1
|
Millot M, Imbert C, Pouget C, Girardot M, Mambu L. Lichen and Its Microbiome as an Untapped Source of Anti-Biofilm Compounds. Chem Biodivers 2025; 22:e202401557. [PMID: 39602230 PMCID: PMC12004889 DOI: 10.1002/cbdv.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Lichen substances have been first described in the 1870s, and around 10 000 compounds have been isolated and characterized. Most of them have been evaluated for their activity on planktonic microorganisms (bacteria and fungi). More recently, microorganisms colonizing the lichen thallus have been isolated and identified using DNA sequencing, giving access to a wide diversity of culturable microorganisms. The increasing research in lichen-associated microbiomes in recent years has emphasized a wide range of metabolites as a potential source of bioactive compounds. In parallel, humans are facing microbial resistance to conventional antimicrobial drugs. One of the reasons is the biofilm lifestyle of microorganisms. Indeed, the aggregation of microbial communities inside biofilms is now well known and characterized, and some possible ways to fight and destroy biofilms are identified (quorum sensing inhibitors, etc.). The present review aims to summarize the anti-biofilm potential of lichen metabolites and those from their associated microorganisms (bacteria and/or fungi). Are the metabolites isolated from lichens and their associated fungi displaying any anti-biofilm activity? This literature synthesis highlights the metabolites of interest as new anti-biofilm drugs and shows the lack of current biological research dealing with biofilm and lichen metabolites. Acetone and ethyl acetate extracts are the most studied sources of anti-biofilm agents. Only two lichen metabolites, usnic acid and evernic acid, have been evaluated both as antifungal and antibacterial biofilm compounds. Terpenoids from lichens are still poorly explored for this activity.
Collapse
Affiliation(s)
- Marion Millot
- Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722Université de LimogesLimogesFrance
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions (EBI)UMR CNRS 7267, Université de PoitiersPoitiersFrance
| | - Christelle Pouget
- Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722Université de LimogesLimogesFrance
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions (EBI)UMR CNRS 7267, Université de PoitiersPoitiersFrance
| | - Lengo Mambu
- Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722Université de LimogesLimogesFrance
| |
Collapse
|
2
|
Ingmer H, Leisner JJ, Fulaz S. Forssman and the staphylococcal hemolysins. APMIS 2025; 133:e13459. [PMID: 39188243 PMCID: PMC11669744 DOI: 10.1111/apm.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Forssman was a Swedish pathologist and microbiologist who, in the 1920s and 1930s conducted a long series of experiments that led to unique insights into surface antigens of blood cells, as well as added to the discrimination of toxins produced by staphylococci that lyse red blood cells. This review takes offset in the studies published by Forssman in APMIS addressing the hemolytic properties of staphylococcal toxins displayed against erythrocytes of animal and human origin. In light of current knowledge, we will discuss the insights we now have and how they may pave the way for curing infections with pathogenic staphylococci, including Staphylococcus aureus.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Jørgen J. Leisner
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Stephanie Fulaz
- Department of Veterinary and Animal ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Xie Q, Jia Y, Tao J, Bu T, Wang Q, Shen N, Zhang X, Xiao Y, Ye L, Chen Z, Huang H, Li Q, Tang Z. Chemical constituents and biological activities of endophytic fungi from Fagopyrum dibotrys. PeerJ 2024; 12:e18529. [PMID: 39575167 PMCID: PMC11580677 DOI: 10.7717/peerj.18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
Background Fagopyrum dibotrys is an important wild food and feed germplasm resource. It has high nutritional and medicinal value and is rich in natural products, including flavonoids, phenolic acids, coumarins, and alkaloids. Endophytic fungi in F. dibotrys have emerged as valuable sources of natural products. However, studies on the biological activity and chemical composition of these endophytic fungi remain limited. Methods In this paper, a new method to obtain natural active ingredients by fermentation of endophytic fungi from medicinal plants was proposed. Then the antioxidant and pathogenic activities of the endophytic fungi extracts were determined in vitro. In addition, secondary metabolites produced by endophytic fungi with medicinal activity were analyzed by high performance liquid chromatography-tandem mass spectrometry (LC-MS). Results Among the 95 endophytic fungal strains in F. dibotrys, four strains with high phenol yields were selected by reaction: Alternaria alstroemeriae (J2), Fusarium oxysporum (J15), Colletotrichum karsti (J74), and Colletotrichum boninense (J61). Compared with those of various extracts, the ethyl acetate fractions of A. alstroemeriae (J2), F. oxysporum (J15), and C. boninense (J61) exhibited superior antioxidant and antibacterial properties. The results indicated that the fungal extract was an excellent natural antioxidant and might be a potential antibacterial agent. The DPPH free radical clearance of A. alstroemeriae was 94.96 ± 0.004%. These findings indicated that A. alstroemeriae had strong antioxidant activity. In addition, the extract of A. alstroemeriae had good antibacterial activity against Escherichia coli and Staphylococcus aureus, with MICs of 0.5 and 0.05 mg/mL, respectively. The chemical constituents of the ethyl acetate extract from A. alstroemeriae were further analyzed by liquid chromatography-mass spectrometry (LC-MS). We noted that A. alstroemeriae can create a variety of medicinal substances that have high value in medicine, such as caffeic acid (884.75 ng/mL), 3-phenyllactic acid (240.72 ng/mL) and norlichexanthone (74.36 ng/mL). Discussion In summary, many valuable active substances and medicinal substances can be obtained through the study of endophytic fungi of F. dibotrys.
Collapse
Affiliation(s)
- Qiqi Xie
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yujie Jia
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jiwen Tao
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Qing Wang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Nayu Shen
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xinyu Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Cheng’du, Sichuan, China
| | - Zhao Chen
- Ya’an People’s Hospital, Ya’an People’s Hospital, Ya’an, Sichuan, China
| | - Huahai Huang
- Da’zhu Institute of Scientific and Technical Information, Unaffiliated, Da’zhu, Sichuan, China
| | - Qingfeng Li
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
4
|
Tian LL, Li Y, Yang R, Jiang Y, He JJ, Wang H, Chen LQ, Zhu WY, Xue T, Li BB. Low concentrations of tetrabromobisphenol A promote the biofilm formation of methicillin-resistant Staphylococcus aureus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116853. [PMID: 39137468 DOI: 10.1016/j.ecoenv.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The effect and underlying mechanism of tetrabromobisphenol A (TBBPA), a plastic additive, on biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA USA300) remain unknown. This study first investigated the impact of different concentrations of TBBPA on the growth and biofilm formation of USA300. The results indicated that a low concentration (0.5 mg/L) of TBBPA promoted the growth and biofilm formation of USA300, whereas high concentrations (5 mg/L and 10 mg/L) of TBBPA had inhibitory effects. Further exploration revealed that the low concentration of TBBPA enhance biofilm formation by promoting the synthesis of extracellular proteins, release of extracellular DNA (eDNA), and production of staphyloxanthin. RTqPCR analysis demonstrated that the low concentration of TBBPA upregulated genes associated with extracellular protein synthesis (sarA, fnbA, fnbB, aur) and eDNA formation (atlA) and increased the expression of genes involved in staphyloxanthin biosynthesis (crtM), suggesting a potential mechanism for enhanced resistance of USA300 to adverse conditions. These findings shed light on how low concentrations of TBBPA facilitate biofilm formation in USA300 and highlight the indirect impact of plastic additives on pathogenic bacteria in terms of human health. In the future, in-depth studies about effects of plastic additives on pathogenicity of pathogenic bacteria should be conducted. CAPSULE: The protein and eDNA contents in biofilms of methicillin-resistant Staphylococcus aureus are increased by low concentrations of TBBPA.
