1
|
Zhao Y, Long Y, Shi T, Ma X, Lian C, Wang H, Xu H, Yu L, Zhao X. Validating the splicing effect of rare variants in the SLC26A4 gene using minigene assay. BMC Med Genomics 2024; 17:233. [PMID: 39334476 PMCID: PMC11430457 DOI: 10.1186/s12920-024-02007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The SLC26A4 gene is the second most common cause of hereditary hearing loss in human. The aim of this study was to utilize the minigene assay in order to identify pathogenic variants of SLC26A4 associated with enlarged vestibular aqueduct (EVA) and hearing loss (HL) in two patients. METHODS The patients were subjected to multiplex PCR amplification and next-generation sequencing of common deafness genes (including GJB2, SLC26A4, and MT-RNR1), then bioinformatics analysis was performed on the sequencing data to identify candidate pathogenic variants. Minigene experiments were conducted to determine the potential impact of the variants on splicing. RESULTS Genetic testing revealed that the first patient carried compound heterozygous variants c.[1149 + 1G > A]; [919-2 A > G] in the SLC26A4 gene, while the second patient carried compound heterozygous variants c.[2089 + 3 A > T]; [919-2 A > G] in the same gene. Minigene experiments demonstrated that both c.1149 + 1G > A and c.2089 + 3 A > T affected mRNA splicing. According to the ACMG guidelines and the recommendations of the ClinGen Hearing Loss Expert Panel for ACMG variant interpretation, these variants were classified as "likely pathogenic". CONCLUSIONS This study identified the molecular etiology of hearing loss in two patients with EVA and elucidated the impact of rare variants on splicing, thus contributing to the mutational spectrum of pathogenic variants in the SLC26A4 gene.
Collapse
Affiliation(s)
- Yixin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Yan Long
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tao Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Xin Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
| | - Chengyu Lian
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Hanjun Wang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Daxuebei Road No. 40, Zhengzhou, 450052, China
| | - Lisheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China.
| | - Xiaotao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
2
|
AitRaise I, Amalou G, Bakhchane A, Bousfiha A, Abdelghaffar H, Majida C, Bonnet C, Petit C, Barakat A. Homozygous Missense Variants in FOXI1 and TMPRSS3 Genes Associated with Non-syndromic Deafness in Moroccan Families. Biochem Genet 2024; 62:1914-1924. [PMID: 37777971 DOI: 10.1007/s10528-023-10515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
One of the most prevalent sensorineural disorders, autosomal recessive non-syndromic hearing loss (ARNSHL) which can affect all age groups, from the newborn (congenital) to the elderly (presbycusis). Important etiologic, phenotypic, and genotypic factors can cause deafness. So far, the high genetic variability that explains deafness makes molecular diagnosis challenging. In Morocco, the GJB2 gene is the primary cause of non-syndromic hereditary deafness, while the existence of a variant in the LRTOMT gene is the second cause of this condition. After excluding these two frequently occurring GJB2 and LRTOMT variants, whole-exome sequencing was carried out in two Moroccan consanguineous families with hearing loss. As a result, two novel variants in the TMPRSS3 (c.1078G>A, p. Ala 360Thr) and FOXI1 (c.6C>G, p. Ser 2Arg) genes have been discovered in deaf patients and the pathogenic effect has been anticipated by several bioinformatics and molecular modeling systems. For the first time, these variants are identified in the Moroccan population, showing the population heterogeneity and demonstrating the value of the WES in hearing loss diagnosis.
