1
|
Nnah EP, Asante J, Amoako DG, Abia ALK, Essack SY. Antibiotic-resistant Escherichia coli (E. coli) at one health interfaces in Africa: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177580. [PMID: 39642619 DOI: 10.1016/j.scitotenv.2024.177580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
One Health represents a cohesive strategy designed to sustainably harmonize and enhance the health of humans, animals, and ecosystems. This implies that addressing the global rising antimicrobial resistance problem requires a One Health (OH) approach. Thus, using a Joanna Briggs Institute scoping review design, this review mapped existing literature on antibiotic-resistant (ABR) Escherichia coli in Africa from a OH perspective. The review protocol was developed and registered (https://osf.io/48x2d) before implementation. PubMed, ScienceDirect, Web of Science, Sabinet, and African Journals Online databases were searched systematically using predefined terms for all eligible articles between January 2010 and May 2024.The Preferred Reporting Items for Systematic Reviews and Meta-analysis extension for scoping reviews (PRISMA-ScR) was used. Of 507 search results, 63 were finally analysized using a three-level screening process. The data showed that OH studies on ABR E. coli were highest in the Eastern African region, with studies at the human-animal interface predominating. Reported ABR E. coli prevalence rates ranged from 0.64 % - 98.3 %. The studies reported diverse extended-spectrum beta-lactamase (ESBL) genes (n = 44), mcr genes (n = 3), other resistance genes (n = 82), and mobile genetic elements (plasmids, integrons, insertion sequences, and transposons). Moreso, this review showed that: research on ABR at OH interfaces is in its infancy in Africa, with ABR E. coli data unavailable for 68.5 % (n = 37) of the countries, and the food chain was the most inferred transmission route of ABR E. coli. Notwithstanding the relatively small number of studies at OH interfaces in Africa, these results emphasize antimicrobial stewardship, good hygiene and biosecurity practices, AMR surveillance, and research using the OH approach to ensure good health human, animal, plant and environmental health.
Collapse
Affiliation(s)
- Eberechi Phoebe Nnah
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Jonathan Asante
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Ghana
| | - Daniel Gyamfi Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; Department of Integrative Biology and Bioinformatics, University of Guelph, Ontario N1G2W1, Canada
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; Environmental Research Foundation, Westville 3630, South Africa.
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
2
|
Erb IK, Suarez C, Frank EM, Bengtsson-Palme J, Lindberg E, Paul CJ. Escherichia coli in urban marine sediments: interpreting virulence, biofilm formation, halotolerance, and antibiotic resistance to infer contamination or naturalization. FEMS MICROBES 2024; 5:xtae024. [PMID: 39246828 PMCID: PMC11378635 DOI: 10.1093/femsmc/xtae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Marine sediments have been suggested as a reservoir for pathogenic bacteria, including Escherichia coli. The origins, and properties promoting survival of E. coli in marine sediments (including osmotolerance, biofilm formation capacity, and antibiotic resistance), have not been well-characterized. Phenotypes and genotypes of 37 E. coli isolates from coastal marine sediments were characterized. The isolates were diverse: 30 sequence types were identified that have been previously documented in humans, livestock, and other animals. Virulence genes were found in all isolates, with more virulence genes found in isolates sampled from sediment closer to the effluent discharge point of a wastewater treatment plant. Antibiotic resistance was demonstrated phenotypically for one isolate, which also carried tetracycline resistance genes on a plasmid. Biofilm formation capacity varied for the different isolates, with most biofilm formed by phylogroup B1 isolates. All isolates were halotolerant, growing at 3.5% NaCl. This suggests that the properties of some isolates may facilitate survival in marine environments and can explain in part how marine sediments can be a reservoir for pathogenic E. coli. As disturbance of sediment could resuspend bacteria, this should be considered as a potential contributor to compromised bathing water quality at nearby beaches.
Collapse
Affiliation(s)
- Isabel K Erb
- Applied Microbiology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden
| | - Carolina Suarez
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Ellinor M Frank
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Johan Bengtsson-Palme
- Division for Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
- Centre for Antibiotic Resistance research (CARe), SE-413 45 Gothenburg, Sweden
| | - Elisabet Lindberg
- City of Helsingborg, Department of City Planning, Järnvägsgatan 22, SE-252 25 Helsingborg, Sweden
| | - Catherine J Paul
- Applied Microbiology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
3
|
Tadesse T, Alemayehu H, Medhin G, Akalu A, Eguale T. Antibiogram of Escherichia coli Isolated from Dairy Cattle and in-Contact Humans in Selected Areas of Central Ethiopia. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:117-127. [PMID: 38617107 PMCID: PMC11016264 DOI: 10.2147/vmrr.s456247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Background Antimicrobial resistance (AMR) is a global threat to public and animal health. Escherichia coli is considered an indicator organism for monitoring AMR among gram-negative Enterobacteriaceae in humans and animals. The current study aims to assess the antibiogram profile of E. coli isolated from dairy cattle and in-contact humans in central Ethiopia and to identify risk factors associated with multidrug resistance (MDR). Methods A cross-sectional study was conducted in which 58 farms were recruited from selected districts of central Ethiopia. E. coli was isolated using standard bacteriological techniques. A total of 200 representative isolates (140 from cattle and 60 from humans in contact) were randomly selected and tested for susceptibility to a panel of 13 antimicrobials using the Kirby-Bauer disc diffusion assay. Results The highest rate of resistance was observed for sulfamethoxazole+trimethoprim (58.6%, 82/140) and amoxicillin+clavulanic acid (70.0%, 42/60) among E. coli isolates from cattle and hmans, respectively. In contrast, resistance rates in isolates from in contact humans with the cattle were 30%, 33.3%, and 66.7%, respectively. Resistance to tetracycline (p=0.02), streptomycin (p=0.03), and sulfamethoxazole+trimethoprim (p=0.007) was significantly high in E. coli isolated from cattle on commercial dairy farms than in those isolated from cattle on smallholder farms. There was no significant difference (p>0.05) in the rate of resistance between E. coli isolated from in contact humans with smallholder and commercial dairy farms. Antimicrobial use for treatment purpose (p=0.04) and non-compliance with the drug withdrawal period (p=0.03) were significantly associated with the farm-level occurrence of MDR. Conclusion A high rate of resistance was detected in E. coli isolated from the feces of dairy cattle and in-contact humans. This necessitates an effective intervention through a one-health approach and further molecular studies are required to establish source attribution.
