1
|
Guo J, Yu F, Zhang K, Jiang S, Zhang X, Wang T. Beyond inhibition against the PD-1/PD-L1 pathway: development of PD-L1 inhibitors targeting internalization and degradation of PD-L1. RSC Med Chem 2024; 15:1096-1108. [PMID: 38665824 PMCID: PMC11042118 DOI: 10.1039/d3md00636k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 04/28/2024] Open
Abstract
Tumor cells hijack the programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway to suppress the immune response through overexpressing PD-L1 to interact with PD-1 of T cells. With in-depth ongoing research, tumor-intrinsic PD-L1 is found to play important roles in tumor progression without interaction with PD-1 expressed on T cells, which provides an additional important target and therapeutic approach for development of PD-L1 inhibitors. Existing monoclonal antibody (mAb) drugs against the PD-1/PD-L1 pathway generally behave by conformationally blocking the interactions of PD-1 with PD-L1 on the cell surface. Beyond general inhibition of the protein-protein interaction (PPI), inhibitors targeting PD-L1 currently focus on the functional inhibition of the interaction between PD-1/PD-L1 and degradation of tumor-intrinsic PD-L1. This perspective will clarify the evolution of PD-L1 inhibitors and provide insights into the current development of PD-L1 inhibitors, especially targeting internalization and degradation of PD-L1.
Collapse
Affiliation(s)
- Jiazheng Guo
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Fengyi Yu
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
2
|
Rocco R, Cambindo Botto AE, Muñoz MJ, Reingruber H, Wainstok R, Cochón A, Gazzaniga S. Early redox homeostasis disruption contributes to the differential cytotoxicity of imiquimod on transformed and normal endothelial cells. Exp Dermatol 2021; 31:608-614. [PMID: 34758172 DOI: 10.1111/exd.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/28/2022]
Abstract
The off-label use of imiquimod (IQ) for hemangioma treatment has shown clinical benefits. We have previously reported a selective direct IQ-cytotoxic effect on transformed (H5V) vs. normal (1G11) endothelial cells (EC). In the present study, we investigated the mechanism underlying this selective cytotoxicity in terms of TLR7/8 receptor expression, NF-κB signalling and time-dependent modifications of oxidative stress parameters (ROS: reactive oxygen species, catalase and superoxide dismutase activities, GSH/GSSG and lipid peroxidation). TLR7/8 level was extremely low in both cell lines, and IQ did not upregulate TLR7/8 expression or activate NF-κB signalling. IQ significantly induced ROS in H5V after 2 h and strongly affected antioxidant defenses. After 12 h, enzyme activities were restored to baseline levels but a robust drop in GSH/GSSG persisted together with increased lipid peroxidation levels and a marked mitochondrial dysfunction. Although in normal IQ-treated EC some oxidative stress parameters were affected after 4 h, mitochondrial health and GSH/GSSG ratio remained notably unaffected after 12 h. Therefore, the early alterations (0-2 h) in transformed EC breached redox homeostasis as strongly as to enhance their susceptibility to IQ. This interesting facet of IQ as redox disruptor could broaden its therapeutic potential for other skin malignancies, alone or in adjuvant schemes.
Collapse
Affiliation(s)
- Rodrigo Rocco
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Manuel J Muñoz
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.,Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernán Reingruber
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosa Wainstok
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Cochón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Gazzaniga
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Ikonomopoulou MP, Lopez-Mancheño Y, Novelle MG, Martinez-Uña M, Gangoda L, Pal M, Costa-Machado LF, Fernandez-Marcos PJ, Ramm GA, Fernandez-Rojo MA. LXR stimulates a metabolic switch and reveals cholesterol homeostasis as a statin target in Tasmanian devil facial tumor disease. Cell Rep 2021; 34:108851. [PMID: 33730574 DOI: 10.1016/j.celrep.2021.108851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/02/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Devil facial tumor disease (DFTD) and its lack of available therapies are propelling the Tasmanian devil population toward extinction. This study demonstrates that cholesterol homeostasis and carbohydrate energy metabolism sustain the proliferation of DFTD cells in a cell-type-dependent manner. In addition, we show that the liver-X nuclear receptor-β (LXRβ), a major cholesterol cellular sensor, and its natural ligand 24S-hydroxycholesterol promote the proliferation of DFTD cells via a metabolic switch toward aerobic glycolysis. As a proof of concept of the role of cholesterol homeostasis on DFTD proliferation, we show that atorvastatin, an FDA-approved statin-drug subtype used against human cardiovascular diseases that inhibits cholesterol synthesis, shuts down DFTD energy metabolism and prevents tumor growth in an in vivo DFTD-xenograft model. In conclusion, we show that intervention against cholesterol homeostasis and carbohydrate-dependent energy metabolism by atorvastatin constitutes a feasible biochemical treatment against DFTD, which may assist in the conservation of the Tasmanian devil.