Collapse
Affiliation(s)
- Imane AitRaise
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Amina Bakhchane
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Amale Bousfiha
- Laboratory of Physiopathology and Molecular Genetics, Ben M'sik Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Houria Abdelghaffar
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Charif Majida
- Genetics and Immuno-cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, 75012, Paris, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, 75012, Paris, France
- Collège de France, 75005, Paris, France
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
- Genomics and Human Genetics Laboratory, Département de Recherche Scientifique, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| |
Collapse
|
3
|
Danilchenko VY, Zytsar MV, Maslova EA, Posukh OL. Selection of Diagnostically Significant Regions of the SLC26A4 Gene Involved in Hearing Loss. Int J Mol Sci 2022; 23:ijms232113453. [PMID: 36362242 PMCID: PMC9655724 DOI: 10.3390/ijms232113453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Screening pathogenic variants in the SLC26A4 gene is an important part of molecular genetic testing for hearing loss (HL) since they are one of the common causes of hereditary HL in many populations. However, a large size of the SLC26A4 gene (20 coding exons) predetermines the difficulties of its complete mutational analysis, especially in large samples of patients. In addition, the regional or ethno-specific prevalence of SLC26A4 pathogenic variants has not yet been fully elucidated, except variants c.919-2A>G and c.2168A>G (p.His723Arg), which have been proven to be most common in Asian populations. We explored the distribution of currently known pathogenic and likely pathogenic (PLP) variants across the SLC26A4 gene sequence presented in the Deafness Variation Database for the selection of potential diagnostically important parts of this gene. As a result of this bioinformatic analysis, we found that molecular testing ten SLC26A4 exons (4, 6, 10, 11, 13−17 and 19) with flanking intronic regions can provide a diagnostic rate of 61.9% for all PLP variants in the SLC26A4 gene. The primary sequencing of these SLC26A4 regions may be applied as an initial effective diagnostic testing in samples of patients of unknown ethnicity or as a subsequent step after the targeted testing of already-known ethno- or region-specific pathogenic SLC26A4 variants.
Collapse
Affiliation(s)
- Valeriia Yu. Danilchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina V. Zytsar
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
4
|
Albader N, Zou M, BinEssa HA, Abdi S, Al-Enezi AF, Meyer BF, Alzahrani AS, Shi Y. Insights of Noncanonical Splice-site Variants on RNA Splicing in Patients With Congenital Hypothyroidism. J Clin Endocrinol Metab 2022; 107:e1263-e1276. [PMID: 34632506 DOI: 10.1210/clinem/dgab737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Congenital hypothyroidism (CH) is caused by mutations in the genes for thyroid hormone synthesis. In our previous investigation of CH patients, approximately 53% of patients had mutations in either coding exons or canonical splice sites of causative genes. Noncanonical splice-site variants in the intron were detected but their pathogenic significance was not known. OBJECTIVE This work aims to evaluate noncanonical splice-site variants on pre-messenger RNA (pre-mRNA) splicing of CH-causing genes. METHODS Next-generation sequencing data of 55 CH cases in 47 families were analyzed to identify rare intron variants. The effects of variants on pre-mRNA splicing were investigated by minigene RNA-splicing assay. RESULTS Four intron variants were found in 3 patients: solute carrier family 26 member 4 (SLC26A4) c.1544+9C>T and c.1707+94C>T in one patient, and solute carrier family 5 member 5 (SLC5A5) c.970-48G>C and c.1652-97A>C in 2 other patients. The c.1707+94C>T and c.970-48G>C caused exons 15 and 16 skipping, and exon 8 skipping, respectively. The remaining variants had no effect on RNA splicing. Furthermore, we analyzed 28 previously reported noncanonical splice-site variants (4 in TG and 24 in SLC26A4). Among them, 15 variants (~ 54%) resulted in aberrant splicing and 13 variants had no effect on RNA splicing. These data were compared with 3 variant-prediction programs (FATHMM-XF, FATHMM-MKL, and CADD). Among 32 variants, FATHMM-XF, FATHMM-MKL, and CADD correctly predicted 20 (63%), 17 (53%), and 26 (81%) variants, respectively. CONCLUSION Two novel deep intron mutations have been identified in SLC26A4 and SLC5A5, bringing the total number of solved families with disease-causing mutations to approximately 45% in our cohort. Approximately 46% (13/28) of reported noncanonical splice-site mutations do not disrupt pre-mRNA splicing. CADD provides highest prediction accuracy of noncanonical splice-site variants.