Collapse
Affiliation(s)
- Tekalign Tadesse
- Department of Veterinary Science, Mattu University, Mattu, Ethiopia
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aberaw Akalu
- Food, Medicine and Healthcare Administration and Control, Addis Ababa, Ethiopia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- The Ohio State University, Global One Health LLC, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Ormsby MJ, Woodford L, Quilliam RS. Can plastic pollution drive the emergence and dissemination of novel zoonotic diseases? ENVIRONMENTAL RESEARCH 2024; 246:118172. [PMID: 38220083 DOI: 10.1016/j.envres.2024.118172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
As the volume of plastic in the environment increases, so too does human interactions with plastic pollution. Similarly, domestic, feral, and wild animals are increasingly interacting with plastic pollution, highlighting the potential for contamination of plastic wastes with animal faeces, urine, saliva, and blood. Substantial evidence indicates that once in the environment, plastics rapidly become colonised by microbial biofilm (the so-called 'plastisphere), which often includes potentially harmful microbial pathogens (including pathogens that are zoonotic in nature). Climate change, increased urbanisation, and the intensification of agriculture, mean that the three-way interactions between humans, animals, and plastic pollution are becoming more frequent, which is significant as almost 60% of emerging human infectious diseases during the last century have been zoonotic. Here, we critically review the potential for contaminated environmental plastics to facilitate the evolution of novel pathogenic strains of microorganisms, and the subsequent role of plastic pollution in the cyclical dissemination of zoonotic pathogens. As the interactions between humans, animals, and plastic pollution continues to grow, and the volume of plastics entering the environment increases, there is clearly an urgent need to better understand the role of plastic waste in facilitating zoonotic pathogen evolution and dissemination, and the effect this can have on environmental and human health.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
5
|
Ghali-Mohammed I, Odetokun IA, Raufu IA, Adetunji VO. Whole genome sequencing analysis of non-O157 Shiga toxin-producing Escherichia coli in milk in Kwara State, Nigeria. IRANIAN JOURNAL OF VETERINARY RESEARCH 2024; 25:92-97. [PMID: 39624192 PMCID: PMC11608529 DOI: 10.22099/ijvr.2024.49643.7307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/24/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Escherichia coli is a major cause of poor microbial quality of milk, often resulting from unhygienic milk handling. Milk contamination poses public health concerns. Shiga toxin-producing Escherichia coli (STEC) strains in food products, particularly milk, is a critical concern for public health. Limited information exists on the detection of non-O157 E. coli pathotypes in milk sold by local processors in Nigeria. AIMS This study aimed to explore the diversity of non-O157 STEC isolates found in commercially available milk in Kwara State, Nigeria, to find the genetic diversity and potential risks associated with these strains. METHODS A subgroup of 18 representative non-O157 STEC isolated from milk samples (n=1225) was selected for whole genome sequencing (WGS) analysis. RESULTS Four novel sequence types (ST): ST398, ST540, ST1727, and ST9891 of non-O157 E. coli involving five serotypes: O176:H30, O176:H20, O8:H20, O21:H45, and O22:H7, carrying variable proportions of virulence factors, antimicrobial resistance genes, and plasmids, were identified. CONCLUSION This investigation contributes valuable data to the ongoing efforts to ensure food safety and prevent the transmission of E. coli strains through dairy products. The findings have implications for public health policies and food quality standards in Kwara State, Nigeria. Improved hygienic practices during milk handling are recommended.
Collapse
Affiliation(s)
- I. Ghali-Mohammed
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - I. A. Odetokun
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - I. A. Raufu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - V. O. Adetunji
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Occurrence and Genomic Characterization of mcr-1-Harboring Escherichia coli Isolates from Chicken and Pig Farms in Lima, Peru. Antibiotics (Basel) 2022; 11:antibiotics11121781. [PMID: 36551438 PMCID: PMC9774552 DOI: 10.3390/antibiotics11121781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Resistance to colistin generated by the mcr-1 gene in Enterobacteriaceae is of great concern due to its efficient worldwide spread. Despite the fact that the Lima region has a third of the Peruvian population and more than half of the national pig and poultry production, there are no reports of the occurrence of the mcr-1 gene in Escherichia coli isolated from livestock. In the present work, we studied the occurrence of E. coli carrying the mcr-1 gene in chicken and pig farms in Lima between 2019 and 2020 and described the genomic context of the mcr-1 gene. We collected fecal samples from 15 farms in 4 provinces of Lima including the capital Lima Metropolitana and recovered 341 E. coli isolates. We found that 21.3% (42/197) and 12.5% (18/144) of the chicken and pig strains were mcr-1-positive by PCR, respectively. The whole genome sequencing of 14 mcr-1-positive isolates revealed diverse sequence types (e.g., ST48 and ST602) and the presence of other 38 genes that confer resistance to 10 different classes of antibiotics, including beta-lactamase blaCTX-M-55. The mcr-1 gene was located on diverse plasmids belonging to the IncI2 and IncHI1A:IncHI1B replicon types. A comparative analysis of the plasmids showed that they contained the mcr-1 gene within varied structures (mikB-mcr1-pap2, ISApl1-mcr1-pap2, and Tn6330). To the best of our knowledge, this is the first attempt to study the prevalence of the mcr-1 gene in livestock in Peru, revealing its high occurrence in pig and chicken farms. The genetic diversity of mcr-1-positive strains suggests a complex local epidemiology calling for a coordinated surveillance under the One-Health approach that includes animals, retail meat, farmers, hospitals and the environment to effectively detect and limit the spread of colistin-resistant bacteria.
Collapse
|
7
|
Mihailovskaya VS, Remezovskaya NB, Zhdanova IN, Starčič Erjavec M, Kuznetsova MV. Virulence potential of faecal <i>Escherichia coli</i> strains isolated from healthy cows and calves on farms in Perm Krai. Vavilovskii Zhurnal Genet Selektsii 2022; 26:486-494. [PMID: 36128572 PMCID: PMC9450034 DOI: 10.18699/vjgb-22-59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Cattle are a reservoir of pathogenic and potentially pathogenic Escherichia coli (E. coli) strains, which can pose a threat to human and animal health. The aim of the study was to evaluate the occurrence of 22 virulence-associated genes (VAGs), as well as the prevalence of antimicrobial drug resistance and three different bla-genes among 49 E. coli strains isolated from healthy cattle. The presence of VAGs that are common among diarrheagenic E. coli (DEC) strains and/or extraintestinal pathogenic E. coli (ExPEC) strains was determined by amplifying specific gene sequences by PCR. The following VAGs associated with DEC were found: east1 in 24.5 % of the studied E. coli strains, estI in 10.2 %, ehxA in 8.2 %, stx2 in 6.1 %, eltA in 4.1 %, estII and stx1 in 2.0 % of the studied strains. The prevalence of ExPEC VAGs was: fimH – 91.8 %, afa/draBC – 61.2 %, iutA – 44.9 %, flu – 32.7 %, sfaDE and hlyF – 30.6 %, iroN – 22.4 %, ompT and papC – 20.4 %, kpsMTII and hlyA – 18.4 %, iss – 14.3 %, usp – 2.0 %, cnf1 and iha were not detected among the studied strains. Based on the found co-occurrence of VAGs “classical”, hetero-pathogenic and hybrid-pathogenic E. coli strains were found. E. coli strains isolated from cows had a higher diarrheagenic potential, whereas E. coli strains isolated from calves more frequently contained genes associated with the ExPEC pathotype. Among the studied E. coli strains, 77.6 % were resistant to ampicillin, 49.0 % to tetracycline, 20.4 % to chloramphenicol, 16.3 % to cefoperazone, 16.3 % to ceftriaxone, 16.3 % to aztreonam, 14.3 % to cefepime, 10.2 % to norfloxacin, 10.2 % to ciprofloxacin, 6.1 % to levofloxacin and 2.0 % to gentamicin. All strains were sensitive to meropenem and amikacin. 32.7 % of the studied E. coli strains were found to be multidrug resistant, as they were resistant to at least three groups of antibiotics. With PCR, the blaTEM, blaSHV, and blaCTX-M genes were detected in 100, 31.6, and 26.3 %, respectively, of strains resistant to at least one of the beta-lactam antibiotics. Thus, it was shown that the studied faecal E. coli of healthy cows and calves had a high hetero-pathogenic potential, therefore in the future molecular genetic characterization of these bacteria shall be an important part of the epizootic monitoring.
