1
|
Ridley B, Minozzi S, Gonzalez-Lorenzo M, Del Giovane C, Piggott T, Filippini G, Peryer G, Foschi M, Tramacere I, Baldin E, Nonino F. Immunomodulators and immunosuppressants for progressive multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2024; 9:CD015443. [PMID: 39254048 PMCID: PMC11384553 DOI: 10.1002/14651858.cd015443.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND In recent years a broader range of immunomodulatory and immunosuppressive treatment options have emerged for people with progressive forms of multiple sclerosis (PMS). While consensus supports these options as reducing relapses, their relative benefit and safety profiles remain unclear due to a lack of direct comparison trials. OBJECTIVES To compare through network meta-analysis the efficacy and safety of alemtuzumab, azathioprine, cladribine, cyclophosphamide, daclizumab, dimethylfumarate, diroximel fumarate, fingolimod, fludarabine, glatiramer acetate, immunoglobulins, interferon beta 1-a and beta 1-b, interferon beta-1b (Betaferon), interferon beta-1a (Avonex, Rebif), laquinimod, leflunomide, methotrexate, minocycline, mitoxantrone, mycophenolate mofetil, natalizumab, ocrelizumab, ofatumumab, ozanimod, pegylated interferon beta-1a, ponesimod, rituximab, siponimod, corticosteroids, and teriflunomide for PMS. SEARCH METHODS We searched CENTRAL, MEDLINE, and Embase up to August 2022, as well as ClinicalTrials.gov and the WHO ICTRP. SELECTION CRITERIA Randomised controlled trials (RCTs) that studied one or more treatments as monotherapy, compared to placebo or to another active agent, for use in adults with PMS. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies and extracted data. We performed data synthesis by pair-wise and network meta-analysis. We assessed the certainty of the body of evidence according to GRADE. MAIN RESULTS We included 23 studies involving a total of 10,167 participants. The most frequent (39% of studies) reason for a rating of high risk of bias was sponsor role in study authorship and data management and analysis. Other concerns were performance, attrition, and selective reporting bias, with 8.7% of studies at high risk of bias for all three of these domains. The common comparator for network analysis was placebo. Relapses over 12 months: assessed in one study (318 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Relapses over 24 months: assessed in six studies (1622 participants). The number of people with clinical relapses is probably trivially reduced with rituximab (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.19 to 1.95; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. Relapses over 36 months: assessed in four studies (2095 participants). The number of people with clinical relapses is probably trivially reduced with interferon beta-1b (RR 0.82, 95% CI 0.73 to 0.93; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. Disability worsening over 24 months: assessed in 11 studies (5284 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Disability worsening over 36 months: assessed in five studies (2827 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Serious adverse events: assessed in 15 studies (8019 participants). None of the treatments assessed showed moderate or high certainty evidence compared to placebo. Discontinuation due to adverse events: assessed in 21 studies (9981 participants). The number of people who discontinued treatment due to adverse events is trivially increased with interferon beta-1a (odds ratio (OR) 2.93, 95% CI 1.64 to 5.26; high certainty evidence). The number of people who discontinued treatment due to adverse events is probably trivially increased with rituximab (OR 4.00, 95% CI 0.84 to 19.12; moderate certainty evidence); interferon beta-1b (OR 2.98, 95% CI 1.92 to 4.61; moderate certainty evidence); immunoglobulins (OR 1.95, 95% CI 0.99 to 3.84; moderate certainty evidence); glatiramer acetate (OR 3.98, 95% CI 1.48 to 10.72; moderate certainty evidence); natalizumab (OR 1.02, 95% CI 0.55 to 1.90; moderate certainty evidence); siponimod (OR 1.53, 95% CI 0.98 to 2.38; moderate certainty evidence); fingolimod (OR 2.29, 95% CI 1.46 to 3.60; moderate certainty evidence), and ocrelizumab (OR 1.24, 95% CI 0.54 to 2.86; moderate certainty evidence). None of the remaining treatments assessed showed moderate or high certainty evidence compared to placebo. AUTHORS' CONCLUSIONS The number of people with PMS with relapses is probably slightly reduced with rituximab at two years, and interferon beta-1b at three years, compared to placebo. Both drugs are also probably associated with a slightly higher proportion of withdrawals due to adverse events, as are immunoglobulins, glatiramer acetate, natalizumab, fingolimod, siponimod, and ocrelizumab; we have high confidence that this is the case with interferon beta-1a. We found only low or very low certainty evidence relating to disability progression for the included disease-modifying treatments compared to placebo, largely due to imprecision. We are also uncertain about the effect of interventions on serious adverse events, also because of imprecision. These findings are due in part to the short follow-up of the included RCTs, which lacked detection of less common severe adverse events. Moreover, the funding source of many included studies may have introduced bias into the results. Future research on PMS should include head-to-head rather than placebo-controlled trials, with a longer follow-up of at least three years. Given the relative rarity of PMS, controlled, non-randomised studies on large samples may usefully integrate data from pivotal RCTs. Outcomes valuable and meaningful to people with PMS should be consistently adopted and measured to permit the evaluation of relative effectiveness among treatments.