Collapse
Affiliation(s)
- Maria P Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia; Translational Venomics Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain.
| | - Yaiza Lopez-Mancheño
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain
| | - Marta G Novelle
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain
| | - Maite Martinez-Uña
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain
| | - Lahiru Gangoda
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Martin Pal
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Luis Filipe Costa-Machado
- Metabolic Syndrome Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain
| | | | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia
| | - Manuel Alejandro Fernandez-Rojo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia; Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain.
| |
Collapse
|
4
|
Cheng B, Xiao Y, Xue M, Cao H, Chen J. Recent Advances in the Development of PD-L1 Modulators: Degraders, Downregulators, and Covalent Inhibitors. J Med Chem 2020; 63:15389-15398. [PMID: 33272018 DOI: 10.1021/acs.jmedchem.0c01362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Therapeutic interference of the programmed cell death protein 1(PD-1)/immunosuppressive programmed cell death ligand 1 (PD-L1) signaling pathway by monoclonal antibodies has achieved spectacular success for treating various tumors. However, the development of small molecule inhibitors of PD-1/PD-L1 has lagged far behind due to the challenge of targeting the highly hydrophobic and relatively flat binding interface, despite the benefits small molecule can bring over therapeutic antibodies. This technical challenge provokes the adoption of different strategies in searching for small, medium-sized, and large molecule modulators (e.g., degraders, downregulators, and covalent inhibitors) of the PD-1/PD-L1 protein-protein interaction. In this review article, we discuss latest advances in the development of PD-L1 modulators, with a focus on degraders, downregulators, and covalent inhibitors.
Collapse
Affiliation(s)
- Binbin Cheng
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, China
| | - Mingming Xue
- Tianjin Tiancheng Chemical Co., Ltd., Chemical Street, Binhai New District, Tianjin 300480, China
| | - Hao Cao
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| | - Jianjun Chen
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
5
|
Patchett AL, Flies AS, Lyons AB, Woods GM. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:2507-2525. [PMID: 31900624 PMCID: PMC11104928 DOI: 10.1007/s00018-019-03435-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
6
|
Flies AS, Flies EJ, Fox S, Gilbert A, Johnson SR, Liu GS, Lyons AB, Patchett AL, Pemberton D, Pye RJ. An oral bait vaccination approach for the Tasmanian devil facial tumor diseases. Expert Rev Vaccines 2020; 19:1-10. [PMID: 31971036 DOI: 10.1080/14760584.2020.1711058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The Tasmanian devil (Sarcophilus harrisii) is the largest extant carnivorous marsupial. Since 1996, its population has declined by 77% primarily due to a clonal transmissible tumor, known as devil facial tumor (DFT1) disease. In 2014, a second transmissible devil facial tumor (DFT2) was discovered. DFT1 and DFT2 are nearly 100% fatal.Areas covered: We review DFT control approaches and propose a rabies-style oral bait vaccine (OBV) platform for DFTs. This approach has an extensive safety record and was a primary tool in large-scale rabies virus elimination from wild carnivores across diverse landscapes. Like rabies virus, DFTs are transmitted by oral contact, so immunizing the oral cavity and stimulating resident memory cells could be advantageous. Additionally, exposing infected devils that already have tumors to OBVs could serve as an oncolytic virus immunotherapy. The primary challenges may be identifying appropriate DFT-specific antigens and optimization of field delivery methods.Expert opinion: DFT2 is currently found on a peninsula in southern Tasmania, so an OBV that could eliminate DFT2 should be the priority for this vaccine approach. Translation of an OBV approach to control DFTs will be challenging, but the approach is feasible for combatting ongoing and future disease threats.