Collapse
Affiliation(s)
- V. S. Mihailovskaya
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences
| | - N. B. Remezovskaya
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences
| | | | | | - M. V. Kuznetsova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences
| |
Collapse
|
8
|
Ramatla TA, Mphuthi N, Ramaili T, Taioe M, Thekisoe O, Syakalima M. Molecular detection of zoonotic pathogens causing gastroenteritis in humans:
Salmonella
spp.,
Shigella
spp. and
Escherichia coli
isolated from
Rattus
species inhabiting chicken farms in North West Province, South Africa. J S Afr Vet Assoc 2022; 93:63-69. [DOI: 10.36303/jsava.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- TA Ramatla
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - N Mphuthi
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - T Ramaili
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
| | - M Taioe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
- Epidemiology, Parasites and Vectors, Agriculture Research Council, Onderstepoort Veterinary Research,
South Africa
| | - O Thekisoe
- Unit for Environmental Sciences and Management, North-West University,
South Africa
| | - M Syakalima
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control,
Zambia
| |
Collapse
|
9
|
Antimicrobial Resistance Pattern of Escherichia coli Isolates from Small Scale Dairy Cattle in Dar es Salaam, Tanzania. Animals (Basel) 2022; 12:ani12141853. [PMID: 35883400 PMCID: PMC9311648 DOI: 10.3390/ani12141853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Dearth of information on antimicrobial resistance (AMR) in small-scale dairy cattle in Dar es Salaam, the commercial city of Tanzania, prompted us to conduct this study. The objective was to determine the different levels of resistance phenotypical patterns among Escherichia coli (E. coli) isolates from rectal swabs of apparently healthy cattle. Antimicrobial resistance occurs when microorganisms develop the ability to tolerate antimicrobial concentrations to which they were initially susceptible. It is a phenomenon of global concern, which is on the rise due to antimicrobial use in food-producing animals. In dairy farms, cattle carry high levels of AMR Escherichia coli (E. coli), and may act as a potential reservoir. The study revealed that resistance to ampicillin, cefotaxime, tetracycline and trimethoprim/sulfamethoxazole was the most frequent. Resistance to nalidixic acid, ciprofloxacin, chloramphenicol, and gentamycin was also observed among the E. coli isolates, but with lower percentages. E. coli resistant to third generation cephalosporins was also detected. The results of the current study give an insight into the status of antimicrobial resistance and multidrug resistance in small-scale dairy cattle in Dar es Salaam, Tanzania. The findings call for further research, prudent antimicrobial use, and surveillance initiatives. Abstract In Tanzania, information on antimicrobial resistance in small-scale dairy cattle is scarce. This cross-sectional study was conducted to determine the different levels and pattern of antimicrobial resistance (AMR), in 121 Escherichia coli isolated from rectal swab of 201 apparently healthy small-scale dairy cattle in Dar es Salaam, Tanzania. Isolation and identification of E. coli were carried out using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing was carried out using the Kirby–Bauer disk diffusion method on Mueller-Hinton agar (Merck), according to the recommendations of Clinical and Laboratory Standards Institute (CLSI). Resistance was tested against ampicillin, gentamicin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, nalidixic acid, ciprofloxacin and cefotaxime. Resistance to almost all antimicrobial agents was observed. The agents to which resistance was demonstrated most frequently were ampicillin (96.7%), cefotaxime (95.0%), tetracycline (50.4%), trimethoprim-sulfamethoxazole (42.1%) and nalidixic acid (33.1%). In this case, 20 extended-spectrum beta-lactamases (ESBLs) producing E. coli were identified. 74.4% (90/121) of the isolates were Multidrug resistant (MDR), ranging from a combination of three to 8 different classes. The most frequently observed phenotypes were AMP-SXT-CTX with a prevalence of 12.4%, followed by the combination AMP-CTX with 10.7% and TE-AMP-CTX and NA + TE + AMP + CTX with 8.3% each. The high prevalence and wide range of AMR calls for prudent antimicrobial use.
Collapse
|
10
|
A bottom-up view of antimicrobial resistance transmission in developing countries. Nat Microbiol 2022; 7:757-765. [PMID: 35637328 DOI: 10.1038/s41564-022-01124-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
Antimicrobial resistance (AMR) is tracked most closely in clinical settings and high-income countries. However, resistant organisms thrive globally and are transmitted to and from healthy humans, animals and the environment, particularly in many low- and middle-income settings. The overall public health and clinical significance of these transmission opportunities remain to be completely clarified. There is thus considerable global interest in promoting a One Health view of AMR to enable a more realistic understanding of its ecology. In reality, AMR surveillance outside hospitals remains insufficient and it has been very challenging to convincingly document transmission at the interfaces between clinical specimens and other niches. In this Review, we describe AMR and its transmission in low- and middle-income-country settings, emphasizing high-risk transmission points such as urban settings and food-animal handling. In urban and food production settings, top-down and infrastructure-dependent interventions against AMR that require strong regulatory oversight are less likely to curtail transmission when used alone and should be combined with bottom-up AMR-containment approaches. We observe that the power of genomics to expose transmission channels and hotspots is largely unharnessed, and that existing and upcoming technological innovations need to be exploited towards containing AMR in low- and middle-income settings.
Collapse
|
11
|
Aklilu E, Harun A, Singh KKB. Molecular characterization of bla NDM, bla OXA-48, mcr-1 and bla TEM-52 positive and concurrently carbapenem and colistin resistant and extended spectrum beta-lactamase producing Escherichia coli in chicken in Malaysia. BMC Vet Res 2022; 18:190. [PMID: 35590358 PMCID: PMC9118571 DOI: 10.1186/s12917-022-03292-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Antimicrobial resistance (AMR) is a global public health threat and the use of antibiotics growth promoters in food animals has been implicated as a potential contributing factor in the emergence and spread of AMR. This study was conducted to investigate colistin and carbapenem resistance and extended spectrum beta-lactamase producing E. coli from live broiler chicken and chicken meat in Kelantan, Malaysia. Results Among the E. coli isolates, 37.5% (27/72 were positive for at least one of the resistance genes and one isolate was positive for mcr-1, blaTEM-52, blaNDM and blaOXA-48 whereas 4.17% (3/72) and 2.78% (2/72) were positive for mcr-1, blaTEM-52 and blaOXA-48, and mcr-1, blaTEM-52 and blaIMP. Multilocus sequence typing (MLST) results revealed the presence of widespread E. coli strains belonging to the sequence types ST410 and ST155 and other extra-intestinal E. coli (ExPEC) strains. Phylogroup A made up the majority 51.85% (14/27) followed by phylogroup B1 22.22% (6/27). Conclusions The findings imply the potential threats of colistin, extended-spectrum beta-lactamase producing and carbapenem resistant E. coli in food animals to the public health and underscores the need for judicious use of antibiotics in animal production and good hygiene practices to curb the rising risks of AMR.
