1
|
The microprotein Nrs1 rewires the G1/S transcriptional machinery during nitrogen limitation in budding yeast. PLoS Biol 2022; 20:e3001548. [PMID: 35239649 PMCID: PMC8893695 DOI: 10.1371/journal.pbio.3001548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Commitment to cell division at the end of G1 phase, termed Start in the budding yeast Saccharomyces cerevisiae, is strongly influenced by nutrient availability. To identify new dominant activators of Start that might operate under different nutrient conditions, we screened a genome-wide ORF overexpression library for genes that bypass a Start arrest caused by absence of the G1 cyclin Cln3 and the transcriptional activator Bck2. We recovered a hypothetical gene YLR053c, renamed NRS1 for Nitrogen-Responsive Start regulator 1, which encodes a poorly characterized 108 amino acid microprotein. Endogenous Nrs1 was nuclear-localized, restricted to poor nitrogen conditions, induced upon TORC1 inhibition, and cell cycle-regulated with a peak at Start. NRS1 interacted genetically with SWI4 and SWI6, which encode subunits of the main G1/S transcription factor complex SBF. Correspondingly, Nrs1 physically interacted with Swi4 and Swi6 and was localized to G1/S promoter DNA. Nrs1 exhibited inherent transactivation activity, and fusion of Nrs1 to the SBF inhibitor Whi5 was sufficient to suppress other Start defects. Nrs1 appears to be a recently evolved microprotein that rewires the G1/S transcriptional machinery under poor nitrogen conditions. Commitment to cell division at the end of G1 phase in the budding yeast Saccharomyces cerevisiae is strongly influenced by nutrient availability. This study identifies a micro-protein that promotes G1/S transcription activation and cell cycle entry in yeast under nitrogen-limited conditions.
Collapse
|
2
|
Zencir S, Dilg D, Rueda MP, Shore D, Albert B. Mechanisms coordinating ribosomal protein gene transcription in response to stress. Nucleic Acids Res 2020; 48:11408-11420. [PMID: 33084907 PMCID: PMC7672434 DOI: 10.1093/nar/gkaa852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 11/14/2022] Open
Abstract
While expression of ribosomal protein genes (RPGs) in the budding yeast has been extensively studied, a longstanding enigma persists regarding their co-regulation under fluctuating growth conditions. Most RPG promoters display one of two distinct arrangements of a core set of transcription factors (TFs) and are further differentiated by the presence or absence of the HMGB protein Hmo1. However, a third group of promoters appears not to be bound by any of these proteins, raising the question of how the whole suite of genes is co-regulated. We demonstrate here that all RPGs are regulated by two distinct, but complementary mechanisms driven by the TFs Ifh1 and Sfp1, both of which are required for maximal expression in optimal conditions and coordinated downregulation upon stress. At the majority of RPG promoters, Ifh1-dependent regulation predominates, whereas Sfp1 plays the major role at all other genes. We also uncovered an unexpected protein homeostasis-dependent binding property of Hmo1 at RPG promoters. Finally, we show that the Ifh1 paralog Crf1, previously described as a transcriptional repressor, can act as a constitutive RPG activator. Our study provides a more complete picture of RPG regulation and may serve as a paradigm for unravelling RPG regulation in multicellular eukaryotes.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Daniel Dilg
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Maria Paula Rueda
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
3
|
Li B, Liu X, Wang WJ, Zhao F, An ZY, Zhao H. Metanetwork Transmission Model for Predicting a Malaria-Control Strategy. Front Genet 2018; 9:446. [PMID: 30386373 PMCID: PMC6199348 DOI: 10.3389/fgene.2018.00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/14/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Mosquitoes are the primary vectors responsible for malaria transmission to humans, with numerous experiments having been conducted to aid in the control of malaria transmission. One of the main approaches aims to develop malaria parasite resistance within the mosquito population by introducing a resistance (R) allele. However, when considering this approach, some critical factors, such as the life of the mosquito, female mosquito fertility capacity, and human and mosquito mobility, have not been considered. Thus, an understanding of how mosquitoes and humans affect disease dynamics is needed to better inform malaria control policymaking. Methods: In this study, a method was proposed to create a metanetwork on the basis of the geographic maps of Gambia, and a model was constructed to simulate evolution within a mixed population, with factors such as birth, death, reproduction, biting, infection, incubation, recovery, and transmission between populations considered in the network metrics. First, the same number of refractory mosquitoes (RR genotype) was introduced into each population, and the prevalence of the R allele (the ratio of resistant alleles to all alleles) and malaria were examined. In addition, a series of simulations were performed to evaluate two different deployment strategies for the reduction of the prevalence of malaria. The R allele and malaria prevalence were calculated for both the strategies, with 10,000 refractory mosquitoes deployed into randomly selected populations or selection based on nodes with top-betweenness values. The 10,000 mosquitoes were deployed among 1, 5, 10, 20, or 40 populations. Results: The simulations in this paper showed that a higher RR genotype (resistant-resistant genes) ratio leads to a higher R allele prevalence and lowers malaria prevalence. Considering the cost of deployment, the simulation was performed with 10,000 refractory mosquitoes deployed among 1 or 5 populations, but this approach did not reduce the original malaria prevalence. Thus, instead, the 10,000 refractory mosquitoes were distributed among 10, 20, or 40 populations and were shown to effectively reduce the original malaria prevalence. Thus, deployment among a relatively small fraction of central nodes can offer an effective strategy to reduce malaria. Conclusion: The standard network centrality measure is suitable for planning the deployment of refractory mosquitoes. Importance: Malaria is an infectious disease that is caused by a plasmodial parasite, and some control strategies have focused on genetically modifying the mosquitoes. This work aims to create a model that takes into account mosquito development and malaria transmission among the population and how these factors influence disease dynamics so as to better inform malaria-control policymaking.
