1
|
Gupta SK, Gohil D, Momin MB, Yadav S, Chichra A, Punatar S, Gokarn A, Mirgh S, Jindal N, Nayak L, Hingorani L, Khattry N, Gota V. Withania Somnifera Extract Mitigates Experimental Acute Graft versus Host Disease Without Abrogating Graft Versus Leukemia Effect. Cell Transplant 2024; 33:9636897241226573. [PMID: 38258793 PMCID: PMC10807391 DOI: 10.1177/09636897241226573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Acute graft versus host disease (aGvHD) is the major contributor of nonrelapse mortality in alloHSCT. It is associated with an inflammatory immune response manifesting as cytokine storm with ensuing damage to target organs such as liver, gut, and skin. Prevention of aGvHD while retaining the beneficial graft versus leukemia (GvL) effect remains a major challenge. Withania somnifera extract (WSE) is known for its anti-inflammatory, immune-modulatory, and anticancer properties, which are appealing in the context of aGvHD. Herein, we demonstrated that prophylactic and therapeutic use of WSE in experimental model of alloHSCT mitigates aGvHD-associated morbidity and mortality. In the prophylaxis study, a dose of 75 mg/kg of WSE offered greatest protection against death due to aGvHD (hazard ratio [HR] = 0.15 [0.03-0.68], P ≤ .01), whereas 250 mg/kg was most effective for the treatment of aGvHD (HR = 0.16 [0.05-0.5], P ≤ .01). WSE treatment protected liver, gut, and skin from damage by inhibiting cytokine storm and lymphocytic infiltration to aGvHD target organs. In addition, WSE did not compromise the GvL effect, as alloHSCT with or without WSE did not allow the leukemic A20 cells to grow. In fact, WSE showed marginal antileukemic effect in vivo. WSE is currently under clinical investigation for the prevention and treatment of aGvHD.
Collapse
Affiliation(s)
- Saurabh Kumar Gupta
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Dievya Gohil
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mohd Bashar Momin
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Subhash Yadav
- Homi Bhabha National Institute, Mumbai, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Akanksha Chichra
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Sachin Punatar
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Anant Gokarn
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Sumeet Mirgh
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Nishant Jindal
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Lingaraj Nayak
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | | | - Navin Khattry
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Preciado S, Martínez-Villaluenga C, Rico D, Muntión S, García-Macías MC, Navarro-Bailón A, Martín-Diana AB, Sánchez-Guijo F. Effects of Dietary Supplementation with a Ferulic Acid-Rich Bioactive Component of Wheat Bran in a Murine Model of Graft-Versus-Host Disease. Nutrients 2023; 15:4582. [PMID: 37960235 PMCID: PMC10648738 DOI: 10.3390/nu15214582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Graft-versus-host disease (GvHD) is a common and severe complication following allogeneic hematopoietic stem cell transplantation (HSCT). Its prevention and treatment is a major challenge. Ferulic acid (FA) has anti-inflammatory and antioxidant properties that could be attractive in this setting. Our aim was to evaluate a bioactive ingredient derived from wheat bran (WB), selected for its high concentration of FA, in a murine model of GvHD. The ingredient was obtained via a bioprocess involving hydrolysis and spray-drying. GvHD was induced via HSCT between MHC-mismatched mouse strains. FA treatment was administered orally. Survival and disease scores (weight loss, hunching, activity, fur texture, and skin integrity, each scored between 0 and 2 depending on disease severity) were recorded daily, histological evaluation was performed at the end of the experiment, and serum inflammatory cytokines were analyzed on days 9 and 28. Treatment with FA did not protect GvHD mice from death, nor did it diminish GvHD scores. However, histological analysis showed that ulcers with large areas of inflammatory cells, vessels, and keratin were less common in skin samples from FA-treated mice. Areas of intense inflammatory response were also seen in fewer small intestine samples from treated mice. In addition, a slight decrease in INF-γ and TNF-α expression was observed in the serum of treated mice on day 28. The results showed some local effect of the ingredient intervention, but that the dose used may not be sufficient to control or reduce the inflammatory response at the systemic level in mice with GvHD. Higher dosages of FA may have an impact when evaluating the immunomodulatory capabilities of the hydrolyzed WB ingredient. Thus, further experiments and the use of technological strategies that enrich the ingredients in soluble ferulic acid to improve its efficacy in this setting are warranted.
