherichia coli stx1 gene, Avibacterium paragallinarum HPG-2 gene, Pasteurella multocida ptfA gene, Mycoplasma gallisepticum Mgc2 gene, and Ornithobacterium rhinotracheale adk gene, respectively. Phenotypically, using agar disk diffusion assay and broth microdilution susceptibility, cinnamon oil showed also tolerable results as it stopped the growth of S. aureus, E. coli, P. multocida, and A. paragallinarum with varying zones of inhibition. Conclusion: The encountered results declared the successful in vitro effect of cinnamon oil that recommends its application for living birds for future use as a safe antibacterial in the poultry industry.
Collapse
Affiliation(s)
- Ahmed Mohammed Erfan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, 12618, Egypt
| | - Sherif Marouf
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
17
|
Stable Reference Gene Selection for RT-qPCR Analysis in Synechococcus elongatus PCC 7942 under Abiotic Stresses. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7630601. [PMID: 31139651 PMCID: PMC6500708 DOI: 10.1155/2019/7630601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/15/2019] [Accepted: 04/07/2019] [Indexed: 12/27/2022]
Abstract
Synechococcus elongatus PCC 7942 (S. elongatus PCC 7942) is a model cyanobacteria species for circadian clock mechanism studies. It has also been widely used as a bioreactor to produce biofuels and other metabolic products. Quantitative real-time PCR (qPCR) technology is the most commonly used method for studying the expression of specific genes, in which the relative expression level of target genes is calibrated by stably expressed internal reference genes. In this work, we examined the expression of nine candidate reference genes in time-course samples of S. elongatus PCC 7942 under no treatment (control), NaCl-stress conditions, H2O2-stress conditions, and high light-stress conditions. Based on the qPCR amplification parameters, the stability ranking of these candidate reference genes was established by three statistical software programs, geNorm, NormFinder, and BestKeeper. Considering all the stress conditions or high light stress alone, the results showed that the combination of prs and secA was the best choice for the double reference gene calibration method by qPCR. The combination of secA and ppc, rimM and rnpA, rnpA, and ilvD was most stable under no treatment, NaCl-stress conditions, and H2O2-stress conditions, respectively. rimM was stable under only special conditions and should be carefully chosen. 16S and rnpB were not suitable as internal reference genes for S. elongatus PCC 7942 qPCR experiments under all experimental conditions. To validate the above results, a cyanobacterial core clock gene, kaiC, was used to evaluate the actual performance of the optimized reference genes by qPCR, as well as the worst reference genes under different stress conditions. The results indicated that the best reference gene yielded more accurate calibration results for qPCR experiments carried out in S. elongatus PCC 7942 time-course samples.
Collapse
|
18
|
Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S. InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis With Vigna Species. Front Microbiol 2018; 9:3155. [PMID: 30619219 PMCID: PMC6305347 DOI: 10.3389/fmicb.2018.03155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Bradyrhizobium elkanii USDA61 is incompatible with mung bean (Vigna radiata cv. KPS1) and soybean (Glycine max cv. BARC2) and unable to nodulate either plant. This incompatibility is due to the presence of a functional type III secretion system (T3SS) that translocates effector protein into host cells. We previously identified five genes in B. elkanii that are responsible for its incompatibility with KPS1 plants. Among them, a novel gene designated as innB exhibited some characteristics associated with the T3SS and was found to be responsible for the restriction of nodulation on KPS1. In the present study, we further characterized innB by analysis of gene expression, protein secretion, and symbiotic phenotypes. The innB gene was found to encode a hypothetical protein that is highly conserved among T3SS-harboring rhizobia. Similar to other rhizobial T3SS-associated genes, the expression of innB was dependent on plant flavonoids and a transcriptional regulator TtsI. The InnB protein was secreted via the T3SS and was not essential for secretion of other nodulation outer proteins. In addition, T3SS-dependent translocation of InnB into nodule cells was confirmed by an adenylate cyclase assay. According to inoculation tests using several Vigna species, InnB promoted nodulation of at least one V. mungo cultivar. These results indicate that innB encodes a novel type III effector controlling symbiosis with Vigna species.