Collapse
Affiliation(s)
- Bo Li
- Shandong Technology and Business University, School of Computer Science and Technology, Yantai, China
- Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Xiao Liu
- Northeastern University, School of Computer Science and Engineering, Shenyang, China
| | - Wen-Juan Wang
- Yantai Yuhuangding Hospital of Qingdao University, Reproduction Medical Center, Yantai, China
| | - Feng Zhao
- Shandong Technology and Business University, School of Computer Science and Technology, Yantai, China
- Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Zhi-Yong An
- Shandong Technology and Business University, School of Computer Science and Technology, Yantai, China
- Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Hai Zhao
- Northeastern University, School of Computer Science and Engineering, Shenyang, China
| |
Collapse
|
4
|
Diepeveen ET, Gehrmann T, Pourquié V, Abeel T, Laan L. Patterns of Conservation and Diversification in the Fungal Polarization Network. Genome Biol Evol 2018; 10:1765-1782. [PMID: 29931311 PMCID: PMC6054225 DOI: 10.1093/gbe/evy121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
The combined actions of proteins in networks underlie all fundamental cellular functions. Deeper insights into the dynamics of network composition across species and their functional consequences are crucial to fully understand protein network evolution. Large-scale comparative studies with high phylogenetic resolution are now feasible through the recent rise in available genomic data sets of both model and nonmodel species. Here, we focus on the polarity network, which is universally essential for cell proliferation and studied in great detail in the model organism, Saccharomyces cerevisiae. We examine 42 proteins, directly related to cell polarization, across 298 fungal strains/species to determine the composition of the network and patterns of conservation and diversification. We observe strong protein conservation for a group of 23 core proteins: >95% of all examined strains/species possess at least 14 of these core proteins, albeit in varying compositions, and non of the individual core proteins is 100% conserved. We find high levels of variation in prevalence and sequence identity in the remaining 19 proteins, resulting in distinct lineage-specific compositions of the network in the majority of strains/species. We show that the observed diversification in network composition correlates with lineage, lifestyle, and genetic distance. Yeast, filamentous and basal unicellular fungi, form distinctive groups based on these analyses, with substantial differences to their polarization network. Our study shows that the fungal polarization network is highly dynamic, even between closely related species, and that functional conservation appears to be achieved by varying the specific components of the fungal polarization repertoire.
Collapse
Affiliation(s)
- Eveline T Diepeveen
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, The Netherlands
| | - Thies Gehrmann
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Intelligent Systems, Delft University of Technology, The Netherlands
- Department of Molecular Epidemiology, Leiden Computational Biology Center, Leiden University Medical Centre, The Netherlands
| | - Valérie Pourquié
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, The Netherlands
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Intelligent Systems, Delft University of Technology, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics and Computer Science, Intelligent Systems, Delft University of Technology, The Netherlands
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts
| | - Liedewij Laan
- Department of Bionanoscience, Faculty of Applied Sciences, Kavli Institute of NanoScience, Delft University of Technology, The Netherlands
| |
Collapse
|
5
|
Abstract
The classic Darwinian theory and the Synthetic evolutionary theory and their linear models, while invaluable to study the origins and evolution of species, are not primarily designed to model the evolution of organisations, typically that of ecosystems, nor that of processes. How could evolutionary theory better explain the evolution of biological complexity and diversity? Inclusive network-based analyses of dynamic systems could retrace interactions between (related or unrelated) components. This theoretical shift from a Tree of Life to a Dynamic Interaction Network of Life, which is supported by diverse molecular, cellular, microbiological, organismal, ecological and evolutionary studies, would further unify evolutionary biology.