Collapse
Affiliation(s)
- Lin-Lin Tian
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yun Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ying Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiao-Jiao He
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Qi Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wen-Ya Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; Food Procession Research Institute, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Bing-Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
5
|
Maurya A, Agrawal A. Recent Advancement in Bioactive Chalcone Hybrids as Potential Antimicrobial Agents in Medicinal Chemistry. Mini Rev Med Chem 2024; 24:176-195. [PMID: 37497710 DOI: 10.2174/1389557523666230727102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023]
Abstract
Chalcones are flavonoid-related aromatic ketones and enones generated from plants. The chalcones have a wide range of biological activities, such as anti-tumor, calming, and antimicrobial activities. In the present review, we have focused on the recently published original research articles on chalcones as a unique antibacterial framework in medicinal chemistry. Chalcones are structurally diverse moieties and can be split into simple and hybrid chalcones, with both having core pharmacophore 1,3-diaryl-2-propen-1-one. Chalcones are isolated from natural sources and also synthesized by using various methods. Their structure-activity relationship, mechanisms, and list of patents are also summarized in this paper. This review article outlines the currently published antimicrobial chalcone hybrids and suggests that chalcone derivatives may be potential antimicrobial agents in the future.
Collapse
Affiliation(s)
- Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Alka Agrawal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| |
Collapse
|
6
|
Sabino YNV, Cotter PD, Mantovani HC. Anti-virulence compounds against Staphylococcus aureus associated with bovine mastitis: A new therapeutic option? Microbiol Res 2023; 271:127345. [PMID: 36889204 DOI: 10.1016/j.micres.2023.127345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Bovine mastitis represents a major economic burden faced by the dairy industry. S. aureus is an important and prevalent bovine mastitis-associated pathogen in dairy farms worldwide. The pathogenicity and persistence of S. aureus in the bovine mammary gland are associated with the expression of a range of virulence factors involved in biofilm formation and the production of several toxins. The traditional therapeutic approach to treating bovine mastitis includes the use of antibiotics, but the emergence of antibiotic-resistant strains has caused therapeutic failure. New therapeutic approaches targeting virulence factors of S. aureus rather than cell viability can have several advantages including lower selective pressure towards the development of resistance and little impact on the host commensal microbiota. This review summarizes the potential of anti-virulence therapies to control S. aureus associated with bovine mastitis focusing on anti-toxin, anti-biofilm, and anti-quorum sensing compounds. It also points to potential sources of new anti-virulence inhibitors and presents screening strategies for identifying these compounds.
Collapse
Affiliation(s)
| | | | - Hilario C Mantovani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Inhibition of Staphylococcus aureus Biofilm Formation and Virulence Factor Production by Petroselinic Acid and Other Unsaturated C18 Fatty Acids. Microbiol Spectr 2022; 10:e0133022. [PMID: 35647620 PMCID: PMC9241682 DOI: 10.1128/spectrum.01330-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that secretes several toxins associated with the pathogenesis of sepsis and pneumonia. Its antibiotic resistance is notorious, and its biofilms play a critical role in antibiotic tolerance. We hypothesized fatty acids might inhibit S. aureus biofilm formation and the expressions of its virulence factors. Initially, the antibiofilm activities of 27 fatty acids against a methicillin-sensitive S. aureus strain were investigated. Of the fatty acids tested, three C18 unsaturated fatty acids, that is, petroselinic, vaccenic, and oleic acids at 100 μg/mL, inhibited S. aureus biofilm formation by more than 65% without affecting its planktonic cell growth (MICs were all > 400 μg/mL). Notably, petroselinic acid significantly inhibited biofilm formation of two methicillin-resistant S. aureus strains and two methicillin-sensitive S. aureus strains. In addition, petroselinic acid significantly suppressed the production of three virulence factors, namely, staphyloxanthin, lipase, and α-hemolysin. Transcriptional analysis showed that petroselinic acid repressed the gene expressions of quorum sensing regulator agrA, effector of quorum sensing RNAIII, α-hemolysin hla, nucleases nuc1 and nuc2, and the virulence regulator saeR. Furthermore, petroselinic acid dose-dependently inhibited S. aureus biofilm formation on abiotic surfaces and porcine skin. These findings suggest that fatty acids, particularly petroselinic acid, are potentially useful for controlling biofilm formation by S. aureus. IMPORTANCE Fatty acids with a long carbon chain have recently attracted attention because of their antibiofilm activities against microbes. Here, we report the antibiofilm activities of 27 fatty acids against S. aureus. Of the fatty acids tested, three C18 unsaturated fatty acids (petroselinic, vaccenic, and oleic acids) significantly inhibited biofilm formation by S. aureus. Furthermore, petroselinic acid inhibited the production of several virulence factors in S. aureus. The study also reveals that the action mechanism of petroselinic acid involves repression of quorum-sensing-related and virulence regulator genes. These findings show that natural and nontoxic petroselinic acid has potential use as a treatment for S. aureus infections, including infections by methicillin-resistant S. aureus strains, and in food processing facilities.