Collapse
Affiliation(s)
- Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Emily J Flies
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Sandy Bay, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, DPIPWE, Hobart, Australia.,Toledo Zoo, Toledo, OH, USA
| | - Amy Gilbert
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, USA
| | - Shylo R Johnson
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, USA
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - A Bruce Lyons
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Amanda L Patchett
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
7
|
Chale RS, Ghiam N, McNamara SA, Jimenez JJ. Transmissible Cancers and Immune Downregulation in Tasmanian Devil ( Sacrophilus harrisii) and Canine Populations. Comp Med 2019; 69:291-298. [PMID: 31387668 DOI: 10.30802/aalas-cm-18-000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Known as devil facial tumor disease (DFTD) and canine transmissible venereal tumor (CTVT), transmissible cancer occurs in both Tasmanian devil and canine populations, respectively. Both malignancies show remarkable ability to be transmitted as allografts into subsequent hosts. How DFTD and CTVT avoid detection by immunocompetent hosts is of particular interest, given that these malignancies are rarely seen in other species in nature. Both of these transmissible cancers can downregulate the host immune system, enabling proliferation. DFTD is characterized by epigenetic modifications to the DNA promoter regions of β₂microglobulin, transporters associated with antigen processing 1 and 2, MHC I, and MHC II-crucial proteins required in the detection and surveillance of foreign material. Downregulation during DFTD may be achieved by altering the activity of histone deacetylases. DFTD has caused widespread destruction of devil populations, placing the species on the brink of extinction. CTVT demonstrates a proliferative phase, during which the tumor evades immune detection, allowing it to proliferate, and a regressive phase when hosts mount an effective immune response. Alteration of TGFβ signaling in CTVT likely impedes the antigen-processing capabilities of canine hosts in addition to hindering the ability of natural killer cells to detect immune system downregulation. Immunosuppressive cytokines such as CXCL7 may contribute to a favorable microenvironment that supports the proliferation of CTVT. When viewed from an evolutionary paradigm, both DFTD and CTVT may conform to a model of host-parasite coevolution. Furthermore, various genetic features, such as genetically active transposons in CTVT and chromosomal rearrangements in DFTD, play important roles in promoting the survival of these disease agents. Understanding the mode of transmission for these transmissible cancers may shed light on mechanisms for human malignancies and reveal opportunities for treatment in the future.
Collapse
|
8
|
Cheng B, Yuan WE, Su J, Liu Y, Chen J. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem 2018; 157:582-598. [PMID: 30125720 DOI: 10.1016/j.ejmech.2018.08.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/29/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
Immunotherapy has been increasingly utilized for the treatment of cancer. Currently available cancer immunotherapies mainly involve the use of antibodies, which have advantages in terms of pharmacodynamics such as efficacy and specificity, however, they exhibit disadvantages in regard to the pharmacokinetics including but not limited to poor tissue and tumor penetration, very long half-life, and the lack of oral bioavailability. Also they are immunogenic and may cause undesired side effects. In addition, they are difficult and expensive to produce. In contrast to therapeutic antibodies, small molecule immuno-oncology agents generally have favorable pharmacokinetics, for example, better oral bioavailability, higher tissue and tumor penetration, reasonable half-lives etc. Furthermore, some small molecules are highly selective and efficacious with benign toxicity profiles. Therefore, small molecule immuno-oncology agents have the potential to overcome the drawbacks of therapeutic antibodies, and they can complement existing therapeutic antibodies and may also be used in combination with antibodies to achieve synergistic effects. In this article, we summarize the current advances in the field of small molecule approaches in tumor immunology which include the small molecules in clinical trials and preclinical studies, and the reported crystal structures of small molecules and their target proteins as well as the binding interactions between small molecules and the targets. The tumorigenesis mechanism of different targets (the programmed cell death 1/programmed cell death ligand 1(PD1/PD-L1), retinoic acid-related orphan receptor-gamma t (RORγt), Chemokine receptor, Stimulator of Interferon Genes (Sting), Indoleamine 2,3-dioxygenase (IDO), toll-like receptors (TLR) etc.) are also elucidated.
Collapse
Affiliation(s)
- Binbin Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong Univerisity, Shanghai, 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong Univerisity, Shanghai, 200240, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Ikonomopoulou MP, Fernandez-Rojo MA. The antiproliferative and apoptotic profile of gomesin against DFTD. Cell Death Dis 2018; 9:833. [PMID: 30082778 PMCID: PMC6078965 DOI: 10.1038/s41419-018-0885-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, E28049, Spain. .,School of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Manuel A Fernandez-Rojo
- Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, E28049, Spain. .,Tranlastional Research Institute/Diamantina Institute, The University of Queensland, Herston, QLD, 4006, Australia.