Collapse
Affiliation(s)
- Najla Albader
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Minjing Zou
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Huda A BinEssa
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Anwar F Al-Enezi
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Brian F Meyer
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yufei Shi
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
5
|
Brotto D, Sorrentino F, Cenedese R, Avato I, Bovo R, Trevisi P, Manara R. Genetics of Inner Ear Malformations: A Review. Audiol Res 2021; 11:524-536. [PMID: 34698066 PMCID: PMC8544219 DOI: 10.3390/audiolres11040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Inner ear malformations are present in 20% of patients with sensorineural hearing loss. Although the first descriptions date to the 18th century, in recent years the knowledge about these conditions has experienced terrific improvement. Currently, most of these conditions have a rehabilitative option. Much less is known about the etiology of these anomalies. In particular, the evolution of genetics has provided new data about the possible relationship between inner ear malformations and genetic anomalies. In addition, in syndromic condition, the well-known presence of sensorineural hearing loss can now be attributed to the presence of an inner ear anomaly. In some cases, the presence of these abnormalities should be considered as a characteristic feature of the syndrome. The present paper aims to summarize the available knowledge about the possible relationships between inner ear malformations and genetic mutations.
Collapse
Affiliation(s)
- Davide Brotto
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
- Correspondence:
| | - Flavia Sorrentino
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Roberta Cenedese
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Irene Avato
- Department of Diagnostic, Paediatric, Clinical and Surgical Science, University of Pavia, 35128 Pavia, Italy;
| | - Roberto Bovo
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Patrizia Trevisi
- Section of Otorhinolaryngology—Head and Neck Surgery, Department of Neurosciences, University of Padua, 35128 Padua, Italy; (F.S.); (R.C.); (R.B.); (P.T.)
| | - Renzo Manara
- Neuroradiology Unit, Department of Neurosciences, University of Padua, 35128 Padua, Italy;
| |
Collapse
|
6
|
Roesch S, Rasp G, Sarikas A, Dossena S. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol Res 2021; 11:423-442. [PMID: 34562878 PMCID: PMC8482117 DOI: 10.3390/audiolres11030040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of this condition.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: ; Tel.: +43-(0)662-2420-80564
| |
Collapse
|
7
|
Tian Y, Xu H, Liu D, Zhang J, Yang Z, Zhang S, Liu H, Li R, Tian Y, Zeng B, Li T, Lin Q, Wang H, Li X, Lu W, Shi Y, Zhang Y, Zhang H, Jiang C, Xu Y, Chen B, Liu J, Tang W. Increased diagnosis of enlarged vestibular aqueduct by multiplex PCR enrichment and next-generation sequencing of the SLC26A4 gene. Mol Genet Genomic Med 2021; 9:e1734. [PMID: 34170635 PMCID: PMC8404235 DOI: 10.1002/mgg3.1734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background The enlarged vestibular aqueduct (EVA) is the commonest malformation of inner ear accompanied by sensorineural hearing loss in children. Three genes SLC26A4, FOXI1, and KCNJ10 have been associated with EVA, among them SLC26A4 being the most common. Yet, hotspot mutation screening can only diagnose a small number of patients. Methods Thus, in this study, we designed a new molecular diagnosis panel for EVA based on multiplex PCR enrichment and next‐generation sequencing of the exon and flanking regions of SLC26A4. A total of 112 hearing loss families with EVA were enrolled and the pathogenicity of the rare variants detected was interpreted according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Results Our results showed that 107/112 (95.54%) families carried SLC26A4 biallelic mutations, 4/112 (3.57%) carried monoallelic variants, and 1/112 (0.89%) had none variant, resulting in a diagnostic rate of 95.54%. A total of 49 different variants were detected in those patients and we classified 30 rare variants as pathogenic/likely pathogenic, of which 13 were not included in the Clinvar database. Conclusion Our diagnostic panel has an increased diagnostic yield with less cost, and the curated list of pathogenic variants in the SLC26A4 gene can be directly used to aid the genetic counseling to patients.