Collapse
|
8
|
Ren X, Guo X, Liu C, Jing S, Wang T, Wang L, Guan J, Song W, Zhao Y, Shi Y. Natural Flavone Hispidulin Protects Mice from Staphylococcus aureus Pneumonia by Inhibition of α-Hemolysin Production via Targeting AgrAC. Microbiol Res 2022; 261:127071. [DOI: 10.1016/j.micres.2022.127071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
9
|
Luteolin attenuates the pathogenesis of Staphylococcus aureus by interfering with the agr system. Microb Pathog 2022; 165:105496. [DOI: 10.1016/j.micpath.2022.105496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
|
10
|
Zheng J, Shang Y, Wu Y, Zhao Y, Chen Z, Lin Z, Li P, Sun X, Xu G, Wen Z, Chen J, Wang Y, Wang Z, Xiong Y, Deng Q, Qu D, Yu Z. Loratadine inhibits Staphylococcus aureus virulence and biofilm formation. iScience 2022; 25:103731. [PMID: 35098100 PMCID: PMC8783127 DOI: 10.1016/j.isci.2022.103731] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 10/31/2022] Open
Abstract
There are no anti-virulence and anti-biofilm treatments for Staphylococcus aureus infection. We found that 25 μM loratadine inhibits S. aureus biofilm formation under static or flow-based conditions. Testing of loratadine effects on 255 clinical S. aureus strains with varying biofilm robustness showed inhibition of biofilm formation in medium and strong, but not weak, biofilm-producing strains. At 25 μM, loratadine reduced pigmentation and hemolysis of the bacteria without affecting growth. Loratadine (5 mg/kg) reduced mortality in S. aureus pulmonary infection model mice and acted synergistically with vancomycin to reduce pulmonary bacterial load and levels of inflammatory cytokines in bronchoalveolar lavage fluid. Loratadine analogues (side-chain carbamate moiety changed) inhibited biofilm formation, pigmentation, and hemolysis of S. aureus. Regarding mechanism, loratadine exposure reduced RNA levels of virulence-related S. aureus genes, and loratadine-induced mutations in MgrA reduced loratadine-MgrA binding. Overexpression of mutated mgrA in wild-type S. aureus decreased the biofilm formation inhibition effect of loratadine. Loratadine inhibits S. aureus biofilm formation under static or flow conditions Loratadine reduced mortality in S. aureus pulmonary infection model mice Loratadine synergistically with vancomycin reduced pulmonary bacterial load Loratadine-induced mutations in MgrA reduced loratadine-MgrA binding
Collapse
|
11
|
Đukanović S, Ganić T, Lončarević B, Cvetković S, Nikolić B, Tenji D, Randjelović D, Mitić-Ćulafić D. Elucidating the antibiofilm activity of Frangula emodin against Staphylococcus aureus biofilms. J Appl Microbiol 2021; 132:1840-1855. [PMID: 34779074 DOI: 10.1111/jam.15360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS Because the Staphylococcus aureus is one of the most well-known pathogens associated with medical devices and nosocomial infections, the aim of the study was to examine antibiofilm potential of emodin against it. METHODS AND RESULTS Antibacterial activity was examined through microdilution assay. Antibiofilm testing included crystal violet staining of biofilm biomass and morphology analysis by Atomic force microscopy (AFM). Furthermore, aerobic respiration was monitored using the Micro-Oxymax respirometer. For investigation of gene expression qRT-PCR was performed. Emodin demonstrated strong antibacterial activity and ability to inhibit biofilm formation of all tested strains. The effect on preformed biofilms was spotted in few strains. AFM revealed that emodin affects biofilm structure and roughness. Monitoring of respiration under emodin treatment in planktonic and biofilm form revealed that emodin influenced aerobic respiration. Moreover, qRT-PCR showed that emodin modulates expression of icaA, icaD, srrA and srrB genes, as well as RNAIII, and that this activity was strain-specific. CONCLUSION The results obtained in this study indicate the novel antibiofilm activity of emodin and its multiple pathways of action. SIGNIFICANCE AND IMPACT OF STUDY This is the first study that examined pathways through which emodin expressed its antibiofilm activity.
Collapse
Affiliation(s)
| | - Tea Ganić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Branka Lončarević
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dina Tenji
- Faculty of Science, University of Novi Sad, Novi Sad, Serbia
| | - Danijela Randjelović
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
12
|
Wang H, Shi Y, Chen J, Wang Y, Wang Z, Yu Z, Zheng J, Shang Y. The antiviral drug efavirenz reduces biofilm formation and hemolysis by Staphylococcus aureus. J Med Microbiol 2021; 70. [PMID: 34668851 DOI: 10.1099/jmm.0.001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Biofilm formation and hemolysis are closely related to the pathogenicity of Staphylococcus aureus.Hypothesis/Gap Statement. Strategies that reduce the mortality of S. aureus infections may involve novel antimicrobials and/or drugs that decrease S. aureus virulence, such as biofilm formation. The antiviral drug efavirenz is a non-nucleoside reverse transcriptase inhibitor, which also has shown antibacterial effect on Bacillus subtilis and Escherichia coli. Its effect on pathogen virulence has not yet been explored.Aim. This study investigates the antimicrobial and anti-virulence effect of efavirenz on S. aureus.Methodology. Biofilm biomasses were detected by crystal violet staining. Hemolysis activities of S. aureus were determined by rabbit erythrocytes lysis assay. RNA levels of transcriptional regulatory genes, biofilm-related genes, and virulence-related genes of S. aureus were determined by RT-qPCR.Results. Efavirenz showed an inhibitory effect on the growth of S. aureus, Enterococcus faecalis and Streptococcus agalactiae at 50 µM. Efavirenz significantly inhibited biofilm formation of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) at 25 µM, but did not affect the growth of planktonic S. aureus cells. Moreover, hemolysis by S. aureus was inhibited by efavirenz at 25 µM. The expression levels of RNA transcriptional regulatory genes (agrA, agrC, sigB, saeR and saeS), biofilm-related genes (cidA, clfA, clfB, fnbA, fnbB), and virulence-related genes (hla, hld, staphopain B, alpha-3 PSM, beta PSM, delta PSM) of S. aureus decreased significantly at 25 µM efavirenz.Conclusion. Efavirenz inhibits S. aureus biofilm formation and virulence in vitro.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Yiyi Shi
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Junwen Chen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Yu Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Zhanwen Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, 518052, PR China
| | - Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, 518052, PR China
| | - Yongpeng Shang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China.,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Quality Control Center of Hospital Infection management of Shenzhen, Guang Dong Medical University, Shenzhen, 518052, PR China
| |
Collapse
|
13
|
Zheng J, Shang Y, Wu Y, Wu J, Chen J, Wang Z, Sun X, Xu G, Deng Q, Qu D, Yu Z. Diclazuril Inhibits Biofilm Formation and Hemolysis of Staphylococcus aureus. ACS Infect Dis 2021; 7:1690-1701. [PMID: 34019393 DOI: 10.1021/acsinfecdis.1c00030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biofilm formation and hemolysis induced by Staphylococcus aureus are closely related to pathogenicity. However, no drugs exist to inhibit biofilm formation or hemolysis induced by S. aureus in clinical practice. This study found diclazuril had antibacterial action against S. aureus with minimum inhibitory concentrations (MICs) at 50 μM for both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Diclazuril (at 1/4× or 1/8× MICs) significantly inhibited biofilm formation of S. aureus under static or flow-based conditions and also inhibited hemolysis induced by S. aureus. The RNA levels of transcriptional regulatory genes (agrA, agrC, luxS, sarA, sigB, saeR, saeS), biofilm formation-related genes (aur, bap, ccpA, cidA, clfA, clfB, fnbA, fnbB, icaA, icaB, sasG), and virulence-related genes (hla, hlb, hld, hlg, lukDE, lukpvl-S, spa, sbi, alpha-3 PSM, beta PSM, coa) of S. aureus were decreased when treated by diclazuril (at 1/4× MIC) for 4 h. The diclazuril nonsensitive clones of S. aureus were selected in vitro by induction of wildtype strains for about 90 days under the pressure of diclazuril. Mutations in the possible target genes of diclazuril against S. aureus were detected by whole-genome sequencing. This study indicated that there were three amino acid mutations in the diclazuril nonsensitive clone of S. aureus, two of which were located in genes with known function (SMC-Scp complex subunit ScpB and glyceraldehyde-3-phosphate dehydrogenase 1, respectively) and one in a gene with unknown function (hypothetical protein). Diclazuril showed a strong inhibition effect on planktonic cells and biofilm formation of S. aureus with the overexpression of the scpB gene.