Collapse
Affiliation(s)
- Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Silvia Minozzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Marien Gonzalez-Lorenzo
- Laboratorio di Metodologia delle revisioni sistematiche e produzione di Linee Guida, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM), Bern, Switzerland
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Thomas Piggott
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Family Medicine, Queens University, Kingston, Ontario, Canada
| | - Graziella Filippini
- Scientific Director's Office, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Guy Peryer
- School of Health Sciences, University of East Anglia, Norwich, UK
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center - Neurology Unit, S.Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Collongues N, Durand-Dubief F, Lebrun-Frenay C, Audoin B, Ayrignac X, Bensa C, Bigaut K, Bourre B, Carra-Dallière C, Ciron J, Defer G, Kwiatkowski A, Leray E, Maillart E, Marignier R, Mathey G, Morel N, Thouvenot E, Zéphir H, Boucher J, Boutière C, Branger P, Da Silva A, Demortière S, Guillaume M, Hebant B, Januel E, Kerbrat A, Manchon E, Moisset X, Montcuquet A, Pierret C, Pique J, Poupart J, Prunis C, Roux T, Schmitt P, Androdias G, Cohen M. Cancer and multiple sclerosis: 2023 recommendations from the French Multiple Sclerosis Society. Mult Scler 2024; 30:899-924. [PMID: 38357870 DOI: 10.1177/13524585231223880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND Epidemiological data reveal that 45% of persons with multiple sclerosis (PwMS) in France are more than 50 years. This population more than 50 is more susceptible to cancer, and this risk may be increased by frequent use of immunosuppressive drugs. Consequently, concerns have arisen about the potential increased risk of cancer in PwMS and how patients should be screened and managed in terms of cancer risk. OBJECTIVE To develop evidence-based recommendations to manage the coexistence of cancer and multiple sclerosis (MS). METHODS The French Group for Recommendations in MS collected articles from PubMed and university databases covering the period January 1975 through June 2022. The RAND/UCLA method was employed to achieve formal consensus. MS experts comprehensively reviewed the full-text articles and developed the initial recommendations. A group of multidisciplinary health care specialists then validated the final proposal. RESULTS Five key questions were addressed, encompassing various topics such as cancer screening before or after initiating a disease-modifying therapy (DMT), appropriate management of MS in the context of cancer, recommended follow-up for cancer in patients receiving a DMT, and the potential reintroduction of a DMT after initial cancer treatment. A strong consensus was reached for all 31 recommendations. CONCLUSION These recommendations propose a strategic approach to managing cancer risk in PwMS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
- Center for Clinical Investigation, INSERM U1434, Strasbourg, France
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
- Department of Pharmacology, Addictology, Toxicology, and Therapeutics, Strasbourg University, Strasbourg, France
| | - Françoise Durand-Dubief
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Christine Lebrun-Frenay
- Department of Neurology, CHU Nice, Nice, France
- Université Côte d'Azur, UMR2CA-URRIS, Nice, France
| | - Bertrand Audoin
- Department of Neurology, CRMBM, APHM, Aix-Marseille University, Marseille, France
| | - Xavier Ayrignac
- Department of Neurology, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
- INM, INSERM, Montpellier, France
| | - Caroline Bensa
- Department of Neurology, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Kévin Bigaut
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | | | | | - Jonathan Ciron
- CHU de Toulouse, CRC-SEP, Department of Neurology, Toulouse, France
- Université Toulouse III, Infinity, INSERM UMR1291-CNRS UMR5051, Toulouse, France
| | - Gilles Defer
- Department of Neurology, Caen University Hospital, Caen, France
| | - Arnaud Kwiatkowski
- Department of Neurology, Lille Catholic University, Lille Catholic Hospitals, Lille, France
| | - Emmanuelle Leray
- Université de Rennes, EHESP, CNRS, INSERM, ARENES-UMR 6051, RSMS-U1309, Rennes, France
| | | | - Romain Marignier
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Guillaume Mathey
- Department of Neurology, Nancy University Hospital, Nancy, France
| | - Nathalie Morel
- Service de Neurologie, Centre Hospitalier Annecy Genevois, Epagny-Metz-Tessy, France
| | - Eric Thouvenot
- Service de Neurologie, CHU de Nîmes, Nîmes, France
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hélène Zéphir
- University of Lille, INSERM U1172, CHU de Lille, Lille, France
| | - Julie Boucher
- Department of Neurology, CHU de Lille, Lille, France
| | - Clémence Boutière
- Department of Neurology, University Hospital of Marseille, Marseille, France
| | - Pierre Branger
- Service de Neurologie, CHU de Caen Normandie, Caen, France
| | - Angélique Da Silva
- Breast Cancer Unit, Centre François Baclesse, Institut Normand du Sein, Caen, France
| | - Sarah Demortière
- Department of Neurology, CRMBM, APHM, Aix-Marseille University, Marseille, France
| | | | | | - Edouard Januel
- Sorbonne Université, Paris, France/Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Paris, France
- Département de Neurologie, Hôpital Pitié Salpêtrière, AP-HP, Paris, France
| | - Anne Kerbrat
- Service de Neurologie, CHU de Rennes, France
- EMPENN U1228, INSERM-INRIA, Rennes, France
| | - Eric Manchon
- Service de Neurologie, Centre Hospitalier de Gonesse, Gonesse, France
| | - Xavier Moisset
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-Dol, Clermont-Ferrand, France
| | | | - Chloé Pierret
- Université de Rennes, EHESP, CNRS, INSERM, ARENES-UMR 6051, RSMS U-1309, Rennes, France
| | - Julie Pique
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Julien Poupart
- Department of Neurology and U995-LIRIC-Lille Inflammation Research International Center, INSERM, University of Lille, CHU Lille, Lille, France
| | - Chloé Prunis
- Department of Neurology, Nancy University Hospital, Nancy, France
| | - Thomas Roux
- Hôpital La Pitié-Salpêtrière, Service de Neurologie, Paris, France
- CRC-SEP Paris. Centre des maladies inflammatoires rares du cerveau et de la moelle de l'enfant et de l'adulte (Mircem)
| | | | - Géraldine Androdias
- Service de Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Service de Neurologie, Hôpital Neurologique Pierre Wertheimer, Bron, France
- Clinique de la Sauvegarde-Ramsay Santé, Lyon, France
| | - Mikael Cohen
- Department of Neurology, CHU Nice, Nice, France/Université Côte d'Azur, UMR2CA-URRIS, Nice, France
| |
Collapse
|
3
|
Mascarenas-Garcia M, Rivero-de-Aguilar A, Pérez-Ríos M, Ruano-Raviña A, Llaneza-Gonzalez MA, Candal-Pedreira C, Rey-Brandariz J, Varela-Lema L. Best practices in phase III clinical trials on DMTs for multiple sclerosis: a systematic analysis and appraisal of published trials. J Neurol Neurosurg Psychiatry 2024; 95:333-341. [PMID: 37541785 DOI: 10.1136/jnnp-2023-331733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Great advances have been made in the field of multiple sclerosis (MS) therapy due to the publication of numerous randomised clinical trials (RCTs). In this study, we carried out a critical appraisal of phase III RCTs of disease-modifying therapies (DMTs) for MS published after 2010, intending to identify critical areas of improvement. METHODS We performed a systematic search of published RCTs on MS from January 2010 until December 2021. RCTs were assessed using an ad-hoc tool. This tool was developed based on existing generic methodological instruments and MS-specific guidelines and methodological papers. It included 14 items grouped in 5 domains: methodological quality, adequacy and measurement of outcomes, adverse event reporting, applicability and relevance of results, and transparency and conflict of interest. RESULTS We identified 31 phase III RCTs. Most of them were fully compliant in terms of sample size (87%), randomisation (68%), blinding (61%), participant selection (68%), adverse event reporting (84%) and clinical relevance (52%). Only a few were compliant in terms of participant description (6%), comparison (42%), attrition bias (26%), adequacy of outcome measures (26%), applicability (23%), transparency (36%) and conflict of interest (6%). None were compliant in terms of analysis and reporting of outcomes. The most common limitations related to the absence of comorbidity data, unjustified use of placebo, inadequacy of outcomes design and absence of protocol and/or prospective registration. CONCLUSIONS RCTs for DMTs in MS have relevant and frequent limitations. These should be addressed to enhance their quality, transparency and external validity.