Collapse
Affiliation(s)
- Silvia Preciado
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (S.M.); (A.N.-B.); (F.S.-G.)
- RICORS TERAV, ISCIII, 28029 Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 37007 Salamanca, Spain
| | | | - Daniel Rico
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (D.R.); (A.B.M.-D.)
| | - Sandra Muntión
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (S.M.); (A.N.-B.); (F.S.-G.)
- RICORS TERAV, ISCIII, 28029 Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 37007 Salamanca, Spain
| | | | - Almudena Navarro-Bailón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (S.M.); (A.N.-B.); (F.S.-G.)
- RICORS TERAV, ISCIII, 28029 Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 37007 Salamanca, Spain
| | - Ana Belén Martín-Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (D.R.); (A.B.M.-D.)
| | - Fermín Sánchez-Guijo
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; (S.M.); (A.N.-B.); (F.S.-G.)
- RICORS TERAV, ISCIII, 28029 Madrid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Iweala EJ, Oluwapelumi AE, Dania OE, Ugbogu EA. Bioactive Phytoconstituents and Their Therapeutic Potentials in the Treatment of Haematological Cancers: A Review. Life (Basel) 2023; 13:1422. [PMID: 37511797 PMCID: PMC10381774 DOI: 10.3390/life13071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 07/30/2023] Open
Abstract
Haematological (blood) cancers are the cancers of the blood and lymphoid forming tissues which represents approximately 10% of all cancers. It has been reported that approximately 60% of all blood cancers are incurable. Despite substantial improvement in access to detection/diagnosis, chemotherapy and bone marrow transplantation, there is still high recurrence and unpredictable but clearly defined relapses indicating that effective therapies are still lacking. Over the past two decades, medicinal plants and their biologically active compounds are being used as potential remedies and alternative therapies for the treatment of cancer. This is due to their anti-oxidant, anti-inflammatory, anti-mutagenic, anti-angiogenic, anti-cancer activities and negligible side effects. These bioactive compounds have the capacity to reduce proliferation of haematological cancers via various mechanisms such as promoting apoptosis, transcription regulation, inhibition of signalling pathways, downregulating receptors and blocking cell cycle. This review study highlights the mechanistic and beneficial effects of nine bioactive compounds (quercetin, ursolic acid, fisetin, resveratrol, epigallocatechin gallate, curcumin, gambogic acid, butein and celastrol) as potential remedies for chemoprevention of haematological cancers. The study provides useful insights on the effectiveness of the use of bioactive compounds from plants for chemoprevention of haematological cancers.