Collapse
Affiliation(s)
- Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yongpeng Shang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jianfeng Wu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junwen Chen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Zhanwen Wang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Xiang Sun
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Guangjian Xu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Qiwen Deng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518052, China
| |
Collapse
|
14
|
Antibiofilm Activity of Phorbaketals from the Marine Sponge Phorbas sp. against Staphylococcus aureus. Mar Drugs 2021; 19:md19060301. [PMID: 34073814 PMCID: PMC8225198 DOI: 10.3390/md19060301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation by Staphylococcus aureus plays a critical role in the persistence of chronic infections due to its tolerance against antimicrobial agents. Here, we investigated the antibiofilm efficacy of six phorbaketals: phorbaketal A (1), phorbaketal A acetate (2), phorbaketal B (3), phorbaketal B acetate (4), phorbaketal C (5), and phorbaketal C acetate (6), isolated from the Korean marine sponge Phorbas sp. Of these six compounds, 3 and 5 were found to be effective inhibitors of biofilm formation by two S. aureus strains, which included a methicillin-resistant S. aureus. In addition, 3 also inhibited the production of staphyloxanthin, which protects microbes from reactive oxygen species generated by neutrophils and macrophages. Transcriptional analyses showed that 3 and 5 inhibited the expression of the biofilm-related hemolysin gene hla and the nuclease gene nuc1.
Collapse
|
15
|
Lade H, Kim JS. Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:398. [PMID: 33917043 PMCID: PMC8067735 DOI: 10.3390/antibiotics10040398] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent bacterial pathogens and continues to be a leading cause of morbidity and mortality worldwide. MRSA is a commensal bacterium in humans and is transmitted in both community and healthcare settings. Successful treatment remains a challenge, and a search for new targets of antibiotics is required to ensure that MRSA infections can be effectively treated in the future. Most antibiotics in clinical use selectively target one or more biochemical processes essential for S. aureus viability, e.g., cell wall synthesis, protein synthesis (translation), DNA replication, RNA synthesis (transcription), or metabolic processes, such as folic acid synthesis. In this review, we briefly describe the mechanism of action of antibiotics from different classes and discuss insights into the well-established primary targets in S. aureus. Further, several components of bacterial cellular processes, such as teichoic acid, aminoacyl-tRNA synthetases, the lipid II cycle, auxiliary factors of β-lactam resistance, two-component systems, and the accessory gene regulator quorum sensing system, are discussed as promising targets for novel antibiotics. A greater molecular understanding of the bacterial targets of antibiotics has the potential to reveal novel therapeutic strategies or identify agents against antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Korea;
| |
Collapse
|
16
|
Bernabè G, Dal Pra M, Ronca V, Pauletto A, Marzaro G, Saluzzo F, Stefani A, Artusi I, De Filippis V, Ferlin MG, Brun P, Castagliuolo I. A Novel Aza-Derivative Inhibits agr Quorum Sensing Signaling and Synergizes Methicillin-Resistant Staphylococcus aureus to Clindamycin. Front Microbiol 2021; 12:610859. [PMID: 33633702 PMCID: PMC7899991 DOI: 10.3389/fmicb.2021.610859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/15/2021] [Indexed: 01/21/2023] Open
Abstract
Increasing antibiotic resistance and diminishing pharmaceutical industry investments have increased the need for molecules that can treat infections caused by dangerous pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). Quorum Sensing (QS) is a signaling mechanism that regulates bacterial virulence in pathogens. A report demonstrating that the anti-inflammatory drug Diflunisal reduces MRSA virulence factors' expression prompted us to design, synthesize and test 16 aza-analogs as inhibitors of S. aureus virulence factors controlled by the accessory gene regulator (agr) QS system. At first, we evaluated by qRT-PCR the activity of compounds on rnaIII expression, a QS related gene. Azan-7 was the most active molecule tested and it did not show cytotoxic activity in human cell lines. Moreover, we demonstrated that it did not affect bacterial proliferation. Regulation of MRSA virulence genes by Azan-7 was investigated using qRT-PCR and RNAseq. Azan-7 significantly reduced hla, psmα, hysA, agrA, cap1A, and cap1C gene expression. In silico docking demonstrated that Azan-7 binds the response regulator AgrA. This data was confirmed by electrophoretic mobility shift assay (EMSA) reporting that Azan-7 binding to AgrA protein strongly reduced the AgrA-DNA complex formation at the P3 promoter region involved in the regulation of rnaIII transcription. Azan-7 inhibited MRSA-mediated haemolysis, reduced survival of the pathogen at low pH levels, and increased macrophage killing. In addition, Azan-7 enhanced MRSA susceptibility to clindamycin both in planktonic growth and biofilm. Azan-7 did not induce resistance over 10 days in culture. It was equally active against all the AgrA MRSA subtypes encountered among clinical isolates, but it was not active against Staphylococcus epidermidis, although the AgrA proteins show an approximate 80% homology. These results demonstrate that Azan-7 inhibits the expression of MRSA virulence factors by interfering in the QS and synergizes MRSA biofilm with clindamycin, indicating the compound as a promising candidate for the treatment of MRSA infections.
Collapse
Affiliation(s)
- Giulia Bernabè
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Dal Pra
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Vittoria Ronca
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Anthony Pauletto
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Annalisa Stefani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Ilaria Artusi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Maria Grazia Ferlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|
17
|
Moura MC, Procópio TF, Ferreira GRS, Alves RRV, Sá RA, Paiva PMG, Ingmer H, Coelho LCBB, Napoleão TH. Anti-staphylococcal effects of Myracrodruon urundeuva lectins on nonresistant and multidrug resistant isolates. J Appl Microbiol 2020; 130:745-754. [PMID: 32750211 DOI: 10.1111/jam.14811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS To evaluate the anti-staphylococcal effects of lectins isolated from bark (MuBL), heartwood (MuHL) and leaves (MuLL) of Myracrodruon urundeuva. METHODS AND RESULTS The lectins were evaluated for: effects on growth, aggregation, haemolytic activity and biofilm-forming ability of Staphylococcus aureus clinical isolates nonresistant (8325-4) and multidrug resistant (LAC USA300); interference with the expression of virulence genes (hla, rnaIII and spa) of the Agr system of S. aureus; and synergistic effect with the antibiotics cefoxitin and cefotaxime. MuBL, MuHL and MuLL reduced growth (minimal inhibitory concentration (MIC): 12·5-50 µg ml-1 ) and viability (minimal bactericidal concentration (MBC): 100 µg ml-1 ) of 8325-4 and LAC USA300 cells. MuLL (at ½MIC and MIC) reduced LAC USA300 agglutination. The lectins did not interfere with haemolytic activity and expression of hla, rnaIII and spa genes. Only MuHL was able to reduce the biofilm production by 8325-4 (50-400 µg ml-1 ) and LAC USA300 (400 µg ml-1 ). CONCLUSION The M. urundeuva lectins showed antibacterial activity against nonresistant and resistant clinical isolates of S. aureus and synergistic effects with antibiotics in reducing growth and biofilm formation. SIGNIFICANCE AND IMPACT OF THE STUDY This work reports bioactive molecules capable of acting as anti-staphylococcal agents, since there are increasing reports of multiresistant isolates of this bacterium.