Collapse
Affiliation(s)
- Marta Mascarenas-Garcia
- Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Preventive Medicine and Public Health, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Rivero-de-Aguilar
- Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Neurology, University Hospital Complex of Pontevedra, Pontevedra, Spain
| | - Mónica Pérez-Ríos
- Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela - IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública/CIBERESP), Madrid, Spain
| | - Alberto Ruano-Raviña
- Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela - IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública/CIBERESP), Madrid, Spain
| | | | - Cristina Candal-Pedreira
- Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela - IDIS), Santiago de Compostela, Spain
| | - Julia Rey-Brandariz
- Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Leonor Varela-Lema
- Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago de Compostela - IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública/CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Chataway J, Williams T, Li V, Marrie RA, Ontaneda D, Fox RJ. Clinical trials for progressive multiple sclerosis: progress, new lessons learned, and remaining challenges. Lancet Neurol 2024; 23:277-301. [PMID: 38365380 DOI: 10.1016/s1474-4422(24)00027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
Despite the success of disease-modifying treatments in relapsing multiple sclerosis, for many individuals living with multiple sclerosis, progressive disability continues to accrue. How to interrupt the complex pathological processes underlying progression remains a daunting and ongoing challenge. Since 2014, several immunomodulatory approaches that have modest but clinically meaningful effects have been approved for the management of progressive multiple sclerosis, primarily for people who have active inflammatory disease. The approval of these drugs required large phase 3 trials that were sufficiently powered to detect meaningful effects on disability. New classes of drug, such as Bruton tyrosine-kinase inhibitors, are coming to the end of their trial stages, several candidate neuroprotective compounds have been successful in phase 2 trials, and innovative approaches to remyelination are now also being explored in clinical trials. Work continues to define intermediate outcomes that can provide results in phase 2 trials more quickly than disability measures, and more efficient trial designs, such as multi-arm multi-stage and futility approaches, are increasingly being used. Collaborations between patient organisations, pharmaceutical companies, and academic researchers will be crucial to ensure that future trials maintain this momentum and generate results that are relevant for people living with progressive multiple sclerosis.
Collapse
Affiliation(s)
- Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK; Medical Research Council Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, London, UK; National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, UK.
| | - Thomas Williams
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ruth Ann Marrie
- Departments of Medicine and Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
5
|
Bellanca CM, Augello E, Mariottini A, Bonaventura G, La Cognata V, Di Benedetto G, Cantone AF, Attaguile G, Di Mauro R, Cantarella G, Massacesi L, Bernardini R. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability? Curr Neuropharmacol 2024; 22:1286-1326. [PMID: 38275058 PMCID: PMC11092922 DOI: 10.2174/1570159x22666240124114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 01/27/2024] Open
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Alice Mariottini
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Attaguile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Tramacere I, Virgili G, Perduca V, Lucenteforte E, Benedetti MD, Capobussi M, Castellini G, Frau S, Gonzalez-Lorenzo M, Featherstone R, Filippini G. Adverse effects of immunotherapies for multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2023; 11:CD012186. [PMID: 38032059 PMCID: PMC10687854 DOI: 10.1002/14651858.cd012186.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects mainly young adults (two to three times more frequently in women than in men) and causes significant disability after onset. Although it is accepted that immunotherapies for people with MS decrease disease activity, uncertainty regarding their relative safety remains. OBJECTIVES To compare adverse effects of immunotherapies for people with MS or clinically isolated syndrome (CIS), and to rank these treatments according to their relative risks of adverse effects through network meta-analyses (NMAs). SEARCH METHODS We searched CENTRAL, PubMed, Embase, two other databases and trials registers up to March 2022, together with reference checking and citation searching to identify additional studies. SELECTION CRITERIA We included participants 18 years of age or older with a diagnosis of MS or CIS, according to any accepted diagnostic criteria, who were included in randomized controlled trials (RCTs) that examined one or more of the agents used in MS or CIS, and compared them versus placebo or another active agent. We excluded RCTs in which a drug regimen was compared with a different regimen of the same drug without another active agent or placebo as a control arm. