1
|
Sharypova EB, Drachkova IA, Chadaeva IV, Ponomarenko MP, Savinkova LK. An experimental study of the effects of SNPs in the TATA boxes of the <i>GRIN1, ASCL3</i> and <i>NOS1</i> genes on interactions with the TATA-binding protein. Vavilovskii Zhurnal Genet Selektsii 2022; 26:227-233. [PMID: 35774364 PMCID: PMC9167820 DOI: 10.18699/vjgb-22-29] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The GRIN1, ASCL3, and NOS1 genes are associated with various phenotypes of neuropsychiatric disorders. For instance, these genes contribute to the development of schizophrenia, Alzheimer’s and Parkinson’s diseases, and epilepsy. These genes are also associated with various cancers. For example, ASCL3 is overexpressed in breast cancer, and NOS1, in ovarian cancer cell lines. Based on our findings and literature data, we had previously obtained results suggesting that the single-nucleotide polymorphisms (SNPs) that disrupt erythropoiesis are highly likely to be associated with cognitive and neuropsychiatric disorders in humans. In the present work, using SNP_TATA_Z-tester, we investigated the influence of unannotated SNPs in the TATA boxes of the promoters of the GRIN1, ASCL3, and NOS1 genes (which are involved in neuropsychiatric disorders and cancers) on the interaction of the TATA boxes with the TATA-binding protein (TBP). Double-stranded oligodeoxyribonucleotides identical to the TATA-containing promoter regions of the GRIN1, ASCL3, and NOS1 genes (reference and minor alleles) and recombinant human TBP were employed to study in vitro (by an electrophoretic mobility shift assay) kinetic characteristics of the formation of TBP–TATA complexes and their affinity. It was found, for example, that allele A of rs1402667001 in the GRIN1 promoter increases TBP–TATA affinity 1.4-fold, whereas allele C in the TATA box of the ASCL3 promoter decreases the affinity 1.4-fold. The lifetime of the complexes in both cases decreased by ~20 % due to changes in the rates of association and dissociation of the complexes (ka and kd, respectively). Our experimental results are consistent with the literature showing GRIN1 underexpression in schizophrenic disorders as well as an increased risk of cervical, bladder, and kidney cancers and lymphoma during ASCL3 underexpression. The effect of allele A of the –27G>A SNP (rs1195040887) in the NOS1 promoter is suggestive of an increased risk of ischemic damage to the brain in carriers. A comparison of experimental TBP–TATA affinity values (KD) of wild-type and minor alleles with predicted ones showed that the data correlate well (linear correlation coefficient r = 0.94, p < 0.01).
Collapse
Affiliation(s)
- E. B. Sharypova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. A. Drachkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. V. Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - M. P. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - L. K. Savinkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
2
|
Mona M, Kobeissy F, Park YJ, Miller R, Saleh W, Koh J, Yoo MJ, Chen S, Cha S. Secretome Analysis of Inductive Signals for BM-MSC Transdifferentiation into Salivary Gland Progenitors. Int J Mol Sci 2020; 21:E9055. [PMID: 33260559 PMCID: PMC7730006 DOI: 10.3390/ijms21239055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Severe dry mouth in patients with Sjögren's Syndrome, or radiation therapy for patients with head and neck cancer, significantly compromises their oral health and quality of life. The current clinical management of xerostomia is limited to palliative care as there are no clinically-proven treatments available. Previously, our studies demonstrated that mouse bone marrow-derived mesenchymal stem cells (mMSCs) can differentiate into salivary progenitors when co-cultured with primary salivary epithelial cells. Transcription factors that were upregulated in co-cultured mMSCs were identified concomitantly with morphological changes and the expression of acinar cell markers, such as α-amylase (AMY1), muscarinic-type-3-receptor(M3R), aquaporin-5(AQP5), and a ductal cell marker known as cytokeratin 19(CK19). In the present study, we further explored inductive molecules in the conditioned media that led to mMSC reprogramming by high-throughput liquid chromatography with tandem mass spectrometry and systems biology. Our approach identified ten differentially expressed proteins based on their putative roles in salivary gland embryogenesis and development. Additionally, systems biology analysis revealed six candidate proteins, namely insulin-like growth factor binding protein-7 (IGFBP7), cysteine-rich, angiogenetic inducer, 61(CYR61), agrin(AGRN), laminin, beta 2 (LAMB2), follistatin-like 1(FSTL1), and fibronectin 1(FN1), for their potential contribution to mMSC transdifferentiation during co-culture. To our knowledge, our study is the first in the field to identify soluble inductive molecules that drive mMSC into salivary progenitors, which crosses lineage boundaries.