Collapse
Affiliation(s)
- Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Safirah T N Ratu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
19
|
Dai M, Lin Y, El-Amouri SS, Kohls M, Pan D. Comprehensive evaluation of blood-brain barrier-forming micro-vasculatures: Reference and marker genes with cellular composition. PLoS One 2018; 13:e0197379. [PMID: 29763456 PMCID: PMC5953434 DOI: 10.1371/journal.pone.0197379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Primary brain microvessels (BrMV) maintain the cellular characters and molecular signatures as displayed in vivo, and serve as a vital tool for biomedical research of the blood-brain barrier (BBB) and the development/optimization of brain drug delivery. The variations of relative purities or cellular composition among different BrMV samples may have significant consequences in data interpretation and research outcome, especially for experiments with high-throughput genomics and proteomics technologies. In this study, we aimed to identify suitable reference gene (RG) for accurate normalization of real-time RT-qPCR analysis, and determine the proper marker genes (MG) for relative purity assessment in BrMV samples. Out of five housekeeping genes, β-actin was selected as the most suitable RG that was validated by quantifying mRNA levels of alpha-L-iduronidase in BrMV isolated from mice with one or two expressing alleles. Four marker genes highly/selectively expressed in BBB-forming capillary endothelial cells were evaluated by RT-qPCR for purity assessment, resulting in Cldn5 and Pecam1 as most suitable MGs that were further confirmed by immunofluorescent analysis of cellular components. Plvap proved to be an indicator gene for the presence of fenestrated vessels in BrMV samples. This study may contribute to the building blocks toward overarching research needs on the blood-brain barrier.
Collapse
Affiliation(s)
- Mei Dai
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yi Lin
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Salim S. El-Amouri
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mara Kohls
- Department of Pediatrics, School of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Dao Pan
- Division of Experimental Hematology & Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, School of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Peng S, Liu L, Zhao H, Wang H, Li H. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a. Front Microbiol 2018; 9:892. [PMID: 29780378 PMCID: PMC5946679 DOI: 10.3389/fmicb.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
The powerful Quantitative real-time PCR (RT-qPCR) was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni), as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB) species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII) were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v) ethanol). The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.
Collapse
Affiliation(s)
- Shuai Peng
- College of Enology, Northwest A & F University, Yangling, China
| | - Longxiang Liu
- College of Enology, Northwest A & F University, Yangling, China
| | - Hongyu Zhao
- College of Enology, Northwest A & F University, Yangling, China
| | - Hua Wang
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Weinan, China
| | - Hua Li
- College of Enology, Northwest A & F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
- Heyang Experimental and Demonstrational Stations for Grape, Weinan, China
| |
Collapse
|
21
|
Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research. Sci Rep 2017; 7:3612. [PMID: 28620170 PMCID: PMC5472619 DOI: 10.1038/s41598-017-03730-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022] Open
Abstract
The global incidence of obesity has led to an increasing need for understanding the molecular mechanisms that drive this epidemic and its comorbidities. Quantitative real-time RT-PCR (RT-qPCR) is the most reliable and widely used method for gene expression analysis. The selection of suitable reference genes (RGs) is critical for obtaining accurate gene expression information. The current study aimed to identify optimal RGs to perform quantitative transcriptomic analysis based on RT-qPCR for obesity and diabetes research, employing in vitro and mouse models, and human tissue samples. Using the ReFinder program we evaluated the stability of a total of 15 RGs. The impact of choosing the most suitable RGs versus less suitable RGs on RT-qPCR results was assessed. Optimal RGs differed between tissue and cell type, species, and experimental conditions. By employing different sets of RGs to normalize the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), we show that sub-optimal RGs can markedly alter the PGC1α gene expression profile. Our study demonstrates the importance of validating RGs prior to normalizing transcriptional expression levels of target genes and identifies optimal RG pairs for reliable RT-qPCR normalization in cells and in human and murine muscle and adipose tissue for obesity/diabetes research.
Collapse
|