| |
Collapse
|
10
|
Patchett AL, Wilson R, Charlesworth JC, Corcoran LM, Papenfuss AT, Lyons BA, Woods GM, Tovar C. Transcriptome and proteome profiling reveals stress-induced expression signatures of imiquimod-treated Tasmanian devil facial tumor disease (DFTD) cells. Oncotarget 2018; 9:15895-15914. [PMID: 29662615 PMCID: PMC5882306 DOI: 10.18632/oncotarget.24634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
As a topical cancer immunotherapy, the toll-like receptor 7 ligand imiquimod activates tumor regression via stimulation of immune cell infiltration and cytotoxic responses. Imiquimod also exerts direct pro-apoptotic effects on tumor cells in vitro, but a role for these effects in imiquimod-induced tumor regression remains undefined. We previously demonstrated that cell lines derived from devil facial tumor disease (DFTD), a transmissible cancer threatening the survival of the Tasmanian devil (Sarcophilus harrisii), are sensitive to imiquimod-induced apoptosis. In this study, the pro-apoptotic effects of imiquimod in DFTD have been investigated using RNA-sequencing and label-free quantitative proteomics. This analysis revealed that changes to gene and protein expression in imiquimod treated DFTD cells are consistent with the onset of oxidative and endoplasmic reticulum stress responses, and subsequent activation of the unfolded protein response, autophagy, cell cycle arrest and apoptosis. Imiquimod also regulates the expression of oncogenic pathways, providing a direct mechanism by which this drug may increase tumor susceptibility to immune cytotoxicity in vivo. Our study has provided the first global analysis of imiquimod-induced effects in any tumor cell line. These findings have highlighted the potential of cell stress pathways as therapeutic targets in DFTD, and will allow for improved mechanistic use of imiquimod as a therapy in both the Tasmanian devil and human cancers.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jac C Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Lynn M Corcoran
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia
| | - Bruce A Lyons
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia.,School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
11
|
Fernandez-Rojo MA, Deplazes E, Pineda SS, Brust A, Marth T, Wilhelm P, Martel N, Ramm GA, Mancera RL, Alewood PF, Woods GM, Belov K, Miles JJ, King GF, Ikonomopoulou MP. Gomesin peptides prevent proliferation and lead to the cell death of devil facial tumour disease cells. Cell Death Discov 2018. [PMID: 29531816 PMCID: PMC5841354 DOI: 10.1038/s41420-018-0030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Tasmanian devil faces extinction due to devil facial tumour disease (DFTD), a highly transmittable clonal form of cancer without available treatment. In this study, we report the cell-autonomous antiproliferative and cytotoxic activities exhibited by the spider peptide gomesin (AgGom) and gomesin-like homologue (HiGom) in DFTD cells. Mechanistically, both peptides caused a significant reduction at G0/G1 phase, in correlation with an augmented expression of the cell cycle inhibitory proteins p53, p27, p21, necrosis, exacerbated generation of reactive oxygen species and diminished mitochondrial membrane potential, all hallmarks of cellular stress. The screening of a novel panel of AgGom-analogues revealed that, unlike changes in the hydrophobicity and electrostatic surface, the cytotoxic potential of the gomesin analogues in DFTD cells lies on specific arginine substitutions in the eight and nine positions and alanine replacement in three, five and 12 positions. In conclusion, the evidence supports gomesin as a potential antiproliferative compound against DFTD disease.
Collapse
Affiliation(s)
- Manuel A Fernandez-Rojo
- 1QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia.,2Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006 Australia.,3Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, 28049 Spain
| | - Evelyne Deplazes
- 4School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, WA 6845 Australia
| | - Sandy S Pineda
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Andreas Brust
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Tano Marth
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Patrick Wilhelm
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Nick Martel
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Grant A Ramm
- 1QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia.,2Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006 Australia
| | - Ricardo L Mancera
- 4School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, WA 6845 Australia
| | - Paul F Alewood
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Gregory M Woods
- 6Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000 Australia
| | - Katherine Belov
- 7School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006 Australia
| | - John J Miles
- 1QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia.,2Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006 Australia.,8Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, 4870 Australia
| | - Glenn F King
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Maria P Ikonomopoulou
- 1QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia.,2Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006 Australia.,3Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, 28049 Spain
| |
Collapse
|
12
|
Patchett AL, Tovar C, Corcoran LM, Lyons AB, Woods GM. The toll-like receptor ligands Hiltonol ® (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:352-360. [PMID: 28689773 DOI: 10.1016/j.dci.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Devil facial tumour disease (DFTD) describes two genetically distinct transmissible tumours that pose a significant threat to the survival of the Tasmanian devil. A prophylactic vaccine could protect devils from DFTD transmission. For this vaccine to be effective, potent immune adjuvants will be required. Toll-like receptors (TLRs) promote robust immune responses in human cancer studies and are highly conserved across mammalian species. In this study, we investigated the proficiency of TLR ligands for immune activation in the Tasmanian devil using in vitro mononuclear cell stimulations and in vivo immunisation trials with a model antigen. We identified two such TLR ligands, polyICLC (Hiltonol®) (TLR3) and imiquimod (TLR7), that in combination induced significant IFNγ production from Tasmanian devil lymphocytes in vitro. Immunisation with these ligands and the model antigen keyhole limpet haemocyanin activated robust antigen-specific primary, secondary and long-term memory IgG responses. Our results support the conserved nature of TLR signaling across mammalian species. PolyICLC and imiquimod will be trialed as immune adjuvants in future DFTD vaccine formulations.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia.
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia; School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| |
Collapse
|