Collapse
Affiliation(s)
- Emeka J Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | - Adurosakin E Oluwapelumi
- Department of Microbiology, Ladoke Akintola University of Technology, Ogbomoso PMB 4000, Oyo State, Nigeria
| | - Omoremime E Dania
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | | |
Collapse
|
4
|
Tipanee J, Samara-Kuko E, Gevaert T, Chuah MK, VandenDriessche T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol Ther 2022; 30:3155-3175. [PMID: 35711141 PMCID: PMC9552804 DOI: 10.1016/j.ymthe.2022.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic CD19-specific chimeric antigen receptor (CAR) T cells with inactivated donor T cell receptor (TCR) expression can be used as an "off-the-shelf" therapeutic modality for lymphoid malignancies, thus offering an attractive alternative to autologous, patient-derived T cells. Current approaches for T cell engineering mainly rely on the use of viral vectors. Here, we optimized and validated a non-viral genetic modification platform based on Sleeping Beauty (SB) transposons delivered with minicircles to express CD19-28z.CAR and CRISPR-Cas9 ribonucleoparticles to inactivate allogeneic TCRs. Efficient TCR gene disruption was achieved with minimal cytotoxicity and with attainment of robust and stable CD19-28z.CAR expression. The CAR T cells were responsive to CD19+ tumor cells with antitumor activities that induced complete tumor remission in NALM6 tumor-bearing mice while significantly reducing TCR alloreactivity and GvHD development. Single CAR signaling induced the similar T cell signaling signatures in TCR-disrupted CAR T cells and control CAR T cells. In contrast, TCR disruption inhibited T cell signaling/protein phosphorylation compared with the control CAR T cells during dual CAR/TCR signaling. This non-viral SB transposon-CRISPR-Cas9 combination strategy serves as an alternative for generating next-generation CD19-specific CAR T while reducing GvHD risk and easing potential manufacturing constraints intrinsic to viral vectors.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Pareek S, Flegle AS, Boagni D, Kim JY, Yoo D, Trujillo-Ocampo A, Lee SE, Zhang M, Jon S, Im JS. Post Transplantation Bilirubin Nanoparticles Ameliorate Murine Graft Versus Host Disease via a Reduction of Systemic and Local Inflammation. Front Immunol 2022; 13:893659. [PMID: 35720391 PMCID: PMC9199387 DOI: 10.3389/fimmu.2022.893659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Allogeneic stem cell transplantation is a curative immunotherapy where patients receive myeloablative chemotherapy and/or radiotherapy, followed by donor stem cell transplantation. Graft versus host disease (GVHD) is a major complication caused by dysregulated donor immune system, thus a novel strategy to modulate donor immunity is needed to mitigate GVHD. Tissue damage by conditioning regimen is thought to initiate the inflammatory milieu that recruits various donor immune cells for cross-priming of donor T cells against alloantigen and eventually promote strong Th1 cytokine storm escalating further tissue damage. Bilirubin nanoparticles (BRNP) are water-soluble conjugated of bilirubin and polyethylene glycol (PEG) with potent anti-inflammatory properties through its ability to scavenge reactive oxygen species generated at the site of inflammation. Here, we evaluated whether BRNP treatment post-transplantation can reduce initial inflammation and subsequently prevent GVHD in a major histocompatibility (MHC) mismatched murine GVHD model. After myeloablative irradiation, BALB/c mice received bone marrow and splenocytes isolated from C57BL/6 mice, with or without BRNP (10 mg/kg) daily on days 0 through 4 post-transplantation, and clinical GVHD and survival was monitored for 90 days. First, BRNP treatment significantly improved clinical GVHD score compared to untreated mice (3.4 vs 0.3, p=0.0003), and this translated into better overall survival (HR 0.0638, p=0.0003). Further, BRNPs showed a preferential accumulation in GVHD target organs leading to a reduced systemic and local inflammation evidenced by lower pathologic GVHD severity as well as circulating inflammatory cytokines such as IFN-γ. Lastly, BRNP treatment post-transplantation facilitated the reconstitution of CD4+ iNK T cells and reduced expansion of proinflammatory CD8α+ iNK T cells and neutrophils especially in GVHD organs. Lastly, BRNP treatment decreased ICOS+ or CTLA-4+ T cells but not PD-1+ T cells suggesting a decreased level of T cell activation but maintaining T cell tolerance. In conclusion, we demonstrated that BRNP treatment post-transplantation ameliorates murine GVHD via diminishing the initial tissue damage and subsequent inflammatory responses from immune subsets.