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods for data extraction and pairwise meta-analyses. For NMAs, we used the netmeta suite of commands in R to fit random-effects NMAs assuming a common between-study variance. We used the CINeMA platform to GRADE the certainty of the body of evidence in NMAs. We considered a relative risk (RR) of 1.5 as a non-inferiority safety threshold compared to placebo. We assessed the certainty of evidence for primary outcomes within the NMA according to GRADE, as very low, low, moderate or high. MAIN RESULTS This NMA included 123 trials with 57,682 participants. Serious adverse events (SAEs) Reporting of SAEs was available from 84 studies including 5696 (11%) events in 51,833 (89.9%) participants out of 57,682 participants in all studies. Based on the absolute frequency of SAEs, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 18 additional people would have a SAE compared to placebo. Low-certainty evidence suggested that three drugs may decrease SAEs compared to placebo (relative risk [RR], 95% confidence interval [CI]): interferon beta-1a (Avonex) (0.78, 0.66 to 0.94); dimethyl fumarate (0.79, 0.67 to 0.93), and glatiramer acetate (0.84, 0.72 to 0.98). Several drugs met our non-inferiority criterion versus placebo: moderate-certainty evidence for teriflunomide (1.08, 0.88 to 1.31); low-certainty evidence for ocrelizumab (0.85, 0.67 to 1.07), ozanimod (0.88, 0.59 to 1.33), interferon beta-1b (0.94, 0.78 to 1.12), interferon beta-1a (Rebif) (0.96, 0.80 to 1.15), natalizumab (0.97, 0.79 to 1.19), fingolimod (1.05, 0.92 to 1.20) and laquinimod (1.06, 0.83 to 1.34); very low-certainty evidence for daclizumab (0.83, 0.68 to 1.02). Non-inferiority with placebo was not met due to imprecision for the other drugs: low-certainty evidence for cladribine (1.10, 0.79 to 1.52), siponimod (1.20, 0.95 to 1.51), ofatumumab (1.26, 0.88 to 1.79) and rituximab (1.01, 0.67 to 1.52); very low-certainty evidence for immunoglobulins (1.05, 0.33 to 3.32), diroximel fumarate (1.05, 0.23 to 4.69), peg-interferon beta-1a (1.07, 0.66 to 1.74), alemtuzumab (1.16, 0.85 to 1.60), interferons (1.62, 0.21 to 12.72) and azathioprine (3.62, 0.76 to 17.19). Withdrawals due to adverse events Reporting of withdrawals due to AEs was available from 105 studies (85.4%) including 3537 (6.39%) events in 55,320 (95.9%) patients out of 57,682 patients in all studies. Based on the absolute frequency of withdrawals, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 31 additional people would withdraw compared to placebo. No drug reduced withdrawals due to adverse events when compared with placebo. There was very low-certainty evidence (meaning that estimates are not reliable) that two drugs met our non-inferiority criterion versus placebo, assuming an upper 95% CI RR limit of 1.5: diroximel fumarate (0.38, 0.11 to 1.27) and alemtuzumab (0.63, 0.33 to 1.19). Non-inferiority with placebo was not met due to imprecision for the following drugs: low-certainty evidence for ofatumumab (1.50, 0.87 to 2.59); very low-certainty evidence for methotrexate (0.94, 0.02 to 46.70), corticosteroids (1.05, 0.16 to 7.14), ozanimod (1.06, 0.58 to 1.93), natalizumab (1.20, 0.77 to 1.85), ocrelizumab (1.32, 0.81 to 2.14), dimethyl fumarate (1.34, 0.96 to 1.86), siponimod (1.63, 0.96 to 2.79), rituximab (1.63, 0.53 to 5.00), cladribine (1.80, 0.89 to 3.62), mitoxantrone (2.11, 0.50 to 8.87), interferons (3.47, 0.95 to 12.72), and cyclophosphamide (3.86, 0.45 to 33.50). Eleven drugs may have increased withdrawals due to adverse events compared with placebo: low-certainty evidence for teriflunomide (1.37, 1.01 to 1.85), glatiramer acetate (1.76, 1.36 to 2.26), fingolimod (1.79, 1.40 to 2.28), interferon beta-1a (Rebif) (2.15, 1.58 to 2.93), daclizumab (2.19, 1.31 to 3.65) and interferon beta-1b (2.59, 1.87 to 3.77); very low-certainty evidence for laquinimod (1.42, 1.01 to 2.00), interferon beta-1a (Avonex) (1.54, 1.13 to 2.10), immunoglobulins (1.87, 1.01 to 3.45), peg-interferon beta-1a (3.46, 1.44 to 8.33) and azathioprine (6.95, 2.57 to 18.78); however, very low-certainty evidence is unreliable. Sensitivity analyses including only studies with low attrition bias, drug dose above the group median, or only patients with relapsing remitting MS or CIS, and subgroup analyses by prior disease-modifying treatments did not change these figures. Rankings No drug yielded consistent P scores in the upper quartile of the probability of being better than others for primary and secondary outcomes. AUTHORS' CONCLUSIONS We found mostly low and very low-certainty evidence that drugs used to treat MS may not increase SAEs, but may increase withdrawals compared with placebo. The results suggest that there is no important difference in the occurrence of SAEs between first- and second-line drugs and between oral, injectable, or infused drugs, compared with placebo. Our review, along with other work in the literature, confirms poor-quality reporting of adverse events from RCTs of interventions. At the least, future studies should follow the CONSORT recommendations about reporting harm-related issues. To address adverse effects, future systematic reviews should also include non-randomized studies.
Collapse
Affiliation(s)
- Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Vittorio Perduca
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Ersilia Lucenteforte
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Maria Donata Benedetti
- UOC Neurologia B - Policlinico Borgo Roma, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Capobussi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Greta Castellini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Unit of Clinical Epidemiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | - Marien Gonzalez-Lorenzo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Oncology, Laboratory of Clinical Research Methodology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| |
Collapse
|
7
|
Abstract
The multiple sclerosis (MS) neurotherapeutic landscape is rapidly evolving. New disease-modifying therapies (DMTs) with improved efficacy and safety, in addition to an expanding pipeline of agents with novel mechanisms, provide more options for patients with MS. While treatment of MS neuroinflammation is well tailored in the existing DMT armamentarium, concerted efforts are currently underway for identifying neuropathological targets and drug discovery for progressive MS. There is also ongoing research to develop agents for remyelination and neuroprotection. Further insights are needed to guide DMT initiation and sequencing as well as to determine the role of autologous stem cell transplantation in relapsing and progressive MS. This review provides a summary of these updates.
