1
|
Michielsen S, Vercelli GT, Cordero OX, Bachmann H. Spatially structured microbial consortia and their role in food fermentations. Curr Opin Biotechnol 2024; 87:103102. [PMID: 38461750 DOI: 10.1016/j.copbio.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Microbial consortia are important for the fermentation of foods. They bring combined functionalities to the fermented product, but stability and product consistency of fermentations with complex consortia can be hard to control. Some of these consortia, such as water- and milk-kefir and kombucha, grow as multispecies aggregates or biofilms, in which micro-organisms taking part in a fermentation cascade are spatially organized. The spatial organization of micro-organisms in these aggregates can impact what metabolic interactions are realized in the consortia, ultimately affecting the growth dynamics and evolution of microbes. A better understanding of such spatially structured communities is of interest from the perspective of microbial ecology and biotechnology, as multispecies aggregates can be used to valorize energy-rich substrates, such as plant-based substrates or side streams from the food industry.
Collapse
Affiliation(s)
- Sabine Michielsen
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Gabriel T Vercelli
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Herwig Bachmann
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Microbiology Department, NIZO Food Research, Ede, the Netherlands.
| |
Collapse
|
2
|
Wang L, Zhang X, Tang C, Li P, Zhu R, Sun J, Zhang Y, Cui H, Ma J, Song X, Zhang W, Gao X, Luo X, You L, Chen Y, Dai Z. Engineering consortia by polymeric microbial swarmbots. Nat Commun 2022; 13:3879. [PMID: 35790722 PMCID: PMC9256712 DOI: 10.1038/s41467-022-31467-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Synthetic microbial consortia represent a new frontier for synthetic biology given that they can solve more complex problems than monocultures. However, most attempts to co-cultivate these artificial communities fail because of the winner-takes-all in nutrients competition. In soil, multiple species can coexist with a spatial organization. Inspired by nature, here we show that an engineered spatial segregation method can assemble stable consortia with both flexibility and precision. We create microbial swarmbot consortia (MSBC) by encapsulating subpopulations with polymeric microcapsules. The crosslinked structure of microcapsules fences microbes, but allows the transport of small molecules and proteins. MSBC method enables the assembly of various synthetic communities and the precise control over the subpopulations. These capabilities can readily modulate the division of labor and communication. Our work integrates the synthetic biology and material science to offer insights into consortia assembly and serve as foundation to diverse applications from biomanufacturing to engineered photosynthesis.
Collapse
Affiliation(s)
- Lin Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chenwang Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Pengcheng Li
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Runtao Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Sun
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yunfeng Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hua Cui
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiajia Ma
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang Gao
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ye Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhuojun Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Materials Synthetic Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol 2021; 42:46-72. [PMID: 33980092 DOI: 10.1080/07388551.2021.1921691] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The application of microbial co-cultures is now recognized in the fields of biotechnology, ecology, and medicine. Understanding the biological interactions that govern the association of microorganisms would shape the way in which artificial/synthetic co-cultures or consortia are developed. The ability to accurately predict and control cell-to-cell interactions fully would be a significant enabler in synthetic biology. Co-culturing method development holds the key to strategically engineer environments in which the co-cultured microorganism can be monitored. Various approaches have been employed which aim to emulate the natural environment and gain access to the untapped natural resources emerging from cross-talk between partners. Amongst these methods are the use of a communal liquid medium for growth, use of a solid-liquid interface, membrane separation, spatial separation, and use of microfluidics systems. Maximizing the information content of interactions monitored is one of the major challenges that needs to be addressed by these designs. This review critically evaluates the significance and drawbacks of the co-culturing approaches used to this day in biotechnological applications, relevant to biomanufacturing. It is recommended that experimental results for a co-cultured species should be validated with different co-culture approaches due to variations in interactions that could exist as a result of the culturing method selected.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Gloria Padmaperuma
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Supattra Maneein
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Pharmaceutical, Chemical & Environmental Sciences, The University of Greenwich, Kent, UK
| | | |
Collapse
|
4
|
Ben Said S, Tecon R, Borer B, Or D. The engineering of spatially linked microbial consortia - potential and perspectives. Curr Opin Biotechnol 2020; 62:137-145. [PMID: 31678714 PMCID: PMC7208534 DOI: 10.1016/j.copbio.2019.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023]
Abstract
Traditional biotechnological applications of microorganisms employ mono-cultivation or co-cultivation in well-mixed vessels disregarding the potential of spatially organized cultures. Metabolic specialization and guided species interactions facilitated through spatial isolation would enable consortia of microbes to accomplish more complex functions than currently possible, for bioproduction as well as biodegradation processes. Here, we review concepts of spatially linked microbial consortia in which spatial arrangement is optimized to increase control and facilitate new species combinations. We highlight that genome-scale metabolic network models can inform the design and tuning of synthetic microbial consortia and suggest that a standardized assembly of such systems allows the combination of 'incompatibles', potentially leading to countless novel applications.
Collapse
Affiliation(s)
- Sami Ben Said
- Microbial Systems Ecology, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | - Robin Tecon
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Benedict Borer
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Dani Or
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Tsoi R, Dai Z, You L. Emerging strategies for engineering microbial communities. Biotechnol Adv 2019; 37:107372. [PMID: 30880142 DOI: 10.1016/j.biotechadv.2019.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
From biosynthesis to bioremediation, microbes have been engineered to address a variety of biotechnological applications. A promising direction in these endeavors is harnessing the power of designer microbial consortia that consist of multiple populations with well-defined interactions. Consortia can accomplish tasks that are difficult or potentially impossible to achieve using monocultures. Despite their potential, the rules underlying microbial community maintenance and function (i.e. the task the consortium is engineered to carry out) are not well defined, though rapid progress is being made. This limited understanding is in part due to the greater challenges associated with increased complexity when dealing with multi-population interactions. Here, we review key features and design strategies that emerge from the analysis of both natural and engineered microbial communities. These strategies can provide new insights into natural consortia and expand the toolbox available to engineers working to develop novel synthetic consortia.
Collapse
Affiliation(s)
- Ryan Tsoi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Zhuojun Dai
- Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Bhatia SK, Bhatia RK, Choi YK, Kan E, Kim YG, Yang YH. Biotechnological potential of microbial consortia and future perspectives. Crit Rev Biotechnol 2018; 38:1209-1229. [PMID: 29764204 DOI: 10.1080/07388551.2018.1471445] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| | - Ravi Kant Bhatia
- c Department of Biotechnology , Himachal Pradesh University , Shimla , India
| | - Yong-Keun Choi
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Eunsung Kan
- d Texas A&M AGRILIFE Research & Extension Center , Texas A&M University , Stephenville , TX , USA
| | - Yun-Gon Kim
- e Department of Chemical Engineering , Soongsil University , Seoul , South Korea
| | - Yung-Hun Yang
- a Department of Biological Engineering, College of Engineering , Konkuk University , Seoul , South Korea.,b Institute for Ubiquitous Information Technology and Application , Konkuk University , Seoul , South Korea
| |
Collapse
|