Collapse
Affiliation(s)
- Sumedha Pareek
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Alexandra S Flegle
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Drew Boagni
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Jin Yong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dohyun Yoo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Abel Trujillo-Ocampo
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Sung-Eun Lee
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, Seoul, South Korea
| | - Mao Zhang
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Sangyong Jon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jin S Im
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States.,Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Ayyadurai VAS, Deonikar P. Bioactive compounds in green tea may improve transplant tolerance: A computational systems biology analysis. Clin Nutr ESPEN 2021; 46:439-452. [PMID: 34857232 DOI: 10.1016/j.clnesp.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/21/2021] [Accepted: 09/15/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Green tea (Camellia sinensis) has bioactive compounds that have been shown to possess nutritive effects on various biomolecular processes such as immunomodulation. This research explores the immunomodulatory effects of green tea in reducing transplant rejection. METHOD The study employs computational systems biology: 1) to identify biomolecular mechanisms of immunomodulation in transplant rejection; 2) to identify the bioactive compounds of green tea and their specific effects on mechanisms of immunomodulation in transplant rejection; and, 3) to predict the quantitative effects of those bioactive compounds on immunomodulation in transplant rejection. RESULTS Three bioactive compounds of green tea - epicatechin (EC), gallic acid (GA), and epigallocatechin gallate (EGCG), were identified for their potential effects on immunomodulation of transplant rejection. Of the three, EGCG was the only one determined to enhance anti-inflammatory activity by: 1) upregulating synthesis of HO-1 that is known to promote Treg and Th2 phenotypes associated with enabling transplant tolerance; and, 2) downregulating pro-inflammatory cytokines IL-2, IL-17, IFN-γ, TNF-α, NO, IL-6, and IL-1β that are known to promote Th1 and Th17 phenotypes associated with transplant rejection. CONCLUSIONS To the best of our knowledge, this study provides the first molecular mechanistic understanding the clinical nutritive value of green tea, specifically the bioactive compound EGCG, in enabling transplant tolerance.
Collapse
Affiliation(s)
- V A Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, 02138, USA.
| | - Prabhakar Deonikar
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, 02138, USA
| |
Collapse
|
7
|
Removal of CD276 + cells from haploidentical memory T-cell grafts significantly lowers the risk of GVHD. Bone Marrow Transplant 2021; 56:2336-2354. [PMID: 33976380 PMCID: PMC8486669 DOI: 10.1038/s41409-021-01307-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
Detrimental graft-versus-host disease (GVHD) still remains a major cause of death in hematopoietic stem cell transplantation (HSCT). The recently explored depletion of naive cells from mobilized grafts (CD45RA depletion) has shown considerable promise, yet is unable to eliminate the incidence of GVHD. Analysis of CD45RA-depleted haploidentical mixed lymphocytes culture (haplo-MLC) revealed insufficient suppression of alloresponses in the CD4+ compartment and identified CD276 as a marker for alloreactive memory Th1 T cells. Conclusively, depleting CD276+ cells from CD45RA-depleted haplo-MLC significantly attenuated alloreactivity to recipient cells while increasing antiviral reactivity and maintaining anti-third party reactivity in vitro. To evaluate these findings in vivo, bulk, CD45RA-depleted, or CD45RA/CD276-depleted CD4+ T cells from HLA-DR4negative healthy humans were transplanted into NSG-Ab°DR4 mice, a sensitive human allo-GVHD model. Compellingly, CD45RA/CD276-depleted grafts from HLA-DR4negative donors or in vivo depletion of CD276+ cells after transplant of HLA-DR4negative memory CD4 T cells significantly delay the onset of GVHD symptoms and significantly alleviate its severity in NSG-Ab°DR4 mice. The clinical courses correlated with diminished Th1-cytokine secretion and downregulated CXCR6 expression of engrafted peripheral T cells. Collectively, mismatched HLA-mediated GVHD can be controlled by depleting recipient-specific CD276+ alloreacting T cells from the graft, highlighting its application in haplo-HSCT.