Collapse
Affiliation(s)
- Moein Amin
- Cleveland Clinic, Department of Neurology, Cleveland, OH 44195, USA
| | - Carrie M Hersh
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| |
Collapse
|
8
|
Chedid T, Moisset X, Clavelou P. Rationale for off-label treatments use in primary progressive multiple sclerosis: A review of the literature. Rev Neurol (Paris) 2022; 178:932-938. [PMID: 35851485 DOI: 10.1016/j.neurol.2022.02.461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/18/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Until recently, few therapeutic options, other than symptomatic treatment, were available for patients with primary progressive multiple sclerosis (PPMS). Ocrelizumab is the only approved treatment in this indication, and only since 2017. However, many patients in France are receiving off-label treatments for PPMS, mainly rituximab, mycophenolate mofetil, methotrexate, cyclophosphamide, and azathioprine. OBJECTIVE To evaluate published data concerning the efficacy of these five treatments frequently used as off-label disease-modifying therapies. METHODS We reviewed and summarized the studies published in Pubmed since the inception of the database. RESULTS Evidence from randomized controlled trials is lacking to support the use of these treatments as disease-modifying therapies in PPMS. CONCLUSION The literature lacks dedicated studies to support the off-label use of these disease-modifying therapies in PPMS. However, some limited data are available in the literature suggesting that the use of rituximab and cyclophosphamide could potentially be of some interest in specific subpopulations.
Collapse
Affiliation(s)
- T Chedid
- Hospital Center of Périgueux, 80, avenue Georges Pompidou, 24000 Périgueux, France.
| | - X Moisset
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France
| | - P Clavelou
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Li V, Leurent B, Barkhof F, Braisher M, Cafferty F, Ciccarelli O, Eshaghi A, Gray E, Nicholas JM, Parmar M, Peryer G, Robertson J, Stallard N, Wason J, Chataway J. Designing Multi-arm Multistage Adaptive Trials for Neuroprotection in Progressive Multiple Sclerosis. Neurology 2022; 98:754-764. [PMID: 35321926 PMCID: PMC9109150 DOI: 10.1212/wnl.0000000000200604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
There are few treatments shown to slow disability progression in progressive multiple sclerosis (PMS). One challenge has been efficiently testing the pipeline of candidate therapies from preclinical studies in clinical trials. Multi-arm multistage (MAMS) platform trials may accelerate evaluation of new therapies compared to traditional sequential clinical trials. We describe a MAMS design in PMS focusing on selection of interim and final outcome measures, sample size, and statistical considerations. The UK MS Society Expert Consortium for Progression in MS Clinical Trials reviewed recent phase II and III PMS trials to inform interim and final outcome selection and design measures. Simulations were performed to evaluate trial operating characteristics under different treatment effect, recruitment rate, and sample size assumptions. People with MS formed a patient and public involvement group and contributed to the trial design, ensuring it would meet the needs of the MS community. The proposed design evaluates 3 experimental arms compared to a common standard of care arm in 2 stages. Stage 1 (interim) outcome will be whole brain atrophy on MRI at 18 months, assessed for 123 participants per arm. Treatments with sufficient evidence for slowing brain atrophy will continue to the second stage. The stage 2 (final) outcome will be time to 6-month confirmed disability progression, based on a composite clinical score comprising the Expanded Disability Status Scale, Timed 25-Foot Walk test, and 9-Hole Peg Test. To detect a hazard ratio of 0.75 for this primary final outcome with 90% power, 600 participants per arm are required. Assuming one treatment progresses to stage 2, the trial will recruit ≈1,900 participants and last ≈6 years. This is approximately two-thirds the size and half the time of separate 2-arm phase II and III trials. The proposed MAMS trial design will substantially reduce duration and sample size compared to traditional clinical trials, accelerating discovery of effective treatments for PMS. The design was well-received by people with multiple sclerosis. The practical and statistical principles of MAMS trial design may be applicable to other neurodegenerative conditions to facilitate efficient testing of new therapies.
Collapse
Affiliation(s)
- Vivien Li
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Baptiste Leurent
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Frederik Barkhof
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Marie Braisher
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Fay Cafferty
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Olga Ciccarelli
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Arman Eshaghi
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Emma Gray
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Jennifer M Nicholas
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Mahesh Parmar
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Guy Peryer
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Jenny Robertson
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Nigel Stallard
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - James Wason
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| | - Jeremy Chataway
- From the Florey Institute of Neuroscience and Mental Health (V.L.), University of Melbourne; Department of Neurology (V.L.), Royal Melbourne Hospital, Australia; Department of Medical Statistics (B.L., J.M.N.) and International Statistics and Epidemiology Group (B.L.), London School of Hygiene and Tropical Medicine, UK; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (F.B.), VU University Medical Center, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing (F.B.), Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre (M.B., O.C.), and NMR Unit, Department of Neuroinflammation (A.E.), Faculty of Brain Sciences, UCL Queen Square Institute of Neurology; MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology (F.C., M.P., J.C.), and Department of Computer Science, Centre for Medical Image Computing (A.E.), University College London; National Institute for Health Research (F.B., O.C., J.C.), University College London Hospitals Biomedical Research Centre; UK Multiple Sclerosis Society (E.G., G.P., J.R.), London; Faculty of Medicine and Health Sciences (G.P.), University of East Anglia, Norwich; Statistics and Epidemiology, Division of Health Sciences (N.S.), Warwick Medical School, University of Warwick, Coventry; and Population Health Sciences Institute (J.W.), Newcastle University, UK
| |
Collapse
|
10
|
Mariottini A, Bulgarini G, Forci B, Innocenti C, Mealli F, Mattei A, Ceccarelli C, Repice AM, Barilaro A, Mechi C, Saccardi R, Massacesi L. Autologous hematopoietic stem cell transplantation vs low-dose immunosuppression in secondary-progressive multiple sclerosis. Eur J Neurol 2022; 29:1708-1718. [PMID: 35146841 PMCID: PMC9306891 DOI: 10.1111/ene.15280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Background and purpose Effectiveness of autologous haematopoietic stem cell transplantation (AHSCT) in relapsing–remitting multiple sclerosis (MS) is well known, but in secondary–progressive (SP)‐MS it is still controversial. Therefore, AHSCT activity was evaluated in SP‐MS using low‐dose immunosuppression with cyclophosphamide (Cy) as a comparative treatment. Methods In this retrospective monocentric 1:2 matched study, SP‐MS patients were treated with intermediate‐intensity AHSCT (cases) or intravenous pulses of Cy (controls) at a single academic centre in Florence. Controls were selected according to baseline characteristics adopting cardinality matching after trimming on the estimated propensity score. Kaplan–Meier and Cox analyses were used to estimate survival free from relapses (R‐FS), survival free from disability progression (P‐FS), and no evidence of disease activity 2 (NEDA‐2). Results A total of 93 SP‐MS patients were included: 31 AHSCT, 62 Cy. Mean follow‐up was 99 months in the AHSCT group and 91 months in the Cy group. R‐FS was higher in AHSCT compared to Cy patients: at Year 5, 100% versus 52%, respectively (p < 0.0001). P‐FS did not differ between the groups (at Year 5: 70% in AHSCT and 81% in Cy, p = 0.572), nor did NEDA‐2 (p = 0.379). A sensitivity analysis including only the 31 “best‐matched” controls confirmed these results. Three neoplasms (2 Cy, 1 AHSCT) and two fatalities (2 Cy) occurred. Conclusions This study provides Class III evidence, in SP‐MS, on the superior effectiveness of AHSCT compared to Cy on relapse activity, without differences on disability accrual. Although the suppression of relapses was observed in the AHSCT group only, AHSCT did not show advantages over Cy on disability, suggesting that in SP‐MS disability progression becomes based more on noninflammatory neurodegeneration than on inflammation.