Collapse
Affiliation(s)
- M C Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T F Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - G R S Ferreira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - R R V Alves
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - R A Sá
- Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Pernambuco, Brazil
| | - P M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - H Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
18
|
Chang J, Lee RE, Lee W. A pursuit of Staphylococcus aureus continues: a role of persister cells. Arch Pharm Res 2020; 43:630-638. [PMID: 32627141 DOI: 10.1007/s12272-020-01246-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a pathogen that causes critical diseases, such as pneumonia, endocarditis, and bacteremia, upon gaining access to the bloodstream of the host. Because host innate immunity alone cannot fight against this rapidly expanding pathogen, the use of antibiotic agents is necessary to clear out S. aureus. However, sub-populations of S. aureus fail to respond to the antibiotics resulting in ineffective clearance of the bacteria. One mechanism by which S. aureus does not respond to the antibiotics is by developing resistance through alterations in its genetic makeup, and genetic studies have revealed a major portion of mechanisms that are responsible for the rise of these antibiotic-resistant strains. Another sub-population that fails to respond to the antibiotics is called persister cells. There is a mounting clinical evidence that these persister cells significantly contribute to the antibiotic failure and persistent infection, but a clear mechanistic picture of the formation of the S. aureus persister cells is unavailable. This review focuses on drawing out a mechanistic map of factors that contribute to the formation of S. aureus persister cells. Understanding the mechanism will provide future direction for the development of novel antibiotic strategies to more efficiently tackle infections caused by S. aureus.
Collapse
Affiliation(s)
- JuOae Chang
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Rho-Eun Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
| |
Collapse
|
19
|
Synthesis of a Small Library of Nature-Inspired Xanthones and Study of Their Antimicrobial Activity. Molecules 2020; 25:molecules25102405. [PMID: 32455828 PMCID: PMC7287773 DOI: 10.3390/molecules25102405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 11/16/2022] Open
Abstract
A series of thirteen xanthones 3–15 was prepared based on substitutional (appendage) diversity reactions. The series was structurally characterized based on their spectral data and HRMS, and the structures of xanthone derivatives 1, 7, and 8 were determined by single-crystal X-ray diffraction. This series, along with an in-house series of aminated xanthones 16–33, was tested for in-vitro antimicrobial activity against seven bacterial (including two multidrug-resistant) strains and five fungal strains. 1-(Dibromomethyl)-3,4-dimethoxy-9H-xanthen-9-one (7) and 1-(dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (8) exhibited antibacterial activity against all tested strains. In addition, 3,4-dihydroxy-1-methyl-9H-xanthen-9-one (3) revealed a potent inhibitory effect on the growth of dermatophyte clinical strains (T. rubrum FF5, M. canis FF1 and E. floccosum FF9), with a MIC of 16 µg/mL for all the tested strains. Compounds 3 and 26 showed a potent inhibitory effect on two C. albicans virulence factors: germ tube and biofilm formation.
Collapse
|
20
|
Zheng JX, Tu HP, Sun X, Xu GJ, Chen JW, Deng QW, Yu ZJ, Qu D. In vitro activities of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin. J Med Microbiol 2020; 69:120-131. [PMID: 31916929 DOI: 10.1099/jmm.0.001122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction. Staphylococcus aureus biofilms are difficult to treat and the effect of telithromycin treatment is still unclear.Aim. This study aimed to explore the effect of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin.Methodology. Eight methicillin-susceptible and eight methicillin-resistant S. aureus isolates (MSSA and MRSA, respectively) were used for this study. Biofilm biomasses were detected by crystal violet staining and the adherent cells in the established biofilms were quantified by determination of colony-forming units (c.f.u.). The RNA levels of biofilm formation-related genes were determined by RT-qPCR.Results. Telithromycin [8× minimum inhibitory concentration (MIC)] eradicated more established biofilms than azithromycin or clindamycin in the four MSSA isolates, and eliminated the established biofilms of six MRSA isolates more effectively than vancomycin or daptomycin. Telithromycin (8× MIC) killed more adherent cells in the established biofilms than azithromycin or clindamycin in the six MSSA isolates, and killed more adherent cells than vancomycin in all eight MRSA isolates. Daptomycin also showed an excellent effect on the adherent cells of MRSA isolates, with similarresults to telithromycin. The effect of a subinhibitory concentration of telithromycin (1/4× MIC) was significantly superior to that of azithromycin or clindamycin, inhibiting the biofilm formation of six MSSA isolates and seven MRSA isolates more effectively than vancomycin or daptomycin. The RNA levels of agrA, agrC, clfA, icaA and sigB decreased when treated with telithromycin (1/4× MIC).Conclusions. Telithromycin is more effective than azithromycin, clindamycin, vancomycin, or daptomycin against S. aureus biofilms.
Collapse
Affiliation(s)
- Jin-Xin Zheng
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Hao-Peng Tu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Xiang Sun
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Guang-Jian Xu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Jun-Wen Chen
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Qi-Wen Deng
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| |
Collapse
|
21
|
Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur J Med Chem 2020; 187:111980. [DOI: 10.1016/j.ejmech.2019.111980] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
|
22
|
Wu SC, Liu F, Zhu K, Shen JZ. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13195-13211. [PMID: 31702908 DOI: 10.1021/acs.jafc.9b05595] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the incidence of antibiotic-resistant Staphylococcus aureus (S. aureus) associated infections necessitates the urgent development of novel therapeutic strategies and antibacterial drugs. Antivirulence strategy is an especially compelling alternative strategy due to its low selective pressure for the development of drug resistance in bacteria. Plants and microorganisms are not only important food and medicinal resources but also serve as sources for the discovery of natural products that target bacterial virulence factors. This review discusses the mechanisms of the major virulence factors of S. aureus, including the accessory gene regulator quorum-sensing system, bacterial biofilm formation, α-hemolysin, sortase A, and staphyloxanthin. We also provide an overview of natural products isolated from plants and microorganisms with activity against the major virulence factors of S. aureus and their adjuvant effects on existing antibiotics to overcome antibiotic-resistant S. aureus. Finally, the limitations and solutions of these antivirulence compounds are discussed, which will help in the development of novel antibacterial drugs against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
- College of Veterinary Medicine , Qingdao Agricultural University , No. 700 Changcheng Road , Qingdao , Shandong 266109 , People's Republic of China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
23
|
Peng P, Baldry M, Gless BH, Bojer MS, Espinosa-Gongora C, Baig SJ, Andersen PS, Olsen CA, Ingmer H. Effect of Co-inhabiting Coagulase Negative Staphylococci on S. aureus agr Quorum Sensing, Host Factor Binding, and Biofilm Formation. Front Microbiol 2019; 10:2212. [PMID: 31611856 PMCID: PMC6777374 DOI: 10.3389/fmicb.2019.02212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a commensal colonizer of both humans and animals, but also an opportunistic pathogen responsible for a multitude of diseases. In recent years, colonization of pigs by methicillin resistant S. aureus has become a problem with increasing numbers of humans being infected by livestock strains. In S. aureus colonization and virulence factor expression is controlled by the agr quorum sensing system, which responds to and is activated by self-generated, autoinducing peptides (AIPs). AIPs are also produced by coagulase negative staphylococci (CoNS) commonly found as commensals in both humans and animals, and interestingly, some of these inhibit S. aureus agr activity. Here, we have addressed if cross-communication occurs between S. aureus and CoNS strains isolated from pig nares, and if so, how properties such as host factor binding and biofilm formation are affected. From 25 pig nasal swabs we obtained 54 staphylococcal CoNS isolates belonging to 8 different species. Of these, none were able to induce S. aureus agr as monitored by reporter gene fusions to agr regulated genes but a number of agr-inhibiting species were identified including Staphylococcus hyicus, Staphylococcus simulans, Staphylococcus arlettae, Staphylococcus lentus, and Staphylococcus chromogenes. After establishing that the inhibitory activity was mediated via AgrC, the receptor of AIPs, we synthesized selective AIPs to explore their effect on adhesion of S. aureus to fibronectin, a host factor involved in S. aureus colonization. Here, we found that the CoNS AIPs did not affect adhesion of S. aureus except for strain 8325-4. When individual CoNS strains were co-cultured together with S. aureus we observed variable degrees of biofilm formation which did not correlate with agr interactions. Our results show that multiple CoNS species can be isolated from pig nares and that the majority of these produce AIPs that inhibit S. aureus agr. Further they show that the consequences of the interactions between CoNS and S. aureus are complex and highly strain dependent.