Collapse
Affiliation(s)
- Erkihun Aklilu
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Locked Box 36, Pengkalan Chepa, 16100, Kota Bharu, Kelantan, Malaysia. .,Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
12
|
Hossain MS, Ali S, Hossain M, Uddin SZ, Moniruzzaman M, Islam MR, Shohael AM, Islam MS, Ananya TH, Rahman MM, Rahman MA, Worth M, Mondal D, Mahmud ZH. ESBL Producing Escherichia coli in Faecal Sludge Treatment Plants: An Invisible Threat to Public Health in Rohingya Camps, Cox's Bazar, Bangladesh. Front Public Health 2022; 9:783019. [PMID: 34976932 PMCID: PMC8714839 DOI: 10.3389/fpubh.2021.783019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Introduction: Human faecal sludge contains diverse harmful microorganisms, making it hazardous to the environment and public health if it is discharged untreated. Faecal sludge is one of the major sources of E. coli that can produce extended-spectrum β-lactamases (ESBLs). Objective: This study aimed to investigate the prevalence and molecular characterization of ESBL-producing E. coli in faecal sludge samples collected from faecal sludge treatment plants (FSTPs) in Rohingya camps, Bangladesh. Methods: ESBL producing E. coli were screened by cultural as well as molecular methods and further characterized for their major ESBL genes, plasmid profiles, pathotypes, antibiotic resistance patterns, conjugation ability, and genetic similarity. Results: Of 296 isolates, 180 were phenotypically positive for ESBL. All the isolates, except one, contained at least one ESBL gene that was tested (blaCTX−M−1, blaCTX−M−2, blaCTX−M−8, blaCTX−M−9, blaCTX−M−15, blaCTX−M−25, blaTEM, and blaSHV). From plasmid profiling, it was observed that plasmids of 1–211 MDa were found in 84% (151/180) of the isolates. Besides, 13% (24/180) of the isolates possessed diarrhoeagenic virulence genes. From the remaining isolates, around 51% (79/156) harbored at least one virulence gene that is associated with the extraintestinal pathogenicity of E. coli. Moreover, 4% (3/156) of the isolates were detected to be potential extraintestinal pathogenic E. coli (ExPEC) strains. Additionally, all the diarrhoeagenic and ExPEC strains showed resistance to three or more antibiotic groups which indicate their multidrug-resistant potential. ERIC-PCR differentiated these pathogenic isolates into seven clusters. In addition to this, 16 out of 35 tested isolates transferred plasmids of 32–112 MDa to E. coli J53 recipient strain. Conclusion: The present study implies that the faecal sludge samples examined here could be a potential origin for spreading MDR pathogenic ESBL-producing E. coli. The exposure of Rohingya individuals, living in overcrowded camps, to these organisms poses a severe threat to their health.
Collapse
Affiliation(s)
- Md Sakib Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sobur Ali
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Monir Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - M Moniruzzaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | - Md Shafiqul Islam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Md Mominur Rahman
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | | | - Martin Worth
- WASH Section, United Nations Children's Fund, Dhaka, Bangladesh
| | - Dinesh Mondal
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | |
Collapse
|
13
|
Haley BJ, Kim SW, Salaheen S, Hovingh E, Van Kessel JAS. Virulome and genome analyses identify associations between antimicrobial resistance genes and virulence factors in highly drug-resistant Escherichia coli isolated from veal calves. PLoS One 2022; 17:e0265445. [PMID: 35298535 PMCID: PMC8929554 DOI: 10.1371/journal.pone.0265445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Food animals are known reservoirs of multidrug-resistant (MDR) Escherichia coli, but information regarding the factors influencing colonization by these organisms is lacking. Here we report the genomic analysis of 66 MDR E. coli isolates from non-redundant veal calf fecal samples. Genes conferring resistance to aminoglycosides, β-lactams, sulfonamides, and tetracyclines were the most frequent antimicrobial resistance genes (ARGs) detected and included those that confer resistance to clinically significant antibiotics (blaCMY-2, blaCTX-M, mph(A), erm(B), aac(6’)Ib-cr, and qnrS1). Co-occurrence analyses indicated that multiple ARGs significantly co-occurred with each other, and with metal and biocide resistance genes (MRGs and BRGs). Genomic analysis also indicated that the MDR E. coli isolated from veal calves were highly diverse. The most frequently detected genotype was phylogroup A-ST Cplx 10. A high percentage of isolates (50%) were identified as sequence types that are the causative agents of extra-intestinal infections (ExPECs), such as ST69, ST410, ST117, ST88, ST617, ST648, ST10, ST58, and ST167, and an appreciable number of these isolates encoded virulence factors involved in the colonization and infection of the human urinary tract. There was a significant difference in the presence of multiple accessory virulence factors (VFs) between MDR and susceptible strains. VFs associated with enterohemorrhagic infections, such as stx, tir, and eae, were more likely to be harbored by antimicrobial-susceptible strains, while factors associated with extraintestinal infections such as the sit system, aerobactin, and pap fimbriae genes were more likely to be encoded in resistant strains. A comparative analysis of SNPs between strains indicated that several closely related strains were recovered from animals on different farms indicating the potential for resistant strains to circulate among farms. These results indicate that veal calves are a reservoir for a diverse group of MDR E. coli that harbor various resistance genes and virulence factors associated with human infections. Evidence of co-occurrence of ARGs with MRGs, BRGs, and iron-scavenging genes (sit and aerobactin) may lead to management strategies for reducing colonization of resistant bacteria in the calf gut.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
- * E-mail:
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States of America
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| |
Collapse
|
14
|
Jung D, Park S, Ruffini J, Dussault F, Dufour S, Ronholm J. Comparative genomic analysis of Escherichia coli isolates from cases of bovine clinical mastitis identifies nine specific pathotype marker genes. Microb Genom 2021; 7:000597. [PMID: 34227932 PMCID: PMC8477405 DOI: 10.1099/mgen.0.000597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli is a major causative agent of environmental bovine mastitis and this disease causes significant economic losses for the dairy industry. There is still debate in the literature as to whether mammary pathogenic E. coli (MPEC) is indeed a unique E. coli pathotype, or whether this infection is merely an opportunistic infection caused by any E. coli isolate being displaced from the bovine gastrointestinal tract to the environment and, then, into the udder. In this study, we conducted a thorough genomic analysis of 113 novel MPEC isolates from clinical mastitis cases and 100 bovine commensal E. coli isolates. A phylogenomic analysis indicated that MPEC and commensal E. coli isolates formed clades based on common sequence types and O antigens, but did not cluster based on mammary pathogenicity. A comparative genomic analysis of MPEC and commensal isolates led to the identification of nine genes that were part of either the core or the soft-core MPEC genome, but were not found in any bovine commensal isolates. These apparent MPEC marker genes were genes involved with nutrient intake and metabolism [adeQ, adenine permease; nifJ, pyruvate-flavodoxin oxidoreductase; and yhjX, putative major facilitator superfamily (MFS)-type transporter], included fitness and virulence factors commonly seen in uropathogenic E. coli (pqqL, zinc metallopeptidase, and fdeC, intimin-like adhesin, respectively), and putative proteins [yfiE, uncharacterized helix-turn-helix-type transcriptional activator; ygjI, putative inner membrane transporter; and ygjJ, putative periplasmic protein]. Further characterization of these highly conserved MPEC genes may be critical to understanding the pathobiology of MPEC.