Collapse
Affiliation(s)
- Alice Mariottini
- Department of Neurosciences Drug and Child Health, University of Florence, Florence, Italy.,Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| | - Giovanni Bulgarini
- Department of Neurosciences Drug and Child Health, University of Florence, Florence, Italy
| | - Benedetta Forci
- Department of Neurosciences Drug and Child Health, University of Florence, Florence, Italy
| | - Chiara Innocenti
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Fabrizia Mealli
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, Florence, Italy.,Florence Centre for Data Science, Florence, Italy
| | - Alessandra Mattei
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, Florence, Italy.,Florence Centre for Data Science, Florence, Italy
| | - Chiara Ceccarelli
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| | - Alessandro Barilaro
- Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| | - Claudia Mechi
- Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences Drug and Child Health, University of Florence, Florence, Italy.,Department of Neurology, Tuscan Region MS Referral Centre, Careggi University Hospital, Florence, Italy
| |
Collapse
|
11
|
McAdams M, Stankiewicz JM, Weiner HL, Chitnis T. Review of Phase III Clinical Trials Outcomes in Patients with Secondary Progressive Multiple Sclerosis. Mult Scler Relat Disord 2021; 54:103086. [PMID: 34289435 DOI: 10.1016/j.msard.2021.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Few satisfyingly effective treatments exist for patients with Secondary Progressive Multiple Sclerosis (SPMS). Our goal in conducting this review is to highlight clinical outcomes and study design, which may be applied to future phase III clinical trials for patients with SPMS. METHODS A review of the available literature of phase III clinical trials since 1990 that specifically studied patients with SPMS. PubMed and ClinicalTrials.org were searched using appropriate terms. RESULTS Expanded Disability Status Scale (EDSS) was most often used as an outcome measure, with time to confirmed disability progression at three months being used most often. Components of the Multiple Sclerosis Functional Composite (MSFC) were the next most frequent primary outcome measure used. Patient Reported Outcomes (PROs) were frequently used as secondary outcome measures with specific PROs more successful than others. MRI measures related to brain parenchymal volume have recently started to be used in phase III clinical trials. CONCLUSIONS Some successful trials may have been related to patient selection for less inflammatory disease, which confounds the comparison between successful trials. Time to confirmed disability at three months or changes in composite MSFC are reasonable primary outcome measures to use in future SPMS trials with a suggestion that the MSFC may be more sensitive to progressive disease changes. PROs and MRI measures following brain parenchymal volume are reasonable secondary outcome measures to incorporate into future phase III trials in SPMS.
Collapse
Affiliation(s)
- Matthew McAdams
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
| | - James M Stankiewicz
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
| | - Howard L Weiner
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
| | - Tanuja Chitnis
- Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Rolfes L, Pawlitzki M, Pfeuffer S, Huntemann N, Wiendl H, Ruck T, Meuth SG. Failed, Interrupted, or Inconclusive Trials on Immunomodulatory Treatment Strategies in Multiple Sclerosis: Update 2015-2020. BioDrugs 2021; 34:587-610. [PMID: 32785877 PMCID: PMC7519896 DOI: 10.1007/s40259-020-00435-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, multiple sclerosis (MS) treatment has experienced vast changes resulting from major advances in disease-modifying therapies (DMT). Looking at the overall number of studies, investigations with therapeutic advantages and encouraging results are exceeded by studies of promising compounds that failed due to either negative or inconclusive results or have been interrupted for other reasons. Importantly, these failed clinical trials are informative experiments that can help us to understand the pathophysiological mechanisms underlying MS. In several trials, concepts taken from experimental models were not translatable to humans, although they did not lack a well-considered pathophysiological rationale. The lessons learned from these discrepancies may benefit future studies and reduce the risks for patients. This review summarizes trials on MS since 2015 that have either failed or have been interrupted for various reasons. We identify potential causes of failure or inconclusiveness, looking at the path from basic animal experiments to clinical trials, and discuss the implications for our current view on MS pathogenesis, clinical practice, and future study designs. We focus on anti-inflammatory treatment strategies, without including studies on already approved and effective DMT. Clinical trials addressing neuroprotective and alternative treatment strategies are presented in a separate article.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Marc Pawlitzki
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Steffen Pfeuffer
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Niklas Huntemann
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
13
|
Jalipa FG, Espiritu A, Pasco PM. Re-examining the effects of high-dose intravenous methylprednisolone for secondary progressive multiple sclerosis. Neurodegener Dis Manag 2021; 11:177-185. [PMID: 33703936 DOI: 10.2217/nmt-2020-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background/objective: Intravenous methylprednisolone (IVMP) is previously given to secondary progressive multiple sclerosis (SPMS) patients. This study aimed to re-examine the effects of IVMP in SPMS. Materials & methods: Major electronic databases were searched for randomized controlled trials. Results: Four randomized controlled trials were included. IVMP may be inferior to mitoxantrone (MTX) in terms of expanded disability status scale (EDSS) improvement. There was no significant difference in terms of EDSS reduction and magnetic resonance imaging (MRI) plaque reduction when IVMP + MTX were compared with MTX. There is no significant difference between IVMP and cyclophosphamide based on EDSS progression and relapse reduction. Conclusion: IVMP should not be routinely used as treatment for SPMS and is not recommended as an alternative treatment for SPMS.