Collapse
Affiliation(s)
- Pai Peng
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mara Baldry
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bengt H Gless
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Martin S Bojer
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carmen Espinosa-Gongora
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sharmin J Baig
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Paal S Andersen
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Christian A Olsen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Ingmer
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Hua X, Jia Y, Yang Q, Zhang W, Dong Z, Liu S. Transcriptional Analysis of the Effects of Gambogic Acid and Neogambogic Acid on Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2019; 10:986. [PMID: 31572177 PMCID: PMC6753875 DOI: 10.3389/fphar.2019.00986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection is a major threat to human health, as this bacterium has developed resistance to a variety of conventional antibiotics. This is especially true of MRSA biofilms, which not only exhibit enhanced pathogenicity but also are resistant to most antibiotics. In this work, we demonstrated that two natural products with antitumor activity, namely, gambogic acid (GA) and neogambogic acid (NGA), have significant inhibitory activity toward MRSA. GA and NGA can not only effectively inhibit planktonic MRSA strains in vivo and in vitro, but also have strong inhibitory effects on MRSA biofilms formation. By transcriptome sequencing, Q-RT-PCR and PRM, we found that GA and NGA could reduce the expression of S. aureus virulence factors by inhibiting the saeRS two-component, thus achieving inhibition of MRSA. We found that GA and NGA had anti-MRSA activity in vivo and in vitro and identified saeRS to be the target, indicating that saeRS inhibitors may be used to treat biofilm-related infections.
Collapse
Affiliation(s)
- Xin Hua
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yue Jia
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qin Yang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhimin Dong
- Innovation Team of Livestock and Poultry Epidemic Disease Prevention and Control, Tianjin Animal Science and Veterinary Research Institute, Tianjin, China
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
25
|
Kawakami H, Suzuki C, Yamaguchi H, Hara K, Komine M, Yamamoto Y. Norlichexanthone produced by cultured endolichenic fungus induced from Pertusaria laeviganda and its antioxidant activity. Biosci Biotechnol Biochem 2019; 83:996-999. [DOI: 10.1080/09168451.2019.1585746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Endolichenic fungi, nonobligate microfungi that live in lichen, are promising as new bioresources of pharmacological compounds. We found that norlichexanthone isolated from the endolichenic fungus in Pertusaria laeviganda exhibited high antioxidant activity. Norlichexanthone produced by endolichenic fungus had the antioxidant activity with same level of ascorbic acid. This is the first report of high antioxidant activity of norlichexanthone.
Abbreviations: AAPH: 2,2ʹ-azobis (2-methylpropionamidine) dihydrochloride; DPPH: 2,2-diphenyl-1-picrylhydrazyl; FL: fluorescein sodium salt; HPLC-PDA: high-performance liquid chromatography with photodiode array; LC-ESI-MS: liquid chromatography with electrospray ionization mass spectrometry; ORAC: oxygen radical absorbance capacity; PB: phosphate buffer; ROS: reactive oxygen species; TLC: thin-layer chromatography
Collapse
Affiliation(s)
- Hiroko Kawakami
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Chihiro Suzuki
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Haruka Yamaguchi
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Kojiro Hara
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Masashi Komine
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yoshikazu Yamamoto
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| |
Collapse
|
26
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
27
|
Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0057-2018. [PMID: 30900543 PMCID: PMC11590431 DOI: 10.1128/microbiolspec.gpp3-0057-2018] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through de novo mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of S. aureus infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that S. aureus employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
28
|
Fleitas Martínez O, Rigueiras PO, Pires ÁDS, Porto WF, Silva ON, de la Fuente-Nunez C, Franco OL. Interference With Quorum-Sensing Signal Biosynthesis as a Promising Therapeutic Strategy Against Multidrug-Resistant Pathogens. Front Cell Infect Microbiol 2019; 8:444. [PMID: 30805311 PMCID: PMC6371041 DOI: 10.3389/fcimb.2018.00444] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Faced with the global health threat of increasing resistance to antibiotics, researchers are exploring interventions that target bacterial virulence factors. Quorum sensing is a particularly attractive target because several bacterial virulence factors are controlled by this mechanism. Furthermore, attacking the quorum-sensing signaling network is less likely to select for resistant strains than using conventional antibiotics. Strategies that focus on the inhibition of quorum-sensing signal production are especially attractive because the enzymes involved are expressed in bacterial cells but are not present in their mammalian counterparts. We review here various approaches that are being taken to interfere with quorum-sensing signal production via the inhibition of autoinducer-2 synthesis, PQS synthesis, peptide autoinducer synthesis, and N-acyl-homoserine lactone synthesis. We expect these approaches will lead to the discovery of new quorum-sensing inhibitors that can help to stem the tide of antibiotic resistance.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Pietra Orlandi Rigueiras
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Állan da Silva Pires
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - William Farias Porto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Porto Reports, Brasília, Brazil
| | - Osmar Nascimento Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States.,The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
29
|
Punica granatum sarcotesta lectin (PgTeL) impairs growth, structure, viability, aggregation, and biofilm formation ability of Staphylococcus aureus clinical isolates. Int J Biol Macromol 2019; 123:600-608. [DOI: 10.1016/j.ijbiomac.2018.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022]
|
30
|
Diversity and Ecology of Marine Algicolous Arthrinium Species as a Source of Bioactive Natural Products. Mar Drugs 2018; 16:md16120508. [PMID: 30558255 PMCID: PMC6315899 DOI: 10.3390/md16120508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
In our previous study, all Arthrinium isolates from Sargassum sp. showed high bioactivities, but studies on marine Arthrinium spp. are insufficient. In this study, a phylogenetic analysis of 28 Arthrinium isolates from seaweeds and egg masses of Arctoscopus japonicus was conducted using internal transcribed spacers, nuclear large subunit rDNA, β-tubulin, and translation elongation factor region sequences, and their bioactivities were investigated. They were analyzed as 15 species, and 11 of them were found to be new species. Most of the extracts exhibited radical-scavenging activity, and some showed antifungal activities, tyrosinase inhibition, and quorum sensing inhibition. It was implied that marine algicolous Arthrinium spp. support the regulation of reactive oxygen species in symbiotic algae and protect against pathogens and bacterial biofilm formation. The antioxidant from Arthrinium sp. 10 KUC21332 was separated by bioassay-guided isolation and identified to be gentisyl alcohol, and the antioxidant of Arthrinium saccharicola KUC21221 was identical. These results demonstrate that many unexploited Arthrinium species still exist in marine environments and that they are a great source of bioactive compounds.