Collapse
Affiliation(s)
- Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Janina Ruffini
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
| | | | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Sainte Anne de Bellevue, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec J2S 2M2, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|
15
|
Mucosal IFNγ production and potential role in protection in Escherichia coli O157:H7 vaccinated and challenged cattle. Sci Rep 2021; 11:9769. [PMID: 33963240 PMCID: PMC8105325 DOI: 10.1038/s41598-021-89113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga-toxin producing Escherichia coli O157:H7 (O157)-based vaccines can provide a potential intervention strategy to limit foodborne zoonotic transmission of O157. While the peripheral antibody response to O157 vaccination has been characterized, O157-specific cellular immunity at the rectoanal junction (RAJ), a preferred site for O157 colonization, remains poorly described. Vaccine induced mucosal O157-specific antibodies likely provide some protection, cellular immune responses at the RAJ may also play a role in protection. Distinct lymphoid follicles were increased in the RAJ of vaccinated/challenged animals. Additionally, increased numbers of interferon (IFN)γ-producing cells and γδ + T cells were detected in the follicular region of the RAJ of vaccinated/challenged animals. Likewise, adjuvanted-vaccine formulation is critical in immunogenicity of the O157 parenteral vaccine. Local T cell produced IFNγ may impact epithelial cells, subsequently limiting O157 adherence, which was demonstrated using in vitro attachment assays with bovine epithelial cells. Thus, distinct immune changes induced at the mucosa of vaccinated and challenged animals provide insight of mechanisms associated with limiting O157 fecal shedding. Enhancing mucosal immunity may be critical in the further development of efficacious vaccines for controlling O157 in ruminants and thus limiting O157 transmission to humans.
Collapse
|
16
|
Iramiot JS, Kajumbula H, Bazira J, Kansiime C, Asiimwe BB. Antimicrobial resistance at the human-animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci Rep 2020; 10:14737. [PMID: 32895433 PMCID: PMC7477235 DOI: 10.1038/s41598-020-70517-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Intensive usage of antimicrobials in the management of animal diseases leads to selection for resistance among microorganisms. This study aimed to assess antimicrobial use and to describe factors associated with the transmission of antimicrobial resistance between humans and animals in pastoralist communities of Kasese district. A mixed-methods approach was employed in this study. Rectal swabs were collected from the participants and cattle and transported in Carry-Blaire transport medium to the laboratory within 24 h of collection for culture and sensitivity to confirm carriage of multi-drug resistant bacteria. In-depth interviews were conducted among veterinary officers, veterinary drug vendors, human health facility in-charges in both public and private health facilities, and operators of human pharmacies and drug shops. Carriage of multi-drug resistant bacteria among humans was 88 (93%) and 76(80%) among cattle. Consumption of lakeshore water and carriage of multi-drug resistant bacteria in cattle were associated with carriage of multi-drug resistant bacteria in the human population. The prevalence of multi-drug resistance among organisms Isolated from both humans and animals was high. There is a high likelihood of transmission of multi-drug resistance between humans and animals.
Collapse
Affiliation(s)
- Jacob Stanley Iramiot
- Department of Medical Microbiology, College of Health Sciences, Makerere University School of Biomedical Sciences, P.O Box 7072, Kampala, Uganda
- Department of Microbiology and Immunology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Henry Kajumbula
- Department of Medical Microbiology, College of Health Sciences, Makerere University School of Biomedical Sciences, P.O Box 7072, Kampala, Uganda
| | - Joel Bazira
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Catherine Kansiime
- Department of Medical Microbiology, College of Health Sciences, Makerere University School of Biomedical Sciences, P.O Box 7072, Kampala, Uganda
| | - Benon B. Asiimwe
- Department of Medical Microbiology, College of Health Sciences, Makerere University School of Biomedical Sciences, P.O Box 7072, Kampala, Uganda
| |
Collapse
|
17
|
Hossain M, Tabassum T, Rahman A, Hossain A, Afroze T, Momen AMI, Sadique A, Sarker M, Shams F, Ishtiaque A, Khaleque A, Alam M, Huq A, Ahsan GU, Colwell RR. Genotype-phenotype correlation of β-lactamase-producing uropathogenic Escherichia coli (UPEC) strains from Bangladesh. Sci Rep 2020; 10:14549. [PMID: 32883963 PMCID: PMC7471317 DOI: 10.1038/s41598-020-71213-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is a pathogen commonly encountered in clinical laboratories, and is capable of causing a variety of diseases, both within the intestinal tract (intestinal pathogenic strains) and outside (extraintestinal pathogenic E. coli, or ExPEC). It is associated with urinary tract infections (UTIs), one of the most common infectious diseases in the world. This report represents the first comparative analysis of the draft genome sequences of 11 uropathogenic E. coli (UPEC) strains isolated from two tertiary hospitals located in Dhaka and Sylhet, Bangladesh, and is focused on comparing their genomic characteristics to each other and to other available UPEC strains. Multilocus sequence typing (MLST) confirmed the strains belong to ST59, ST131, ST219, ST361, ST410, ST448 and ST4204, with one of the isolates classified as a previously undocumented ST. De novo identification of the antibiotic resistance genes blaNDM-5, blaNDM-7, blaCTX-M-15 and blaOXA-1 was determined, and phenotypic-genotypic analysis of virulence revealed significant heterogeneity within UPEC phylogroups.
Collapse
Affiliation(s)
- Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Tahmina Tabassum
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Arman Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Tamanna Afroze
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Abdul Mueed Ibne Momen
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Mrinmoy Sarker
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Fariza Shams
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Ahmed Ishtiaque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdul Khaleque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Munirul Alam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Gias U Ahsan
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Public Health, North South University, Dhaka, Bangladesh
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA. .,University of Maryland Institute of Advanced Computer Studies, University of Maryland, College Park, MD, USA. .,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
18
|
de Carvalho MPN, Fernandes MR, Sellera FP, Lopes R, Monte DF, Hippólito AG, Milanelo L, Raso TF, Lincopan N. International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound Emerg Dis 2020; 67:1804-1815. [PMID: 32239649 PMCID: PMC7540485 DOI: 10.1111/tbed.13558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried blaCTX-M -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.