Collapse
|
8
|
Singh Y, Salker MS, Lang F. Green Tea Polyphenol-Sensitive Calcium Signaling in Immune T Cell Function. Front Nutr 2021; 7:616934. [PMID: 33585537 PMCID: PMC7876374 DOI: 10.3389/fnut.2020.616934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
Polyphenol compounds found in green tea have a great therapeutic potential to influence multiple human diseases including malignancy and inflammation. In this mini review, we describe effects of green tea and the most important component EGCG in malignancy and inflammation. We focus on cellular mechanisms involved in the modification of T cell function by green tea polyphenol EGCG. The case is made that EGCG downregulates calcium channel activity by influencing miRNAs regulating expression of the channel at the post-transcriptional level.
Collapse
Affiliation(s)
- Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | | | - Florian Lang
- Institute of Vegetative and Clinical Physiology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
9
|
Alvarez-Laderas I, Ramos TL, Medrano M, Caracuel-García R, Barbado MV, Sánchez-Hidalgo M, Zamora R, Alarcón-de-la-Lastra C, Hidalgo FJ, Piruat JI, Caballero-Velázquez T, Pérez-Simón JA. Polyphenolic Extract (PE) from Olive Oil Exerts a Potent Immunomodulatory Effect and Prevents Graft-versus-Host Disease in a Mouse Model. Biol Blood Marrow Transplant 2019; 26:615-624. [PMID: 31756538 DOI: 10.1016/j.bbmt.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/22/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
Polyphenols are a group of chemical substances found in plants, with immunomodulatory, antiproliferative, and anti-inflammatory properties that might be useful in the prophylaxis and treatment of graft-versus-host disease (GVHD). Polyphenolic extract (PE) obtained from extra virgin olive oil (EVOO) decreased the activation and proliferation of activated T cells. In addition, a decreased production of proinflammatory cytokines was observed upon exposure to PE. Western blot assays showed a marked inhibition of Akt phosphorylation and nuclear translocation of NF-κB in activated T cells. In a murine model of acute GVHD, we observed that mice that received a diet supplemented in PE (600 ppm) presented a higher survival rate and lower risk of developing GVHD when compared with the group that received a control diet. Histopathologic examination showed a significantly lower gut involvement in mice receiving PE, with a decrease in proinflammatory cytokines (IL-2, IL-17, and TNF-α) in serum and the reestablishment of butyrate concentration in the gut. In conclusion, PE obtained from EVOO exerted a potent immunomodulatory effect, reducing the activation and proliferation of activated T cells and the production of proinflammatory cytokines. In a murine model of acute GVHD, a PE-supplemented diet reduced the incidence and severity of the disease and increased survival after transplantation.
Collapse
Affiliation(s)
- Isabel Alvarez-Laderas
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Teresa L Ramos
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Mayte Medrano
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Rocío Caracuel-García
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - María Victoria Barbado
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | | | - Rosario Zamora
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Campus Universitario-Edificio 46, Seville, Spain
| | | | - Francisco J Hidalgo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Campus Universitario-Edificio 46, Seville, Spain
| | - José Ignacio Piruat
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
10
|
Dutta D, Chong NS, Lim SH. Endogenous volatile organic compounds in acute myeloid leukemia: origins and potential clinical applications. J Breath Res 2018; 12:034002. [PMID: 29463782 DOI: 10.1088/1752-7163/aab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Not unlike many cancer types, acute myeloid leukemia (AML) exhibits many metabolic changes and reprogramming, causing changes in lipid metabolism. Some of the distinct molecular abnormalities associated with AML also modify the metabolic changes. Both processes result in changes in the production of endogenous volatile organic compounds (VOCs). The increasing availability of highly sensitive methods for detecting trace chemicals provides the opportunity to investigate the role of patient-specific VOC finger-prints as biomarkers for detecting early relapse or minimal residual disease in AML. Since VOC production is reliant on metabolic activities, when combined with currently available methods, VOC analysis may identify within a group of patients with flow cytometric or molecular evidence of residual disease those most at risk for disease relapse.
Collapse
Affiliation(s)
- Dibyendu Dutta
- Department of Professional Sciences, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | | | | |
Collapse
|