Collapse
Affiliation(s)
- Francis Gerwin Jalipa
- Division of Adult Neurology, Department of Neurosciences, University of The Philippines Manila - Philippine General Hospital, Manila, The Philippines
| | - Adrian Espiritu
- Division of Adult Neurology, Department of Neurosciences, University of The Philippines Manila - Philippine General Hospital, Manila, The Philippines.,Department of Clinical Epidemiology, College of Medicine, University of The Philippines Manila, Manila, The Philippines
| | - Paul Matthew Pasco
- Division of Adult Neurology, Department of Neurosciences, University of The Philippines Manila - Philippine General Hospital, Manila, The Philippines
| |
Collapse
|
14
|
A potential role for cyclophosphamide in the mitigation of acute respiratory distress syndrome among patients with SARS-CoV-2. Med Hypotheses 2020; 144:109850. [PMID: 32526511 PMCID: PMC7244432 DOI: 10.1016/j.mehy.2020.109850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2023]
Abstract
While humanity struggles to develop a vaccine against SARS-CoV-2, it is imperative that effective and affordable therapeutic strategies be evolved. Since a majority of the SARS-CoV-2 deaths are due to acute respiratory distress syndrome (ARDS), a strategy to mitigate the same could save countless lives. Since SARS-CoV-2 related ARDS has a strong immunological component, many investigators are utilizing monoclonal antibodies against IL-6, TNF-alpha and CCR5. However, targeting a single cytokine with an expensive monoclonal antibody could be a less pragmatic approach. We propose the use of cyclophosphamide as an immunomodulator, given its proven role in various settings including autoimmune diseases, and in the post-haploidentical stem cell transplant. Cyclophosphamide could deplete cytotoxic and effector T cell populations while relatively sparing the regulatory T cells (Tregs). Cyclophosphamide could tip the balance away from the overtly pro-inflammatory and could be a less expensive and effective alternative to the currently investigated monoclonal antibodies.
Collapse
|
15
|
Macaron G, Ontaneda D. Diagnosis and Management of Progressive Multiple Sclerosis. Biomedicines 2019; 7:E56. [PMID: 31362384 PMCID: PMC6784028 DOI: 10.3390/biomedicines7030056] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system that results in varying degrees of disability. Progressive multiple sclerosis, characterized by a steady increase in neurological disability independently of relapses, can occur from onset (primary progressive) or after a relapsing-remitting course (secondary progressive). As opposed to active inflammation seen in the relapsing-remitting phases of the disease, the gradual worsening of disability in progressive multiple sclerosis results from complex immune mechanisms and neurodegeneration. A few anti-inflammatory disease-modifying therapies with a modest but significant effect on measures of disease progression have been approved for the treatment of progressive multiple sclerosis. The treatment effect of anti-inflammatory agents is particularly observed in the subgroup of patients with younger age and evidence of disease activity. For this reason, a significant effort is underway to develop molecules with the potential to induce myelin repair or halt the degenerative process. Appropriate trial methodology and the development of clinically meaningful disability outcome measures along with imaging and biological biomarkers of progression have a significant impact on the ability to measure the efficacy of potential medications that may reverse disease progression. In this issue, we will review current evidence on the physiopathology, diagnosis, measurement of disability, and treatment of progressive multiple sclerosis.
Collapse
Affiliation(s)
- Gabrielle Macaron
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Baker D, Jacobs BM, Gnanapavan S, Schmierer K, Giovannoni G. Plasma cell and B cell-targeted treatments for use in advanced multiple sclerosis. Mult Scler Relat Disord 2019; 35:19-25. [PMID: 31279232 DOI: 10.1016/j.msard.2019.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that agents that target peripheral B cells and in some instances plasma cells can exhibit marked effects on relapsing multiple sclerosis. In addition, B cells, including plasma cells, within the central nervous system compartment are likely to play an important role in disease progression in both relapsing and progressive MS. However, current B cell-targeting antibodies may not inhibit these, because of poor penetration into the central nervous system and often oligoclonal bands of immunoglobulin persist within the cerebrospinal fluid despite immunotherapy. Through targeting B cells and plasma cells in the CNS, it may be possible to obtain additional benefit above simple peripheral depletion of B cells. As such there are a number of inhibitors of B cell function and B cell depleting agents that have been developed for myeloma and B cell leukaemia and lymphoma, which could potentially be used off-label or as an experimental treatment for advanced (progressive) MS.
Collapse
Affiliation(s)
- David Baker
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom.
| | - Benjamin M Jacobs
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Sharmilee Gnanapavan
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| | - Klaus Schmierer
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| | - Gavin Giovannoni
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
17
|
Marques VD, Passos GRD, Mendes MF, Callegaro D, Lana-Peixoto MA, Comini-Frota ER, Vasconcelos CCF, Sato DK, Ferreira MLB, Parolin MKF, Damasceno A, Grzesiuk AK, Muniz A, Matta APDC, Oliveira BESD, Tauil CB, Maciel DRK, Diniz DS, Corrêa EC, Coronetti F, Jorge FMH, Sato HK, Gonçalves MVM, Sousa NADC, Nascimento OJM, Gama PDD, Domingues R, Simm RF, Thomaz RB, Morales RDR, Dias RM, Apóstolos-Pereira SD, Machado SCN, Junqueira TDF, Becker J. Brazilian Consensus for the Treatment of Multiple Sclerosis: Brazilian Academy of Neurology and Brazilian Committee on Treatment and Research in Multiple Sclerosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 76:539-554. [PMID: 30231128 DOI: 10.1590/0004-282x20180078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022]
Abstract
The expanding therapeutic arsenal in multiple sclerosis (MS) has allowed for more effective and personalized treatment, but the choice and management of disease-modifying therapies (DMTs) is becoming increasingly complex. In this context, experts from the Brazilian Committee on Treatment and Research in Multiple Sclerosis and the Neuroimmunology Scientific Department of the Brazilian Academy of Neurology have convened to establish this Brazilian Consensus for the Treatment of MS, based on their understanding that neurologists should be able to prescribe MS DMTs according to what is better for each patient, based on up-to-date evidence and practice. We herein propose practical recommendations for the treatment of MS, with the main focus on the choice and management of DMTs, as well as present a review of the scientific rationale supporting therapeutic strategies in MS.