Collapse
Affiliation(s)
- Yongan Tian
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanli Zhang
- Henan Province Medical Instrument Testing Institute, Zhengzhou, China
| | | | - Sen Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huanfei Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ruijun Li
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | | | - Beiping Zeng
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Li
- BGI College, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianyu Lin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haili Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Xiaohua Li
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Lu
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Zhang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chang Jiang
- Department of Otology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ying Xu
- Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bei Chen
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Liu
- Department of Otology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxue Tang
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Absence of Endolymphatic Sac Ion Transport Proteins in Large Vestibular Aqueduct Syndrome-A Human Temporal Bone Study. Otol Neurotol 2021; 41:e1256-e1263. [PMID: 32890293 DOI: 10.1097/mao.0000000000002832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Epithelial ion transport pathologies of the endolymphatic sac (ES) are associated with large vestibular aqueduct syndrome (LVAS). BACKGROUND LVAS is defined by the pathognomonic features of a widened bony vestibular aqueduct (VA) and an enlarged ES. The underlying cause of its associated cochleovestibular symptoms remains elusive. Disturbances in epithelial ion transport in the enlarged ES, affecting inner ear fluid regulation, were proposed as a possible pathophysiology. However, although respective epithelial ion transport pathologies have been demonstrated in the enlarged ES from transgenic LVAS mouse models, these pathologies have not been investigated in human LVAS cases. METHODS Histological and immunohistochemical analysis of the enlarged ES epithelium in postmortem temporal bones from two individuals with a clinical diagnosis of LVAS. RESULTS The enlarged ES epithelium demonstrated an overall atypical epithelial differentiation and a lack of the immunolocalization of signature ion transport proteins. Notably, in both cases, a rudimentary branch of the ES with a typically differentiated ES epithelium was present. CONCLUSIONS The described cellular and molecular pathologies of the enlarged ES in humans provide evidence of epithelial transport pathology as one potential cause of cochleovestibular symptoms in LVAS. The present findings also emphasize the clinical relevance of already established LVAS mouse models.
Collapse
|
9
|
Giglio S, Montini G, Trepiccione F, Gambaro G, Emma F. Distal renal tubular acidosis: a systematic approach from diagnosis to treatment. J Nephrol 2021; 34:2073-2083. [PMID: 33770395 PMCID: PMC8610947 DOI: 10.1007/s40620-021-01032-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/03/2022]
Abstract
Renal tubular acidosis (RTA) comprises a group of disorders in which excretion of hydrogen ions or reabsorption of filtered HCO3 is impaired, leading to chronic metabolic acidosis with normal anion gap. In the current review, the focus is placed on the most common type of RTA, Type 1 RTA or Distal RTA (dRTA), which is a rare chronic genetic disorder characterized by an inability of the distal nephron to secrete hydrogen ions in the presence of metabolic acidosis. Over the years, knowledge of the molecular mechanisms behind acid secretion has improved, thereby greatly helping the diagnosis of dRTA. The primary or inherited form of dRTA is mostly diagnosed in infancy, childhood, or young adulthood, while the acquired secondary form, as a consequence of other disorders or medications, can happen at any age, although it is more commonly seen in adults. dRTA is not as “benign” as previously assumed, and can have several, highly variable long-term consequences. The present review indeed reports and summarizes both clinical symptoms and diagnosis, long-term outcomes, genetic inheritance, epidemiology and current treatment options, with the aim of shedding more light onto this rare disorder. Being a chronic condition, dRTA also deserves attention in the transition between pediatric and adult nephrology care, and as a rare disease it has a place in the European and Italian rare nephrological diseases network.
Collapse
Affiliation(s)
- Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Giovanni Montini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Nephrology, Dialysis and PediatricTransplant Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Research Institute Ariano Irpino, Ariano Irpino, Italy
| | - Giovanni Gambaro
- Nephrology Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Liu Y, Wen J, Sang S, Mei L, He C, Jiang L, Huang S, Feng Y. Next-generation sequencing-based mutation analysis of genes associated with enlarged vestibular aqueduct in Chinese families. Eur Arch Otorhinolaryngol 2020; 277:3331-3339. [PMID: 32447495 DOI: 10.1007/s00405-020-06050-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The identification of gene mutations enables more appropriate genetic counseling and proper medical management for EVA patients. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in EVA, and summarize these data to explore a more accurate and convenient genetic diagnosis method. METHODS A multiplex PCR sequencing panel was designed to capture the exons of three known EVA-associated genes (SLC26A4, KCNJ10, and FOXI1), and NGS was conducted in 17 Chinese families with EVA. RESULTS A total of 16 SLC26A4 variants were found in 21 probands with bilateral EVA, including three novel variants (c.416G>A, c.823G>A and c.1027G>C), which were not reported in the dbSNP, gnomAD database, and ClinVar databases. One patient carried a FOXI1 variant (heterozygous, c.214C>A) and one patient carried a KCNJ10 variant (heterozygous, c.1054C>A), both of which were novel variants. Biallelic potential pathogenic variants were detected in 21/21patient samples, leading to a purported diagnostic rate of 100%. All results were verified by Sanger sequencing. CONCLUSION This result supplemented the mutation spectrum of EVA, and supports that combined multiple PCR-targeted enrichment, and NGS is a valuable molecular diagnostic tool for EVA, and is suitable for clinical application.