Collapse
|
31
|
Singh N, Rajwade J, Paknikar KM. Transcriptome analysis of silver nanoparticles treated Staphylococcus aureus reveals potential targets for biofilm inhibition. Colloids Surf B Biointerfaces 2018; 175:487-497. [PMID: 30572157 DOI: 10.1016/j.colsurfb.2018.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
The biofilms of Staphylococcus aureus on the implanted materials and chronic wounds are life-threatening and are a substantial financial burden on the healthcare system. Silver nanoparticles (SNP), known for their multi-level physiological effects in planktonic cells could be a promising agent in the treatment of biofilm-related infections also. To gain insight into the effects of SNP on various physiological processes in biofilms we studied the transcriptome of Staphylococcus aureus ATCC 29213. To distinguish between 'nanoparticles-specific' and 'ion-specific' effect of silver, we performed a comparative analysis of the functional genes in response to Ag+. As compared to untreated biofilms, 21% (i.e. 629 genes) and 28.5% (i. e. 830 genes) of the total functional coding genes were differentially regulated upon exposure to SNP and Ag+. Genes encoding capsular polysaccharides, intercellular adhesion, virulence were downregulated in SNP and Ag+ treated biofilms. Genes involved in carbohydrate, protein metabolism including DNA and RNA synthesis, oxidative stress etc. were differentially expressed. Further, activation of efflux pumps and multidrug export proteins was observed, which clearly indicates the presence of metal stress resistance determinants in S. aureus. Silver blocked the integration of mobile genetic elements in S. aureus genome. Our study points out quorum sensing and virulence determinants as possible targets for inhibition of biofilms possibly with/without existing antibiotics. However, further studies on these aspects are warranted. Scanning electron microscopy (SEM) and confocal microscopy revealed changes in biofilm morphology, architecture and thickness in presence of silver nanoparticles and ionic silver, substantiating the transcriptome data.
Collapse
Affiliation(s)
- Nimisha Singh
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| | - K M Paknikar
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
32
|
Mizar P, Arya R, Kim T, Cha S, Ryu KS, Yeo WS, Bae T, Kim DW, Park KH, Kim KK, Lee SS. Total Synthesis of Xanthoangelol B and Its Various Fragments: Toward Inhibition of Virulence Factor Production of Staphylococcus aureus. J Med Chem 2018; 61:10473-10487. [PMID: 30388007 PMCID: PMC6326535 DOI: 10.1021/acs.jmedchem.8b01012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
As
an alternative strategy to fight antibiotic resistance, two-component
systems (TCSs) have emerged as novel targets. Among TCSs, master virulence
regulators that control the expression of multiple virulence factors
are considered as excellent antivirulence targets. In Staphylococcus
aureus, virulence factor expression is tightly regulated
by a few master regulators, including the SaeRS TCS. In this study,
we used a SaeRS GFP-reporter system to screen natural compound inhibitors
of SaeRS, and identified xanthoangelol B 1, a prenylated
chalcone from Angelica keiskei as a hit. We have
synthesized 1 and its derivative PM-56 and
shown that 1 and PM-56 both had excellent
inhibitory potency against the SaeRS TCS, as demonstrated by various in vitro and in vivo experiments. As a
mode of action, 1 and PM-56 were shown to
bind directly to SaeS and inhibit its histidine kinase activity, which
suggests a possibility of a broad spectrum inhibitor of histidine
kinases.
Collapse
Affiliation(s)
- Pushpak Mizar
- Chemistry, Highfield Campus , University of Southampton , Southampton , SO17 1BJ , U.K
| | - Rekha Arya
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance and Therapeutics, Samsung Medical Center , Sungkyunkwan University School of Medicine , Suwon 16419 , Republic of Korea
| | - Truc Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance and Therapeutics, Samsung Medical Center , Sungkyunkwan University School of Medicine , Suwon 16419 , Republic of Korea
| | - Soyoung Cha
- Protein Structure Research Group , Korea Basic Science Institute , 162 Yeongudanji-Ro, Ochang-Eup , Cheongju-Si , Chungcheongbuk-Do 28119 , Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Group , Korea Basic Science Institute , 162 Yeongudanji-Ro, Ochang-Eup , Cheongju-Si , Chungcheongbuk-Do 28119 , Republic of Korea
| | - Won-Sik Yeo
- Department of Microbiology and Immunology , Indiana University-School of Medicine-Northwest , Gary , Indiana 46408 , United States
| | - Taeok Bae
- Department of Microbiology and Immunology , Indiana University-School of Medicine-Northwest , Gary , Indiana 46408 , United States
| | - Dae Wook Kim
- Division of Applied Life Science (BK21 Plus), IALS , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Plus), IALS , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance and Therapeutics, Samsung Medical Center , Sungkyunkwan University School of Medicine , Suwon 16419 , Republic of Korea
| | - Seung Seo Lee
- Chemistry, Highfield Campus , University of Southampton , Southampton , SO17 1BJ , U.K
| |
Collapse
|
33
|
Hassan YI, Lahaye L, Gong MM, Peng J, Gong J, Liu S, Gay CG, Yang C. Innovative drugs, chemicals, and enzymes within the animal production chain. Vet Res 2018; 49:71. [PMID: 30060767 PMCID: PMC6066918 DOI: 10.1186/s13567-018-0559-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
The alarming number of recently reported human illnesses with bacterial infections resistant to multiple antibacterial agents has become a serious concern in recent years. This phenomenon is a core challenge for both the medical and animal health communities, since the use of antibiotics has formed the cornerstone of modern medicine for treating bacterial infections. The empirical benefits of using antibiotics to address animal health issues in animal agriculture (using therapeutic doses) and increasing the overall productivity of animals (using sub-therapeutic doses) are well established. The use of antibiotics to enhance profitability margins in the animal production industry is still practiced worldwide. Although many technical and economic reasons gave rise to these practices, the continued emergence of antimicrobial resistant bacteria is furthering the need to reduce the use of medically important antibiotics. This will require improving on-farm management and biosecurity practices, and the development of effective antibiotic alternatives that will reduce the dependence on antibiotics within the animal industry in the foreseeable future. A number of approaches are being closely scrutinized and optimized to achieve this goal, including the development of promising antibiotic alternatives to control bacterial virulence through quorum-sensing disruption, the use of synthetic polymers and nanoparticles, the exploitation of recombinant enzymes/proteins (such as glucose oxidases, alkaline phosphatases and proteases), and the use of phytochemicals. This review explores the most recent approaches within this context and provides a summary of practical mitigation strategies for the extensive use of antibiotics within the animal production chain in addition to several future challenges that need to be addressed.
