1
|
Fabbri E, Balbi T, Canesi L. Neuroendocrine functions of monoamines in invertebrates: Focus on bivalve molluscs. Mol Cell Endocrinol 2024; 588:112215. [PMID: 38548145 DOI: 10.1016/j.mce.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Monoamines (MA) such as serotonin, catecholamines (dopamine, norepinephrine, epinephrine), and trace amines (octopamine, tyramine), are neurotransmitters and neuroendocrine modulators in vertebrates, that contribute to adaptation to the environment. Although MA are conserved in evolution, information is still fragmentary in invertebrates, given the diversity of phyla and species. However, MA are crucial in homeostatic processes in these organisms, where the absence of canonical endocrine glands in many groups implies that the modulation of physiological functions is essentially neuroendocrine. In this review, we summarize available information on MA systems in invertebrates, with focus on bivalve molluscs, that are widespread in different aquatic environments, where they are subjected to a variety of environmental stimuli. Available data are reviewed on the presence of the different MA in bivalve tissues, their metabolism, target cells, signaling pathways, and the physiological functions modulated in larval and adult stages. Research gaps and perspectives are highlighted, in order to enrich the framework of knowledge on MA neuroendocrine functions, and on their role in adaptation to ongoing and future environmental changes.
Collapse
Affiliation(s)
- Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
2
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
3
|
Xu F, Deng S, Gavriouchkina D, Zhang G. Transcriptional regulation analysis reveals the complexity of metamorphosis in the Pacific oyster ( Crassostrea gigas). MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:467-477. [PMID: 38045547 PMCID: PMC10689616 DOI: 10.1007/s42995-023-00204-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Many marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic spats via settlement and metamorphosis, which contributes to their adaption to the marine environment. Studying the biological process of metamorphosis is, thus, key to understanding the origin and evolution of indirect development. Although numerous studies have been conducted on the relationship between metamorphosis and the marine environment, microorganisms, and neurohormones, little is known about gene regulation network (GRN) dynamics during metamorphosis. Metamorphosis-competent pediveligers of the Pacific oyster Crassostrea gigas were assayed in this study. By assaying gene expression patterns and open chromatin region changes of different samples of larvae and spats, the dynamics of molecular regulation during metamorphosis were examined. The results indicated significantly different gene regulation networks before, during and post-metamorphosis. Genes encoding membrane-integrated receptors and those related to the remodeling of the nervous system were upregulated before the initiation of metamorphosis. Massive biogenesis, e.g., of various enzymes and structural proteins, occurred during metamorphosis as inferred from the comprehensive upregulation of the protein synthesis system post epinephrine stimulation. Hierarchical downstream gene networks were then stimulated. Some transcription factors, including homeobox, basic helix-loop-helix and nuclear receptors, showed different temporal response patterns, suggesting a complex GRN during the transition stage. Nuclear receptors, as well as their retinoid X receptor partner, may participate in the GRN controlling oyster metamorphosis, indicating an ancient role of the nuclear receptor regulation system in animal metamorphosis. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00204-y.
Collapse
Affiliation(s)
- Fei Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laoshan Laboratory, Qingdao, 266237 China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, 266105 China
| | - Shaoxi Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077 China
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495 Japan
- UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laoshan Laboratory, Qingdao, 266237 China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, 266105 China
| |
Collapse
|
4
|
Transcriptome Dynamics of an Oyster Larval Response to a Conspecific Cue-Mediated Settlement Induction in the Pacific Oyster Crassostrea gigas. DIVERSITY 2022. [DOI: 10.3390/d14070559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms underlying the conspecific cue-mediated larval settlement in Crassostrea gigas is not yet fully understood. In this study, we described and compared the transcriptomes of competent pediveligers (Pedi) and conspecific cue-induced postlarvae (PL). A total of 2383 candidate transcripts were identified: 740 upregulated and 1643 downregulated transcripts, after settlement. Gene Ontology analysis revealed active chitin binding, calcium ion binding, and extracellular region processes in both stages. Results showed that the differential expression trend of six candidate transcripts were consistent between the quantitative real-time PCR and transcriptome data. The differential transcript expression related to shell formation showed closely linked dynamics with a gene regulatory network that may involve the interplay of various hormone receptors, neurotransmitters, and neuropeptide receptors working together in a concerted way in the Pedi and PL stages. Our results highlight the transcriptome dynamics underlying the settlement of oysters on conspecific adult shells and demonstrate the potential use of this cue as an attractant for wild and hatchery-grown oyster larval attachment on artificial substrates. It also suggests the possible involvement of an ecdysone signal pathway that may be linked to a neuroendocrine-biomineralization crosstalk in C. gigas settlement.
Collapse
|
5
|
Schwartz J, Réalis-Doyelle E, Le Franc L, Favrel P. A Novel Dop2/Invertebrate-Type Dopamine Signaling System Potentially Mediates Stress, Female Reproduction, and Early Development in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:683-694. [PMID: 34365528 DOI: 10.1007/s10126-021-10052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The dopaminergic signaling pathway is involved in many physiological functions in vertebrates, but poorly documented in protostome species except arthropods. We functionally characterized a novel dopamine receptor in the Pacific oyster (Crassostrea gigas), activated by dopamine and tyramine with different efficacy and potency orders. This receptor - Cragi-DOP2R - belongs to the D1-like family of receptors and corresponds to the first representative of the Dop2/invertebrate-type dopamine receptor (Dop2/INDR) group ever identified in Lophotrochozoa. Cragi-DOP2R transcripts were expressed in various adult tissues, with higher expression levels in the visceral ganglia and the gills. Following an experiment under acute osmotic conditions, Cragi-DOP2R transcripts significantly increased in the visceral ganglia and decreased in the gills, suggesting a role of dopamine signaling in the mediation of osmotic stress. Furthermore, a role of the Cragi-DOP2R signaling pathway in female gametogenesis and in early oyster development was strongly suggested by the significantly higher levels of receptor transcripts in mature female gonads and in the early embryonic stages.
Collapse
Affiliation(s)
- Julie Schwartz
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France.
| | - Emilie Réalis-Doyelle
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| | - Lorane Le Franc
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| | - Pascal Favrel
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| |
Collapse
|
6
|
Cloning and characterisation of NMDA receptors in the Pacific oyster, Crassostrea gigas (Thunberg, 1793) in relation to metamorphosis and catecholamine synthesis. Dev Biol 2020; 469:144-159. [PMID: 33131707 DOI: 10.1016/j.ydbio.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.
Collapse
|