Collapse
Affiliation(s)
- Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, 410008, Hunan, China
| | - Jie Wen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, 410008, Hunan, China
| | - Shushan Sang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, 410008, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, 410008, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, 410008, Hunan, China
| | - Lu Jiang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, 410008, Hunan, China
| | - Sida Huang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, 410008, Hunan, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
D'Arco F, Sanverdi E, O'Brien WT, Taranath A, Talenti G, Blaser SI. The link between inner ear malformations and the rest of the body: what we know so far about genetic, imaging and histology. Neuroradiology 2020; 62:539-544. [PMID: 32125475 DOI: 10.1007/s00234-020-02382-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK.
| | - Eser Sanverdi
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - William T O'Brien
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Ajay Taranath
- Department of Radiology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Giacomo Talenti
- Department of Diagnostics and Pathology, Neuroradiology Unit, Verona University Hospital, Verona, Italy
| | - Susan I Blaser
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Molina-Ramirez LP, Bruce IA, Black GCM. Cochlear implantation in the era of genomic medicine. Cochlear Implants Int 2019; 21:117-120. [PMID: 31648626 DOI: 10.1080/14670100.2019.1678895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Leslie P Molina-Ramirez
- Domain of Evolution, Systems and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Iain A Bruce
- Paediatric ENT Department, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health University of Manchester, Manchester, UK
| | - Graeme C M Black
- Domain of Evolution, Systems and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.,Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
13
|
Molecular basis of hearing loss associated with enlarged vestibular aqueduct. JOURNAL OF BIO-X RESEARCH 2019. [DOI: 10.1097/jbr.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
A rapid improved multiplex ligation detection reaction method for the identification of gene mutations in hereditary hearing loss. PLoS One 2019; 14:e0215212. [PMID: 30973918 PMCID: PMC6459514 DOI: 10.1371/journal.pone.0215212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/28/2019] [Indexed: 12/27/2022] Open
Abstract
Hearing loss (HL) is a common sensory disorder. More than half of HL cases can be attributed to genetic causes. There is no effective therapy for genetic HL at present, early diagnosis to reduce the incidence of genetic HL is important for clinical intervention in genetic HL. Previous studies have identified 111 nonsyndromic hearing loss genes. The most frequently mutated genes identified in NSHL patients in China include GJB2, SLC26A4, and the mitochondrial gene MT-RNR1. It is important to develop HL gene panels in Chinese population, which allow for etiologic diagnosis of both SHL and NSHL. In this study, a total of 220 unrelated Han Chinese patients with bilateral progressive SNHL and 50 unrelated healthy controls were performed Single nucleotide polymorphism (SNP) genotyping using an improved multiplex ligation detection reaction (iMLDR) technique, is to simultaneously detect a total of 32 mutations in ten HL genes, covering all currently characterized mutations involved in the etiology of nonsyndromic or syndromic hearing loss in the Chinese population. The 49 positive samples with known mutations were successfully detected using the iMLDR Technique. For 171 SNHL patients, gene variants were found in 57 cases (33.33%), among which, 30 patients carried mutations in GJB2, 14 patients carried mutations in SLC26A4, seven patients carried mutations in GJB3, and six patients carried mutations in MT-RNR1. The molecular etiology of deafness was confirmed in 12.9% (22/171) of patients carried homozygous variants. These results were verified by Sanger sequencing, indicating that the sensitivity and specificity of the iMLDR technique was 100%. We believe that the implementation of this population-specific technology at an efficient clinical level would have great value in HL diagnosis and treatment.
