1
|
Mori K, Okuma H, Nakamura S, Uchinuma H, Kaga S, Nakajima H, Ogawa Y, Tsuchiya K. Melanocortin-4 receptor in macrophages attenuated angiotensin II-induced abdominal aortic aneurysm in mice. Sci Rep 2023; 13:19768. [PMID: 37957201 PMCID: PMC10643430 DOI: 10.1038/s41598-023-46831-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is recognized as an independent risk factor for abdominal aortic aneurysm (AAA). While mutations in the melanocortin-4 receptor (MC4R) gene is the most common cause of obesity caused by mutations in a single gene, the link between MC4R function and vascular disease has still remained unclear. Here, by using melanocortin-4 receptor (MC4R) deficient mice, we confirmed MC4R deficiency promotes AAA and atherosclerosis. We demonstrated the contribution of two novel factors towards vascular vulnerability in this model: leptin signaling in vascular smooth muscle cells (VSMCs) and loss of MC4R signaling in macrophages. Leptin was shown to promote vascular vulnerability via PI3K-dependent upregulation of Spp1 expression in VSMC. Additionally, Ang II-induced AAA incidence was significantly reduced when MC4R gene expression was myeloid cell-specifically rescued in MC4R deficient (MC4RTB/TB) mice. Ex vivo analysis showed a suppression in NF-κB activity in bone marrow-derived macrophages from LysM(+);MC4RTB/TB mice compared to LysM(-);MC4RTB/TB mice, which exaggerates with endogenous MC4R ligand treatment; α-MSH. These results suggest that MC4R signaling in macrophages attenuates AAA by inhibiting NF-κB activity and subsequent vascular inflammation.
Collapse
Affiliation(s)
- Kentaro Mori
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan.
| | - Hideyuki Okuma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Suguru Nakamura
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Hiroyuki Uchinuma
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan
| | - Shigeaki Kaga
- Department of Surgery II, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroyuki Nakajima
- Department of Surgery II, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoichiro Tsuchiya
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898, Japan.
| |
Collapse
|
2
|
The effect of gender and obesity in modulating cross-bridge function in cardiac muscle fibers. J Muscle Res Cell Motil 2022; 43:157-172. [PMID: 35994221 DOI: 10.1007/s10974-022-09627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 12/31/2022]
Abstract
The effect of obesity on cross-bridge (CB) function was investigated in mice lacking functional Melanocortin-4 Receptor (MC4R-/-), the loss of which causes dilated cardiomyopathy (DCM) in humans and mice. Skinned cardiac muscle fibers from male and female mice were used, and activated in the presence of Ca2+. To characterize CB kinetics, we changed the length of fibers in sinewaves (15 frequencies: 1‒187 Hz) at a small amplitude (0.2%L0), studied concomitant tension transients, and deduced the kinetic constants of the CB cycle from the ATP and Pi effects. In males, active tension and stiffness during full activation and rigor were ~ 1.5X in WT compared to MC4R-/- mice. This effect was not observed in females. We also observed that ATP binding and subsequent CB detachment steps were not altered by the mutation/gender. The equilibrium constant of the force generation step (K4) and Pi release step (association constant: K5) were not affected by the mutation, but there was a gender difference in WT mice: K4 and K5 were ~ 2.2X in males than in females. Concomitantly, the forward rate constant (r4) and backward rate constant (r-4) of the force generation step were 1.5-2.5X in muscles from female MC4R-/- mice relative to male MC4R-/- mice. However, these effects did not cause a significant difference in CB distributions among six CB states. In both genders, Ca2+ sensitivity decreased slightly (0.12 pCa unit) in mutants. We conclude that the CB functions are differentially affected both by obesity induced in the absence of functional MC4R-/- and gender.