Collapse
Affiliation(s)
- Vanessa Daccach Marques
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Hospital das Clínicas de Ribeirão Preto, Ribeirão Preto SP, Brasil
| | | | - Maria Fernanda Mendes
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brasil
| | - Dagoberto Callegaro
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brasil
| | - Marco Aurélio Lana-Peixoto
- Universidade Federal de Minas Gerais, Centro de Investigação em Esclerose Múltipla de Minas Gerais, Belo Horizonte MG, Brasil
| | | | | | | | | | | | | | | | | | | | | | - Carlos Bernardo Tauil
- Universidade de Brasília, Brasília DF, Brasil.,Universidade Católica de Brasília, Brasília DF, Brasil
| | | | | | | | | | - Frederico M H Jorge
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brasil
| | | | | | | | | | | | - Renan Domingues
- Senne Líquor Diagnóstico, São Paulo SP, Brasil.,Hospital Cruz Azul, São Paulo SP, Brasil.,Faculdade São Leopoldo Mandic, Campinas SP, Brasil
| | - Renata Faria Simm
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brasil
| | | | | | | | | | | | | | - Jefferson Becker
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre RS, Brasil.,Universidade Federal Fluminense, Niterói RJ, Brasil
| |
Collapse
|
18
|
Therapeutic Advances and Challenges in the Treatment of Progressive Multiple Sclerosis. Drugs 2018; 78:1549-1566. [DOI: 10.1007/s40265-018-0984-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Treatment of progressive multiple sclerosis: Challenges and promising perspectives. Rev Neurol (Paris) 2018; 174:441-448. [DOI: 10.1016/j.neurol.2018.01.370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022]
|
20
|
|
21
|
Abstract
Accumulating neurological disability has a substantial impact on the lives of patients with multiple sclerosis (MS). As well as the established Expanded Disability Status Scale (EDSS), several other outcome measures are now available for assessing disability progression in MS. This review extends the findings of a previous analysis of relapsing-remitting MS (RRMS) trials published up to 2012, to determine whether there has been a shift in outcome measures used to assess disability in phase III clinical trials in RRMS and progressive MS. Forty relevant trials were identified (RRMS, n = 16; progressive MS, n = 18; other/mixed phenotypes, n = 6). Sustained EDSS worsening, particularly over 3 months, was included as an endpoint in almost all identified trials. Other disability-related endpoints included the Multiple Sclerosis Functional Composite z-score and scores for the physical component summary of the Multiple Sclerosis Impact Scale and Medical Outcomes Study Short-Form (36-item) Health Survey. Tests assessing manual dexterity, ambulation, vision and cognition were also employed, and in some trials, composite endpoints were used. However, there was no obvious trend in choice of disability outcome measures over time. Sustained EDSS worsening over short time periods continues to be the most widely used measure of disability progression in pivotal MS trials, despite its well-recognised limitations. A new tool set is needed for use in MS clinical trials that detects the benefit of potential treatments that slow (or reverse) progressive disability.
Collapse
|
22
|
Nandoskar A, Raffel J, Scalfari AS, Friede T, Nicholas RS. Pharmacological Approaches to the Management of Secondary Progressive Multiple Sclerosis. Drugs 2017; 77:885-910. [PMID: 28429241 DOI: 10.1007/s40265-017-0726-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is well recognised that the majority of the impact of multiple sclerosis (MS), both personal and societal, arises in the progressive phase where disability accumulates inexorably. As such, progressive MS (PMS) has been the target of pharmacological therapies for many years. However, there are no current licensed treatments for PMS. This stands in marked contrast to relapsing remitting MS (RRMS) where trials have resulted in numerous licensed therapies. PMS has proven to be a more difficult challenge compared to RRMS and this review focuses on secondary progressive MS (SPMS), where relapses occur before the onset of gradual, irreversible disability, and not primary progressive MS where disability accumulation occurs without prior relapses. Although there are similarities between the two forms, in both cases pinpointing when PMS starts is difficult in a condition in which disability can vary from day to day. There is also an overlap between the pathology of relapsing and progressive MS and this has contributed to the lack of well-defined outcomes, both surrogates and clinically relevant outcomes in PMS. In this review, we used the search term 'randomised controlled clinical drug trials in secondary progressive MS' in publications since 1988 together with recently completed trials where results were available. We found 34 trials involving 21 different molecules, of which 38% were successful in reaching their primary outcome. In general, the trials were well designed (e.g. double blind) with sample sizes ranging from 35 to 1949 subjects. The majority were parallel group, but there were also multi-arm and multidose trials as well as the more recent use of adaptive designs. The disability outcome most commonly used was the Expanded Disability Status Scale (EDSS) in all phases, but also magnetic resonance imaging (MRI)-measured brain atrophy has been utilised as a surrogate endpoint in phase II studies. The majority of the treatments tested in SPMS over the years were initially successful in RRMS. This has a number of implications in terms of targeting SPMS, but principally implies that the optimal strategy to target SPMS is to utilise the prodrome of relapses to initiate a therapy that will aim to both prevent progression and slow its accumulation. This approach is in agreement with the early targeting of MS but requires treatments that are both effective and safe if it is to be used before disability is a major problem. Recent successes will hopefully result in the first licensed therapy for PMS and enable us to test this approach.
Collapse
Affiliation(s)
- A Nandoskar
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - J Raffel
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - A S Scalfari
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - T Friede
- Department of Medical Statistics, University Medical Center Göttingen, Humboltallee 32, 37073, Göttingen, Germany
| | - R S Nicholas
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|