Collapse
Affiliation(s)
| | - Miriam R. Fernandes
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Fábio P. Sellera
- Department of Internal MedicineSchool of Veterinary Medicine and Animal ScienceUniversity of São PauloSão PauloBrazil
| | - Ralf Lopes
- Department of MicrobiologyInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Daniel F. Monte
- Department of Food and Experimental NutritionFaculty of Pharmaceutical SciencesFood Research CenterUniversity of São PauloSão PauloBrazil
| | - Alícia G. Hippólito
- Department of Veterinary Surgery and AnesthesiologySchool of Veterinary Medicine and Animal ScienceUniversidade Estadual Paulista (UNESP)BotucatuBrazil
| | - Liliane Milanelo
- Reception Center for WildlifeEcological Park TietêSão PauloBrazil
| | - Tânia F. Raso
- Department of PathologySchool of Veterinary Medicine and Animal ScienceUniversity of São PauloSão PauloBrazil
| | - Nilton Lincopan
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
- Department of MicrobiologyInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
19
|
Katale BZ, Misinzo G, Mshana SE, Chiyangi H, Campino S, Clark TG, Good L, Rweyemamu MM, Matee MI. Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review. Antimicrob Resist Infect Control 2020; 9:127. [PMID: 32762743 PMCID: PMC7409632 DOI: 10.1186/s13756-020-00786-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Background The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa. Main body The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included ‘antimicrobial resistance and human-animal-environment’, ‘antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment’ combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the blaCTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively. Conclusion The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania. .,Tanzania Commission for Science and Technology, Dar es Salaam, Tanzania. .,SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Gerald Misinzo
- SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Stephen E Mshana
- SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Harriet Chiyangi
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Liam Good
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Mark M Rweyemamu
- SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Mecky I Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,SACIDS Foundation for One Health (SACIDS), Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
20
|
Baniga Z, Hounmanou YMG, Kudirkiene E, Kusiluka LJM, Mdegela RH, Dalsgaard A. Genome-Based Analysis of Extended-Spectrum β-Lactamase-Producing Escherichia coli in the Aquatic Environment and Nile Perch ( Lates niloticus) of Lake Victoria, Tanzania. Front Microbiol 2020; 11:108. [PMID: 32153519 PMCID: PMC7046833 DOI: 10.3389/fmicb.2020.00108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing bacteria constitute an emerging global health issue with food products being vehicles of transmission and the aquatic environments serving as potential reservoirs. This study aimed to characterize ESBL-producing Escherichia coli in Nile perch and water from Lake Victoria in Tanzania. A total of 180 samples of Nile perch and 60 water samples were screened for ESBL-producing E. coli on MacConkey agar supplemented with 2 μg/ml of cefotaxime and confirmed by blaCTX–M and blaTEM PCR. Antimicrobial resistance was determined by the disk diffusion method, and the ESBL-producing isolates were whole genome sequencing (WGS). ESBL-producing E. coli were detected in eight of the 180 analyzed Nile perch samples, and only one water sample was positive (1.7%, n = 60). Isolates were resistant to sulfamethoxazole–trimethoprim (100%), ampicillin/cloxacillin (100%), erythromycin 72.7% (8/11), tetracycline 90.9% (10/11), and nalidixic acid 63.6% (7/11). This mostly corroborates the resistance genes that they carried for sulfonamides (sul1 and sul2), trimethoprim (dfrA and dfrB), aminoglycosides [aac(3)-IId, strA, and strB], tetracycline [tet(B) and tet(D)], and fluoroquinolones (qepA4). They harbored plasmid replicon types IncF, IncX, IncQ, and Col and carried blaCTX–M–15 and blaTEM–1B genes generally found on the same contigs as the IncF plasmid replicon. Although epidemiologically unrelated, the strains formed three separate sequence type–phylogroup–serotype-specific clusters: C1, C2, and C3. Cluster C1 included five strains (3 to 13 SNPs) belonging to ST167, phylogroup A, and serotype O9:H21; the two C2 strains (11 SNPs) belong to ST156, phylogroup B1, and serotype ONT:H28; and C3 was made up of four strains (SNPs ranged from 4 to 17) of ST636, phylogroup B2, and serotype O45:H7. The common virulence gene gad was reported in all strains. In addition, strains in C2 and C3 possessed iss, lpfA, and nfaE virulence genes, and the vat gene was found only in C3. The present study reports the occurrence of multidrug-resistant ESBL-producing E. coli carrying plasmid-mediated ESBL genes in offshore water and Nile perch in Lake Victoria. Strains formed three clonal clusters of unknown origin. This study reveals that the Lake may serve as reservoir for ESBL-producing bacteria that can be transmitted by fish as a food chain hazard of One-Health concern.
Collapse
Affiliation(s)
- Zebedayo Baniga
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania.,Department of Fisheries Development, National Fish Quality Control Laboratory-Nyegezi, Mwanza, Tanzania
| | - Yaovi M Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lughano J M Kusiluka
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania.,Mzumbe University, Mzumbe, Tanzania
| | - Robinson H Mdegela
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
21
|
High occurrence of CMY-2-type beta-lactamase-producing Escherichia coli among broiler flocks in Turkey. Trop Anim Health Prod 2019; 52:1681-1689. [PMID: 31858371 DOI: 10.1007/s11250-019-02167-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
In this study, the prevalence of ESBL/pAmpC-producing Escherichia coli and their molecular characterization from cloacal swab samples were investigated. All samples were obtained from broiler flocks that are located in Hatay, Adana, and Mersin provinces of Turkey. Antimicrobial susceptibilities of the isolates were determined by disk diffusion method following the CLSI criteria. Genetic mechanisms mediating resistance in ESBL/pAmpC-producing E. coli isolates were identified by polymerase chain reaction (PCR) and followed by DNA sequencing. Phylogenetic groups and plasmid replicon types of the isolates were also investigated by PCR. The clonal relationship of selected isolates was investigated by enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus sequence typing (MLST) method. Of 430 cloacal swab samples, 154 (35.8%) were positive for ESBL/pAmpC-producing E. coli. The ESBL/pAmpC type beta-lactamases were as follows: CMY-2 (n = 46), CMY-2 + TEM-1b (n = 63), SHV-12 (n = 5), SHV-12 + TEM-1b (n = 12), CTX-M-3 (n = 14), CTX-M-3 + TEM-1b (n = 1), CTX-M-15 (n = 4), CTX-M-15 + TEM-1b (n = 4), and CTX-M-1 (n = 3). Moreover, various rates of resistance to different antimicrobials were determined such as nalidixic acid (92.9%), ciprofloxacin (76%), sulfamethoxazole-trimethoprim (78.6%), tetracycline (73.4%), streptomycin (52.6%), chloramphenicol (44.2%), kanamycin (27.9%), tobramycin (24.7%), gentamicin (19.5%), and amikacin (0.6%). Furthermore, 148 (96.1%) isolates were found to be MDR. The ESBL/pAmpC-producing isolates were distributed into the following phylogroups: E (n = 61), B1 (n = 30), F (n = 20), A (n = 19), B2 (n = 11), D (n = 10), and C (n = 3). ERIC-PCR analysis showed 51 unrelated patterns. Out of the 28 selected isolates, the following sequence types (STs) were detected: ST354 (n = 3), ST114 (n = 3), ST5696 (n = 2), ST156 (n = 2), ST174 (n = 2), ST362 (n = 2), ST157 (n = 2), ST5114 (n = 2), ST6635, ST539, ST457, ST1640, ST95, ST5843, ST1158, ST10, ST648, and ST4248. The results of the current study revealed that broilers in Turkey are important reservoir of ESBL/pAmpC-producing E. coli, which suggest that these agents have a great potential of transmission to humans by food chain or direct contact.
Collapse
|
22
|
Microarray-based detection of resistance and virulence factors in commensal Escherichia coli from livestock and farmers in Egypt. Vet Microbiol 2019; 240:108539. [PMID: 31902492 DOI: 10.1016/j.vetmic.2019.108539] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
The objective of our study was to provide a molecular analysis using DNA-microarray based assays of commensal E. coli populations from apparently healthy livestock and their attendants to assess the virulence potential as well as multidrug resistance (MDR) genotypes. We randomly collected 132 fecal samples from seemingly healthy smallholder´s food producing animals [buffalo (n = 32) and cattle (n = 50)] as well as from contacting farmers (n = 50). Bacterial isolation and identification were performed using standard protocols, while E. coli isolates were characterized using a DNA microarray system targeting 60 different virulence and 47 antibiotic resistance genes of clinical importance and allowing assignment to most common H and O types. From the fecal samples examined, 47 E. coli isolates were obtained. The array predicted serotypes for 14 out of the 47 E. coli isolates. Six E. coli isolates were identified as STEC since Shiga toxin genes were detected. In summary, 36 different virulence genes were identified; of which, hemL, lpfA and iss were most prevalent. Thirty-four E. coli isolates were found to carry at least one antimicrobial resistance gene. Of these, 20 did exhibit genes allowing strain classification as MDR. More than half of the isolates contained antimicrobial resistance genes associated with beta lactam resistance 27/47 (57.5 %). The 13 remaining isolates did not contain any resistance gene tested with the array. Our study demonstrated the presence of antimicrobial resistance genes and virulence genotypes among commensal E. coli of human and animal sources.