Collapse
Affiliation(s)
- Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | | | - Max M. Gong
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Jian Peng
- College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB Canada
| | - Cyril G. Gay
- Office of National Programs, Animal Production and Protection, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
34
|
Kim YG, Lee JH, Raorane CJ, Oh ST, Park JG, Lee J. Herring Oil and Omega Fatty Acids Inhibit Staphylococcus aureus Biofilm Formation and Virulence. Front Microbiol 2018; 9:1241. [PMID: 29963020 PMCID: PMC6014104 DOI: 10.3389/fmicb.2018.01241] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/23/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is notorious for its ability to become resistant to antibiotics and biofilms play a critical role in antibiotic tolerance. S. aureus is also capable of secreting several exotoxins associated with the pathogenesis of sepsis and pneumonia. Thus, the objectives of the study were to examine S. aureus biofilm formation in vitro, and the effects of herring oil and its main components, omega fatty acids [cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) and cis-5,8,11,14,17-eicosapentaenoic acid (EPA)], on virulence factor production and transcriptional changes in S. aureus. Herring oil decreased biofilm formation by two S. aureus strains. GC-MS analysis revealed the presence of several polyunsaturated fatty acids in herring oil, and of these, two omega-3 fatty acids, DHA and EPA, significantly inhibited S. aureus biofilm formation. In addition, herring oil, DHA, and EPA at 20 μg/ml significantly decreased the hemolytic effect of S. aureus on human red blood cells, and when pre-treated to S. aureus, the bacterium was more easily killed by human whole blood. Transcriptional analysis showed that herring oil, DHA, and EPA repressed the expression of the α-hemolysin hla gene. Furthermore, in a Caenorhabditis elegans nematode model, all three prolonged nematode survival in the presence of S. aureus. These findings suggest that herring oil, DHA, and EPA are potentially useful for controlling persistent S. aureus infection.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Chaitany J Raorane
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Seong T Oh
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jae G Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
35
|
Karathanasi G, Bojer MS, Baldry M, Johannessen BA, Wolff S, Greco I, Kilstrup M, Hansen PR, Ingmer H. Linear peptidomimetics as potent antagonists of Staphylococcus aureus agr quorum sensing. Sci Rep 2018; 8:3562. [PMID: 29476092 PMCID: PMC5824847 DOI: 10.1038/s41598-018-21951-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/14/2018] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is an important pathogen causing infections in humans and animals. Increasing problems with antimicrobial resistance has prompted the development of alternative treatment strategies, including antivirulence approaches targeting virulence regulation such as the agr quorum sensing system. agr is naturally induced by cyclic auto-inducing peptides (AIPs) binding to the AgrC receptor and cyclic peptide inhibitors have been identified competing with AIP binding to AgrC. Here, we disclose that small, linear peptidomimetics can act as specific and potent inhibitors of the S. aureus agr system via intercepting AIP-AgrC signal interaction at low micromolar concentrations. The corresponding linear peptide did not have this ability. This is the first report of a linear peptide-like molecule that interferes with agr activation by competitive binding to AgrC. Prospectively, these peptidomimetics may be valuable starting scaffolds for the development of new inhibitors of staphylococcal quorum sensing and virulence gene expression.
Collapse
Affiliation(s)
- Georgia Karathanasi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Martin Saxtorph Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Mara Baldry
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Bárdur Andréson Johannessen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Sanne Wolff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Ines Greco
- Department of Drug Design and Farmacology, Faculty of Health and Medical Sciences University of Copenhagen, Universitetsparken 2, 2100, København, Denmark
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Metabolic Signaling and Regulation, Technical University of Denmark, Matematiktorvet, 2800, Lyngby, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Farmacology, Faculty of Health and Medical Sciences University of Copenhagen, Universitetsparken 2, 2100, København, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark.
| |
Collapse
|
36
|
Vaishampayan A, de Jong A, Wight DJ, Kok J, Grohmann E. A Novel Antimicrobial Coating Represses Biofilm and Virulence-Related Genes in Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2018; 9:221. [PMID: 29497410 PMCID: PMC5818464 DOI: 10.3389/fmicb.2018.00221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important cause of hospital-acquired infections worldwide. It is one of the most threatening pathogens due to its multi-drug resistance and strong biofilm-forming capacity. Thus, there is an urgent need for novel alternative strategies to combat bacterial infections. Recently, we demonstrated that a novel antimicrobial surface coating, AGXX®, consisting of micro-galvanic elements of the two noble metals, silver and ruthenium, surface-conditioned with ascorbic acid, efficiently inhibits MRSA growth. In this study, we demonstrated that the antimicrobial coating caused a significant reduction in biofilm formation (46%) of the clinical MRSA isolate, S. aureus 04-02981. To understand the molecular mechanism of the antimicrobial coating, we exposed S. aureus 04-02981 for different time-periods to the coating and investigated its molecular response via next-generation RNA-sequencing. A conventional antimicrobial silver coating served as a control. RNA-sequencing demonstrated down-regulation of many biofilm-associated genes and of genes related to virulence of S. aureus. The antimicrobial substance also down-regulated the two-component quorum-sensing system agr suggesting that it might interfere with quorum-sensing while diminishing biofilm formation in S. aureus 04-02981.
Collapse
Affiliation(s)
- Ankita Vaishampayan
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Darren J. Wight
- Institute of Virology, Free University of Berlin, Berlin, Germany
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Berlin, Germany
- Division of Infectious Diseases, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Sweidan A, Chollet-Krugler M, Sauvager A, van de Weghe P, Chokr A, Bonnaure-Mallet M, Tomasi S, Bousarghin L. Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis. Fitoterapia 2017; 121:164-169. [PMID: 28736072 DOI: 10.1016/j.fitote.2017.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022]
Abstract
The oral bacteria not only infect the mouth and reside there, but also travel through the blood and reach distant body organs. If left untreated, the dental biofilm that can cause destructive inflammation in the oral cavity may result in serious medical complications. In dental biofilm, Streptococcus gordonii, a primary oral colonizer, constitutes the platform on which late pathogenic colonizers like Porphyromonas gingivalis, the causative agent of periodontal diseases, will bind. The aim of this study was to determine the antibacterial activity of eleven natural lichen compounds belonging to different chemical families and spanning from linear into cyclic and aromatic structures to uncover new antibiotics which can fight against the oral bacteria. The compounds were screened by broth microdilution assay. Three compounds were shown to have promising antibacterial activities where the depsidone core with certain functional groups constituted the best compound, psoromic acid, with the lowest MICs=11.72 and 5.86μg/mL against S. gordonii and P. gingivalis, respectively. The compounds screened had promising antibacterial activity which might be attributed to some important functional groups as discussed in our study. The best compounds did not induce the death of gingival epithelial carcinoma cells (Ca9-22). These results introduce new compounds having potent antibacterial activities against oral pathogens causing serious medical complications.
Collapse
Affiliation(s)
- Alaa Sweidan
- U-1241 INSERM-INRA, Equipe CIMIAD, Univ. Rennes 1, Univ. Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France; Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Marylène Chollet-Krugler
- UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Equipe CORINT, Univ. Rennes 1, Univ. Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Aurélie Sauvager
- UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Equipe CORINT, Univ. Rennes 1, Univ. Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Pierre van de Weghe
- Inserm U1242, Chemistry Oncogenesis Stress Signaling (COSS), Univ. Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Ali Chokr
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Martine Bonnaure-Mallet
- U-1241 INSERM-INRA, Equipe CIMIAD, Univ. Rennes 1, Univ. Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Sophie Tomasi
- UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Equipe CORINT, Univ. Rennes 1, Univ. Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Latifa Bousarghin
- U-1241 INSERM-INRA, Equipe CIMIAD, Univ. Rennes 1, Univ. Bretagne Loire, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France.
| |
Collapse
|
38
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
39
|
Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, Davamani F. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS One 2017; 12:e0174888. [PMID: 28362873 PMCID: PMC5376299 DOI: 10.1371/journal.pone.0174888] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/16/2017] [Indexed: 11/19/2022] Open
Abstract
Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.
Collapse
Affiliation(s)
- Teik Hwa Ong
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ebenezer Chitra
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Srinivasan Ramamurthy
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Kah Hay Yuen
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Stephen Periathamby Ambu
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|