Collapse
|
3
|
Chen J, Chen V, Kawamura T, Hoang I, Yang Y, Wong AT, McBride R, Repunte-Canonigo V, Millhauser GL, Sanna PP. Charge Characteristics of Agouti-Related Protein Implicate Potent Involvement of Heparan Sulfate Proteoglycans in Metabolic Function. iScience 2019; 22:557-570. [PMID: 31863782 PMCID: PMC6928319 DOI: 10.1016/j.isci.2019.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/21/2019] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
The endogenous melanocortin peptide agouti-related protein (AgRP) plays a well-known role in foraging, but its contribution to metabolic regulation is less understood. Mature AgRP(83-132) has distinct residues for melanocortin receptor binding and heparan sulfate interactions. Here, we show that AgRP increases ad libitum feeding and operant responding for food in mice, decreases oxygen consumption, and lowers body temperature and activity, indicating lower energy expenditure. AgRP increased the respiratory exchange ratio, indicating a reduction of fat oxidation and a shift toward carbohydrates as the primary fuel source. The duration and intensity of AgRP's effects depended on the density of its positively charged amino acids, suggesting that its orexigenic and metabolic effects depend on its affinity for heparan sulfate. These findings may have major clinical implications by unveiling the critical involvement of interactions between AgRP and heparan sulfate to the central regulation of energy expenditure, fat utilization, and possibly their contribution to metabolic disease. AgRP increases both ad libitum and operant food intake and reduces energy expenditure AgRP reduces fat utilization as a fuel source, which promotes body fat accumulation These actions of AgRP depend on the positive charges, outside its ICK motif, that bind heparan sulfate
Collapse
Affiliation(s)
- Jihuan Chen
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Valerie Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Tomoya Kawamura
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ivy Hoang
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yang Yang
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ashley Tess Wong
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Genomics Core, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vez Repunte-Canonigo
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | - Pietro Paolo Sanna
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Lede V, Meusel A, Garten A, Popkova Y, Penke M, Franke C, Ricken A, Schulz A, Kiess W, Huster D, Schöneberg T, Schiller J. Altered hepatic lipid metabolism in mice lacking both the melanocortin type 4 receptor and low density lipoprotein receptor. PLoS One 2017; 12:e0172000. [PMID: 28207798 PMCID: PMC5313158 DOI: 10.1371/journal.pone.0172000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023] Open
Abstract
Obesity is often associated with dyslipidemia and hepatosteatosis. A number of animal models of non-alcoholic fatty liver disease (NAFLD) are established but they significantly differ in the molecular and biochemical changes depending on the genetic modification and diet used. Mice deficient for melanocortin type 4 receptor (Mc4rmut) develop hyperphagia, obesity, and subsequently NAFLD already under regular chow and resemble more closely the energy supply-driven obesity found in humans. This animal model was used to assess the molecular and biochemical consequences of hyperphagia-induced obesity on hepatic lipid metabolism. We analyzed transcriptome changes in Mc4rmut mice by RNA sequencing and used high resolution 1H magic angle spinning NMR spectroscopy and MALDI-TOF mass spectrometry to assess changes in the lipid composition. On the transcriptomic level we found significant changes in components of the triacylglycerol metabolism, unsaturated fatty acids biosynthesis, peroxisome proliferator-activated receptor signaling pathways, and lipid transport and storage compared to the wild-type. These findings were supported by increases in triacylglycerol, monounsaturated fatty acid, and arachidonic acid levels. The transcriptome signatures significantly differ from those of other NAFLD mouse models supporting the concept of hepatic subphenotypes depending on the genetic background and diet. Comparative analyses of our data with previous studies allowed for the identification of common changes and genotype-specific components and pathways involved in obesity-associated NAFLD.
Collapse
MESH Headings
- Animals
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Female
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing
- Hypercholesterolemia/etiology
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Lipid Metabolism
- Lipogenesis/genetics
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/genetics
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Obesity/complications
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Vera Lede
- Molecular Biochemistry, Rudolf-Schönheimer-Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Andrej Meusel
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Antje Garten
- Hospital for Children & Adolescents, Department of Women and Child Health, Center for Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Yulia Popkova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Melanie Penke
- Hospital for Children & Adolescents, Department of Women and Child Health, Center for Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | | | - Albert Ricken
- Institute of Anatomy, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Molecular Biochemistry, Rudolf-Schönheimer-Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Hospital for Children & Adolescents, Department of Women and Child Health, Center for Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Molecular Biochemistry, Rudolf-Schönheimer-Institute of Biochemistry, University of Leipzig, Leipzig, Germany
- * E-mail: (JS); (TS)
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- * E-mail: (JS); (TS)
| |
Collapse
|