Collapse
|
23
|
Arimizu Y, Kirino Y, Sato MP, Uno K, Sato T, Gotoh Y, Auvray F, Brugere H, Oswald E, Mainil JG, Anklam KS, Döpfer D, Yoshino S, Ooka T, Tanizawa Y, Nakamura Y, Iguchi A, Morita-Ishihara T, Ohnishi M, Akashi K, Hayashi T, Ogura Y. Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains. Genome Res 2019; 29:1495-1505. [PMID: 31439690 PMCID: PMC6724679 DOI: 10.1101/gr.249268.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023]
Abstract
How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)–producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)–encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.
Collapse
Affiliation(s)
- Yoko Arimizu
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yumi Kirino
- Laboratory of Veterinary Radiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Mitsuhiko P Sato
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Uno
- Japan Microbiological Laboratory, Sendai, Miyagi 983-0034, Japan
| | - Toshio Sato
- Japan Microbiological Laboratory, Sendai, Miyagi 983-0034, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France
| | - Hubert Brugere
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France.,CHU de Toulouse, Hôpital Purpan, 31300 Toulouse, France
| | - Jacques G Mainil
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animal Health (FARAH), University of Liège, 4000 Liège, Belgium
| | - Kelly S Anklam
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Shuji Yoshino
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki 889-2155, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yasuhiro Tanizawa
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tomoko Morita-Ishihara
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
24
|
Assessing Transmission of Antimicrobial-Resistant Escherichia coli in Wild Giraffe Contact Networks. Appl Environ Microbiol 2018; 85:AEM.02136-18. [PMID: 30413480 DOI: 10.1128/aem.02136-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022] Open
Abstract
There is growing evidence that anthropogenic sources of antibiotics and antimicrobial-resistant bacteria can spill over into natural ecosystems, raising questions about the role wild animals play in the emergence, maintenance, and dispersal of antibiotic resistance genes. In particular, we lack an understanding of how resistance genes circulate within wild animal populations, including whether specific host characteristics, such as social associations, promote interhost transmission of these genes. In this study, we used social network analysis to explore the forces shaping population-level patterns of resistant Escherichia coli in wild giraffe (Giraffa camelopardalis) and assess the relative importance of social contact for the dissemination of resistant E. coli between giraffe. Of 195 giraffe sampled, only 5.1% harbored E. coli isolates resistant to one or more tested antibiotics. Whole-genome sequencing on a subset of resistant isolates revealed a number of acquired resistance genes with linkages to mobile genetic elements. However, we found no evidence that the spread of resistance genes among giraffe was facilitated by interhost associations. Giraffe with lower social degree were more likely to harbor resistant E. coli, but this relationship was likely driven by a correlation between an individual's social connectedness and age. Indeed, resistant E. coli was most frequently detected in socially isolated neonates, indicating that resistant E. coli may have a selective advantage in the gastrointestinal tracts of neonates compared to other age classes. Taken together, these results suggest that the maintenance of antimicrobial-resistant bacteria in wild populations may, in part, be determined by host traits and microbial competition dynamics within the host.IMPORTANCE Antimicrobial resistance represents a significant threat to human health, food security, and the global economy. To fully understand the evolution and dissemination of resistance genes, a complete picture of antimicrobial resistance in all biological compartments, including natural ecosystems, is required. The environment and wild animals may act as reservoirs for anthropogenically derived resistance genes that could be transferrable to clinically relevant bacteria of humans and domestic animals. Our study investigated the possible transmission mechanisms for antimicrobial-resistant bacteria within a wild animal population and, more broadly, contributes to our understanding of how resistance genes are spread and maintained in natural ecosystems.
Collapse
|
25
|
Sonda T, Kumburu H, van Zwetselaar M, Alifrangis M, Mmbaga BT, Lund O, Kibiki GS, Aarestrup FM. Molecular epidemiology of virulence and antimicrobial resistance determinants in Klebsiella pneumoniae from hospitalised patients in Kilimanjaro, Tanzania. Eur J Clin Microbiol Infect Dis 2018; 37:1901-1914. [PMID: 30030694 DOI: 10.1007/s10096-018-3324-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 11/30/2022]
Abstract
This study aimed to use whole-genome sequencing to determine virulence and antimicrobial resistance genes in K. pneumoniae isolated from patients in a tertiary care hospital in Kilimanjaro. K. pneumoniae isolates from patients attending Kilimanjaro Christian Medical Centre between August 2013 and August 2015 were fully genome-sequenced and analysed locally. Sequence analysis was done for identification of virulence and AMR genes. Plasmid and multi-locus sequence typing and capsular or capsular (K) typing were performed and phylogeny was done to ascertain K. pneumoniae relatedness. Stata 13 (College Station, TX, 77845, USA) was used to determine Cohen's kappa coefficient of agreement between the phenotypically tested and sequence-predicted resistance. A total of 16 (47.1%) sequence types (STs) and 10 (29.4%) K types were identified in 30 (88.2%) and 17 (50.0%) of all analysed isolates, respectively. K. pneumoniae ST17 were 6 (17.6%). The commonest determinants were blaCTX-M-15 in 16 (47.1%) isolates, blaSHV in 30 (88.2%), blaOXA-1 in 8 (23.5%) and blaTEM-1 in 18 (52.9%) isolates. Resistance genes for aminoglycosides were detected in 21 (61.8%) isolates, fluoroquinolones in 13 (38.2%) and quinolones 34 (100%). Ceftazidime and ceftriaxone showed the strongest agreement between phenotype- and sequence-based resistance results: 93.8%, kappa = 0.87 and p = 0.0002. Yersiniabactin determinant was detected in 12 (35.3%) of K. pneumoniae. The proportion of AMR and virulence determinants detected in K. pneumoniae is alarming. WGS-based diagnostic approach has showed promising potentials in clinical microbiology, hospital outbreak source tracing virulence and AMR detection at KCMC.
Collapse
Affiliation(s)
- Tolbert Sonda
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania. .,Kilimanjaro Christian Medical University College, Moshi, Tanzania.