Collapse
|
15
|
Men M, Li W, Chen H, Wu J, Feng Y, Guo H, Li J. Identification of a Novel CNV at 8q13 in a Family With Branchio‐Oto‐Renal Syndrome and Epilepsy. Laryngoscope 2019; 130:526-532. [DOI: 10.1002/lary.27941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Meichao Men
- Health Management Center, Xiangya HospitalCentral South University Changsha Hunan People's Republic of China
- Hunan Key Laboratory of Medical GeneticsCentral South University Changsha Hunan People's Republic of China
| | - Wu Li
- Department of Otolaryngology, Xiangya HospitalCentral South University Changsha Hunan People's Republic of China
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya HospitalCentral South University Changsha Hunan People's Republic of China
| | - Jiayu Wu
- Hunan Key Laboratory of Medical GeneticsCentral South University Changsha Hunan People's Republic of China
- Hunan Key Laboratory of Animal Models for Human DiseasesCentral South University Changsha Hunan People's Republic of China
| | - Yong Feng
- Hunan Key Laboratory of Medical GeneticsCentral South University Changsha Hunan People's Republic of China
- Department of Otolaryngology, Xiangya HospitalCentral South University Changsha Hunan People's Republic of China
| | - Hui Guo
- Hunan Key Laboratory of Medical GeneticsCentral South University Changsha Hunan People's Republic of China
- Hunan Key Laboratory of Animal Models for Human DiseasesCentral South University Changsha Hunan People's Republic of China
| | - Jia‐Da Li
- Hunan Key Laboratory of Medical GeneticsCentral South University Changsha Hunan People's Republic of China
- Hunan Key Laboratory of Animal Models for Human DiseasesCentral South University Changsha Hunan People's Republic of China
| |
Collapse
|
16
|
New Genotypes and Phenotypes in Patients with 3 Subtypes of Waardenburg Syndrome Identified by Diagnostic Next-Generation Sequencing. Neural Plast 2019; 2019:7143458. [PMID: 30936914 PMCID: PMC6415303 DOI: 10.1155/2019/7143458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Background Waardenburg syndrome (WS) is one of the most common forms of syndromic deafness with heterogeneity of loci and alleles and variable expressivity of clinical features. Methods The technology of single-nucleotide variants (SNV) and copy number variation (CNV) detection was developed to investigate the genotype spectrum of WS in a Chinese population. Results Ninety WS patients and 24 additional family members were recruited for the study. Fourteen mutations had not been previously reported, including c.808C>G, c.117C>A, c.152T>G, c.803G>T, c.793-3T >G, and c.801delT on PAX3; c.642_650delAAG on MITF; c.122G>T and c.127C>T on SOX10; c.230C>G and c.365C>T on SNAI2; and c.481A>G, c.1018C>G, and c.1015C>T on EDNRB. Three CNVs were de novo and first reported in our study. Five EDNRB variants were associated with WS type 1 in the heterozygous state for the first time, with a detection rate of 22.2%. Freckles occur only in WS type 2. Yellow hair, amblyopia, congenital ptosis, narrow palpebral fissures, and pigmentation spots are rare and unique symptoms in WS patients from China. Conclusions EDNRB should be considered as another prevalent pathogenic gene in WS type 1. Our study expanded the genotype and phenotype spectrum of WS, and diagnostic next-generation sequencing is promising for WS.
Collapse
|
17
|
Targeted Next-Generation Sequencing Facilitates Genetic Diagnosis and Provides Novel Pathogenetic Insights into Deafness with Enlarged Vestibular Aqueduct. J Mol Diagn 2018; 21:138-148. [PMID: 30268946 DOI: 10.1016/j.jmoldx.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/24/2022] Open
Abstract
Enlarged vestibular aqueduct (EVA) is an inner-ear malformation associated with sensorineural hearing impairment. Most EVAs are associated with Pendred syndrome and nonsyndromic autosomal recessive deafness-4 (DFNB4), two autosomal-recessive disorders caused by mutations in SLC26A4. However, many EVA patients cannot have a confirmed diagnosis by screening common SLC26A4 mutations, constituting an enigma in genetic diagnosis. To enable comprehensive genetic examination and explore the etiologies of EVA, we designed a next-generation sequencing panel targeting the entire length of 3 Pendred syndrome/DFNB4 genes (SLC26A4, FOXI1, and KCNJ10) and exons of 10 other genes related to EVA and performed genetic testing in 50 EVA families without confirmative results on screening for SLC26A4 hotspots (c.919-2A>G and p.H723R). Bi-allelic SLC26A4 mutations were identified in 34 families and EYA1 mutations in two families, yielding a diagnostic rate of 72% (36 of 50). In addition, two variants were identified in KCNJ10 and FOXI1, but findings did not support the previous hypothesis that mutations in these two genes are probable contributors to EVA through recessive inheritance or digenic inheritance with SLC26A4. Of note, a large SLC26A4 deletion was confirmed in one step using our panel. These results show the utility of a next-generation sequencing-based panel to address EVA families by identifying various types of gene mutations with satisfactory diagnostic yields and provide novel insights into the pathogenesis of EVA.