Collapse
Affiliation(s)
- Eric Bapteste
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), F-75005 Paris, France
- CNRS, UMR7138, Institut de Biologie Paris-Seine, F-75005 Paris, France
| | - Philippe Huneman
- Institut d’Histoire et de Philosophie des Sciences et des Techniques (CNRS / Paris I Sorbonne), F-75006 Paris, France
| |
Collapse
|
6
|
Abrhámová K, Nemčko F, Libus J, Převorovský M, Hálová M, Půta F, Folk P. Introns provide a platform for intergenic regulatory feedback of RPL22 paralogs in yeast. PLoS One 2018; 13:e0190685. [PMID: 29304067 PMCID: PMC5755908 DOI: 10.1371/journal.pone.0190685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023] Open
Abstract
Ribosomal protein genes (RPGs) in Saccharomyces cerevisiae are a remarkable regulatory group that may serve as a model for understanding genetic redundancy in evolutionary adaptations. Most RPGs exist as pairs of highly conserved functional paralogs with divergent untranslated regions and introns. We examined the roles of introns in strains with various combinations of intron and gene deletions in RPL22, RPL2, RPL16, RPL37, RPL17, RPS0, and RPS18 paralog pairs. We found that introns inhibited the expression of their genes in the RPL22 pair, with the RPL22B intron conferring a much stronger effect. While the WT RPL22A/RPL22B mRNA ratio was 93/7, the rpl22aΔi/RPL22B and RPL22A/rpl22bΔi ratios were >99/<1 and 60/40, respectively. The intron in RPL2A stimulated the expression of its own gene, but the removal of the other introns had little effect on expression of the corresponding gene pair. Rpl22 protein abundances corresponded to changes in mRNAs. Using splicing reporters containing endogenous intron sequences, we demonstrated that these effects were due to the inhibition of splicing by Rpl22 proteins but not by their RNA-binding mutant versions. Indeed, only WT Rpl22A/Rpl22B proteins (but not the mutants) interacted in a yeast three-hybrid system with an RPL22B intronic region between bp 165 and 236. Transcriptome analysis showed that both the total level of Rpl22 and the A/B ratio were important for maintaining the WT phenotype. The data presented here support the contention that the Rpl22B protein has a paralog-specific role. The RPL22 singleton of Kluyveromyces lactis, which did not undergo whole genome duplication, also responded to Rpl22-mediated inhibition in K. lactis cells. Vice versa, the overproduction of the K. lactis protein reduced the expression of RPL22A/B in S. cerevisiae. The extraribosomal function of of the K. lactis Rpl22 suggests that the loop regulating RPL22 paralogs of S. cerevisiae evolved from autoregulation.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Filip Nemčko
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Libus
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Hálová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
7
|
A High-Resolution Genome-Wide CRISPR/Cas9 Viability Screen Reveals Structural Features and Contextual Diversity of the Human Cell-Essential Proteome. Mol Cell Biol 2017; 38:MCB.00302-17. [PMID: 29038160 DOI: 10.1128/mcb.00302-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/11/2017] [Indexed: 11/20/2022] Open
Abstract
To interrogate genes essential for cell growth, proliferation and survival in human cells, we carried out a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 screen in a B-cell lymphoma line using a custom extended-knockout (EKO) library of 278,754 single-guide RNAs (sgRNAs) that targeted 19,084 RefSeq genes, 20,852 alternatively spliced exons, and 3,872 hypothetical genes. A new statistical analysis tool called robust analytics and normalization for knockout screens (RANKS) identified 2,280 essential genes, 234 of which were unique. Individual essential genes were validated experimentally and linked to ribosome biogenesis and stress responses. Essential genes exhibited a bimodal distribution across 10 different cell lines, consistent with a continuous variation in essentiality as a function of cell type. Genes essential in more lines had more severe fitness defects and encoded the evolutionarily conserved structural cores of protein complexes, whereas genes essential in fewer lines formed context-specific modules and encoded subunits at the periphery of essential complexes. The essentiality of individual protein residues across the proteome correlated with evolutionary conservation, structural burial, modular domains, and protein interaction interfaces. Many alternatively spliced exons in essential genes were dispensable and were enriched for disordered regions. Fitness defects were observed for 44 newly evolved hypothetical reading frames. These results illuminate the contextual nature and evolution of essential gene functions in human cells.
Collapse
|
8
|
Ghadie MA, Coulombe-Huntington J, Xia Y. Interactome evolution: insights from genome-wide analyses of protein-protein interactions. Curr Opin Struct Biol 2017; 50:42-48. [PMID: 29112911 DOI: 10.1016/j.sbi.2017.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
We highlight new evolutionary insights enabled by recent genome-wide studies on protein-protein interaction (PPI) networks ('interactomes'). While most PPIs are mediated by a single sequence region promoting or inhibiting interactions, many PPIs are mediated by multiple sequence regions acting cooperatively. Most PPIs perform important functions maintained by negative selection: we estimate that less than ∼10% of the human interactome is effectively neutral upon perturbation (i.e. 'junk' PPIs), and the rest are deleterious upon perturbation; interfacial sites evolve more slowly than other sites; many conserved PPIs show signatures of co-evolution at the interface; PPIs evolve more slowly than protein sequence. At the same time, many PPIs undergo rewiring during evolution for lineage-specific adaptation. Finally, chaperone-protein and host-pathogen interactomes are governed by distinct evolutionary principles.
Collapse
Affiliation(s)
- Mohamed A Ghadie
- Department of Bioengineering, McGill University, Montreal, Quebec H3C 0C3, Canada
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Yu Xia
- Department of Bioengineering, McGill University, Montreal, Quebec H3C 0C3, Canada.
| |
Collapse
|