| | - Happiness Kumburu
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Marco van Zwetselaar
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ole Lund
- Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Gibson S Kibiki
- Kilimanjaro Christian Medical University College, Moshi, Tanzania.,East African Health Research Commission, Bujumbura, Burundi
| | - Frank M Aarestrup
- DTU-Food, Centre for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
26
|
Sonda T, Kumburu H, van Zwetselaar M, Alifrangis M, Mmbaga BT, Aarestrup FM, Kibiki G, Lund O. Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania. Antimicrob Resist Infect Control 2018; 7:72. [PMID: 29977533 PMCID: PMC5992844 DOI: 10.1186/s13756-018-0361-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/22/2018] [Indexed: 01/06/2023] Open
Abstract
Background Limited information regarding the clonality of circulating E. coli strains in tertiary care hospitals in low and middle-income countries is available. The purpose of this study was to determine the serotypes, antimicrobial resistance and virulence genes. Further, we carried out a phylogenetic tree reconstruction to determine relatedness of E. coli isolated from patients in a tertiary care hospital in Tanzania. Methods E. coli isolates from inpatients admitted at Kilimanjaro Christian Medical Centre between August 2013 and August 2015 were fully genome-sequenced at KCMC hospital. Sequence analysis was done for identification of resistance genes, Multi-Locus Sequence Typing, serotyping, and virulence genes. Phylogeny reconstruction using CSI Phylogeny was done to ascertain E. coli relatedness. Stata 13 (College Station, Texas 77,845 USA) was used to determine Cohen's kappa coefficient of agreement between the phenotypically tested and whole genome sequence predicted antimicrobial resistance. Results Out of 38 E. coli isolates, 21 different sequence types (ST) were observed. Eight (21.1%) isolates belonged to ST131; of which 7 (87.5.%) were serotype O25:H4. Ten (18.4%) isolates belonged to ST10 clonal complex; of these, four (40.0%) were ST617 with serotype O89:H10. Twenty-eight (73.7%) isolates carried genes encoding beta-lactam resistance enzymes. On average, agreement across all drugs tested was 83.9%. Trimethoprim/sulphamethoxazole (co-trimoxazole) showed moderate agreement: 45.8%, kappa =15% and p = 0.08. Amoxicillin-clavulanate showed strongest agreement: 87.5%, kappa = 74% and p = 0.0001. Twenty-two (57.9%) isolates carried virulence factors for host cells adherence and 25 (65.7%) for factors that promote E. coli immune evasion by increasing survival in serum. The phylogeny analysis showed that ST131 clustering close together whereas ST10 clonal complex had a very clear segregation of the ST617 and a mix of the rest STs. Conclusion There is a high diversity of E. coli isolated from patients admitted to a tertiary care hospital in Tanzania. This underscores the necessity to routinely screen all bacterial isolates of clinical importance in tertiary health care facilities. WGS use for laboratory-based surveillance can be an effective early warning system for emerging pathogens and resistance mechanisms in LMICs.
Collapse
Affiliation(s)
- Tolbert Sonda
- 1Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,2Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Happiness Kumburu
- 1Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,2Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Marco van Zwetselaar
- 1Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Blandina T Mmbaga
- 1Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,2Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Gibson Kibiki
- 2Kilimanjaro Christian Medical University College, Moshi, Tanzania.,East African Health Research Commission, Bujumbura, Burundi
| | - Ole Lund
- 5Centre for Biological Sequence Analysis, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
27
|
Kudirkiene E, Andoh LA, Ahmed S, Herrero-Fresno A, Dalsgaard A, Obiri-Danso K, Olsen JE. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana. Front Microbiol 2018; 9:1010. [PMID: 29867897 PMCID: PMC5966558 DOI: 10.3389/fmicb.2018.01010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either blaTEM52-B or blaCTX-M15 were present in two cephalosporin resistant isolates of S. Virchow and S. Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S. Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S. Typhimurium on plasmids of IncFII(S)/IncFIB(S)/IncQ1 type. In S. Virchow and in S. Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.
Collapse
Affiliation(s)
- Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Linda A. Andoh
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Huang K, Wang D, Frederiksen RF, Rensing C, Olsen JE, Fresno AH. Investigation of the Role of Genes Encoding Zinc Exporters zntA, zitB, and fieF during Salmonella Typhimurium Infection. Front Microbiol 2018; 8:2656. [PMID: 29375521 PMCID: PMC5768658 DOI: 10.3389/fmicb.2017.02656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 02/05/2023] Open
Abstract
The transition metal zinc is involved in crucial biological processes in all living organisms and is essential for survival of Salmonella in the host. However, little is known about the role of genes encoding zinc efflux transporters during Salmonella infection. In this study, we constructed deletion mutants for genes encoding zinc exporters (zntA, zitB, and fieF) in the wild-type (WT) strain Salmonella enterica serovar Typhimurium (S. Typhimurium) 4/74. The mutants 4/74ΔzntA and 4/74ΔzntA/zitB exhibited a dramatic growth delay and abrogated growth ability, respectively, in Luria Bertani medium supplemented with 0.25 mM ZnCl2 or 1.5 mM CuSO4 compared to the WT strain. In order to investigate the role of genes encoding zinc exporters on survival of S. Typhimurium inside cells, amoeba and macrophage infection models were used. No significant differences in uptake or survival were detected for any of the mutants compared to the WT during infection of amoebae. In natural resistance-associated macrophage protein 1 (Nramp1)-negative J774.1 murine macrophages, significantly higher bacterial counts were observed for the mutant strains 4/74ΔzntA and 4/74ΔzntA/zitB compared to the WT at 4 h post-infection although the fold net replication was similar between all the strains. All four tested mutants (4/74ΔzntA, 4/74ΔzitB, 4/74ΔfieF, and 4/74ΔzntA/zitB) showed enhanced intracellular survival capacity within the modified Nramp1-positive murine RAW264.7 macrophages at 20 h post-infection. The fold net replication was also significantly higher for 4/74ΔzntA, 4/74ΔzitB, and 4/74ΔzntA/zitB mutants compared to the WT. Intriguingly, the ability to survive and cause infection was significantly impaired in all the three mutants tested (4/74ΔzntA, 4/74ΔzitB, and 4/74ΔzntA/zitB) in C3H/HeN mice, particularly the double mutant 4/74ΔzntA/zitB was severely attenuated compared to the WT in all the three organs analyzed. These findings suggest that these genes encoding zinc exporters, especially zntA, contribute to the resistance of S. Typhimurium to zinc and copper stresses during infection.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan Wang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rikki F Frederiksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana H Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Seni J, Moremi N, Matee M, van der Meer F, DeVinney R, Mshana SE, D Pitout JD. Preliminary insights into the occurrence of similar clones of extended-spectrum beta-lactamase-producing bacteria in humans, animals and the environment in Tanzania: A systematic review and meta-analysis between 2005 and 2016. Zoonoses Public Health 2017; 65:1-10. [PMID: 28834351 DOI: 10.1111/zph.12387] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 11/26/2022]
Abstract
The emergence and spread of extended-spectrum beta-lactamase producing Enterobacteriaceae (ESBL-PE) are complex and of the public health concern across the globe. This review aimed at assessing the ESBL-PE clones circulating in humans, animals and the environment to provide evidence-based insights for combating ESBL-PE using One Health approach. Systematic search from Medline/PubMed, Google Scholar and African Journals Online was carried out and retrieved nine eligible articles (of 131) based on phenotypic and genotypic detection of ESBL-PE between 2005 and 2016 in Tanzania. Analysis was performed using STATA 11.0 software to delineate the prevalence of ESBL-PE, phenotypic resistance profiles and clones circulating in the three interfaces. The overall prevalence of ESBL-PE in the three interfaces was 22.6% (95% CI: 21.1-24.2) with the predominance of Escherichia coli (E. coli) strains (51.6%). The majority of ESBL-PE were resistant to the commonly used antimicrobials such as trimethoprim-sulfamethoxazole and tetracycline/doxycycline, 38%-55% were resistant to ciprofloxacin and all were sensitive to meropenem/imipenem. ESBL-PE infections were more associated with deaths compared to non-ESBL-PE infections. Strikingly, E. coli ST38, ST131 and ST2852 were found to intersect variably across the three interfaces. The predominant allele, blaCTX-M-15, was found mostly in the conjugative IncF plasmids connoting transmission potential. The high prevalence of ESBL-PE and shared clones across the three interfaces, including the global E. coli ST131 clone, indicates wide and inter-compartmental spread that calls for One Health genomic-driven studies to track the resistome flow.
Collapse
Affiliation(s)
- J Seni
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N Moremi
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - M Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - F van der Meer
- Faculty of Veterinary Medicine: Ecosystem and Public Health, University of Calgary, Calgary, AB, Canada
| | - R DeVinney
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - J D D Pitout
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|