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The increased availability of next generation sequencing has enabled a rapid progress in the discovery of genetic variants associated with vestibular disorders. We have summarized molecular genetics finding in vestibular syndromes during the last 18 months. RECENT FINDINGS Genetic studies continue to shed light on the genetic background of vestibular disorders. Novel genes affecting brain development and otolith biogenesis have been associated with motion sickness. Exome sequencing has made possible to identify three rare single nucleotide variants in PRKCB, DPT and SEMA3D linked with familial Meniere disease. Moreover, superior canal dehiscence syndrome might be related with variants in CDH3 gene, by increasing risk of its development. On the other hand, the association between vestibular schwannoma and enlarged vestibular aqueduct with variants in NF2 and SLC26A4, respectively, seems increasingly clear. Finally, the use of mouse models is allowing further progress in the development gene therapy for hearing and vestibular monogenic disorders. SUMMARY Most of episodic or progressive syndromes show familial clustering. A detailed phenotyping with a complete familial history of vestibular symptoms is required to conduct a genetic study. Progress in these studies will allow us to understand diseases mechanisms and improve their current medical treatments.
Collapse
|
19
|
Enerbäck S, Nilsson D, Edwards N, Heglind M, Alkanderi S, Ashton E, Deeb A, Kokash FEB, Bakhsh ARA, Van't Hoff W, Walsh SB, D'Arco F, Daryadel A, Bourgeois S, Wagner CA, Kleta R, Bockenhauer D, Sayer JA. Acidosis and Deafness in Patients with Recessive Mutations in FOXI1. J Am Soc Nephrol 2017; 29:1041-1048. [PMID: 29242249 DOI: 10.1681/asn.2017080840] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/15/2017] [Indexed: 11/03/2022] Open
Abstract
Maintenance of the composition of inner ear fluid and regulation of electrolytes and acid-base homeostasis in the collecting duct system of the kidney require an overlapping set of membrane transport proteins regulated by the forkhead transcription factor FOXI1. In two unrelated consanguineous families, we identified three patients with novel homozygous missense mutations in FOXI1 (p.L146F and p.R213P) predicted to affect the highly conserved DNA binding domain. Patients presented with early-onset sensorineural deafness and distal renal tubular acidosis. In cultured cells, the mutations reduced the DNA binding affinity of FOXI1, which hence, failed to adequately activate genes crucial for normal inner ear function and acid-base regulation in the kidney. A substantial proportion of patients with a clinical diagnosis of inherited distal renal tubular acidosis has no identified causative mutations in currently known disease genes. Our data suggest that recessive mutations in FOXI1 can explain the disease in a subset of these patients.
Collapse
Affiliation(s)
- Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden;
| | - Daniel Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Noel Edwards
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Mikael Heglind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sumaya Alkanderi
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Emma Ashton
- North East Thames Regional Genetic Service Laboratories, London, United Kingdom
| | - Asma Deeb
- Pediatric Services, Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | - Feras E B Kokash
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Abdul R A Bakhsh
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - William Van't Hoff
- Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, United Kingdom
| | - Stephen B Walsh
- University College London Centre for Nephrology, London, United Kingdom
| | - Felice D'Arco
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Arezoo Daryadel
- Institute of Physiology, University of Zürich, Zurich, Switzerland; and.,National Center for Competence in Research, National Center in Competence in Research Kidney.CH, Zurich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zürich, Zurich, Switzerland; and.,National Center for Competence in Research, National Center in Competence in Research Kidney.CH, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zurich, Switzerland; and.,National Center for Competence in Research, National Center in Competence in Research Kidney.CH, Zurich, Switzerland
| | - Robert Kleta
- Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, United Kingdom.,University College London Centre for Nephrology, London, United Kingdom
| | - Detlef Bockenhauer
- Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, United Kingdom.,University College London Centre for Nephrology, London, United Kingdom
| | - John A Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|