Collapse
Affiliation(s)
- Mahmoud Mona
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Firas Kobeissy
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Yun-Jong Park
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Rehae Miller
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
| | - Wafaa Saleh
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt;
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA;
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Seunghee Cha
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Khan E, Farooq I, Khabeer A, Ali S, Zafar MS, Khurshid Z. Salivary gland tissue engineering to attain clinical benefits: a special report. Regen Med 2020; 15:1455-1461. [PMID: 32253995 DOI: 10.2217/rme-2019-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The salivary glands produce saliva, which helps in mediating the oral colonization of microbes, the repair of mucosa, the remineralization of teeth, lubrication and gustation. However, certain medications, therapeutic radiation and certain autoimmune diseases can cause a reduction in the salivary flow. The aim of this report was to review and highlight the indications and techniques of salivary gland engineering to counter hyposalivation. This report concludes that in the literature, numerous strategies have been suggested and discussed pertaining to the engineering of salivary gland, however, challenges remain in terms of its production and accurate function. Dedicated efforts are required from researchers all over the world to obtain the maximum benefits from salivary gland engineering techniques.
Collapse
Affiliation(s)
- Erum Khan
- CODE-M Center of Dental Education & Medicine, Karachi, Pakistan.,Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Khabeer
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarra, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
MIST1, an Inductive Signal for Salivary Amylase in Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030767. [PMID: 30759717 PMCID: PMC6387180 DOI: 10.3390/ijms20030767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
Sjögren’s syndrome (SjS) is an autoimmune disease that destroys the salivary glands and results in severe dry mouth. Mesenchymal stem cell (MSC) transplantation has been recently proposed as a promising therapy for restoring cells in multiple degenerative diseases. We have recently utilized advanced proteomics biochemical assays to identify the key molecules involved in the mesenchymal-epithelial transition (MET) of co-cultured mouse bone-marrow-derived MSCs mMSCs with primary salivary gland cells. Among the multiple transcription factors (TFs) that were differentially expressed, two major TFs were selected: muscle, intestine, and stomach expression-1 (MIST1) and transcription factor E2a (TCF3). These factors were assessed in the current study for their ability to drive the expression of acinar cell marker, alpha-salivary amylase 1 (AMY1), and ductal cell marker, cytokeratin19 (CK19), in vitro. Overexpression of MIST1-induced AMY1 expression while it had little effect on CK19 expression. In contrast, TCF3 induced neither of those cellular markers. Furthermore, we have identified that mMSCs express muscarinic-type 3 receptor (M3R) mainly in the cytoplasm and aquaporin 5 (AQP5) in the nucleus. While MIST1 did not alter M3R levels in mMSCs, a TCF3 overexpression downregulated M3R expressions in mMSCs. The mechanisms for such differential regulation of glandular markers by these TFs warrant further investigation.
Collapse
|
5
|
Mesenchymal Stem Cells in Primary Sjögren's Syndrome: Prospective and Challenges. Stem Cells Int 2018; 2018:4357865. [PMID: 30305818 PMCID: PMC6165618 DOI: 10.1155/2018/4357865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/20/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic systemic inflammatory autoimmune disease characterized by lymphocytic infiltrates in exocrine glands. Current approaches do not control harmful autoimmune attacks or prevent irreversible damage and have considerable side effects. Mesenchymal stem cells (MSCs) have been effective in the treatment of several autoimmune diseases. The objective of this review is to illustrate the potential therapeutic role of MSCs in pSS. We summarize the recent advances in what is known about their immunomodulatory function and therapeutic applications in pSS. MSC transfusion can suppress autoimmunity and restore salivary gland secretory function in mouse models and patients with pSS by inducing regulatory T cells, suppressing Th1, Th17, and T follicular helper cell responses. In addition, MSCs can differentiate into salivary epithelial cells, presenting an option as a suitable alternative treatment. We also discuss current bioengineering methods which improve functions of MSCs for pSS. However, there remain many challenges to overcome before their wide clinical application.
Collapse
|
6
|
Gouda ZA, Khalifa MEA, Shalaby SM, Hussein S. Mechanistic effect of human umbilical cord blood derived mesenchymal stem cells on the submandibular salivary gland in ovariectomized rats. Biochem Cell Biol 2018; 96:57-67. [DOI: 10.1139/bcb-2017-0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
We performed this study to understand the effect of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) on the submandibular gland after bilateral ovariectomy. For this, 21 adult female rats were distributed equally among 3 groups: the sham-operated group (SHAM); the ovariectomized group (OVX); and the OVX group that received repeated intravenous injections of the hUCB-MSCs (OVX + hUCB-MSCs). We used reverse transcription – PCR to analyze for the gene expression of AQPs 3, 4, 5, and BMP-6. The cellular localization and expression of human CD105, human CD34, proliferating nuclear antigen (PCNA), single-stranded DNA (ss-DNA), caspase 3, AQP1, and α smooth muscle actin (α-SMA) were determined immunohistochemically. In the OVX group, a significant decrease in the gene expression of AQP3, AQP4, and BMP6, as well as the acinar area % was detected, while area % of granular convoluted tubules (GCTs) showed a significant increase. A significant decrease in area % staining positively for AQP1 and α-SMA was noted. An obvious improvement in the structure of the submandibular gland was demonstrated in the group injected with hUCB-MSCs, as well as a significant increase in the gene expression of AQP3, AQP4, and BMP6. The acinar and GCT area %, as well as the different measured markers, were relatively normal. This demonstrates that E2-deficiency induces structural changes to the submandibular gland. Moreover, a definite amelioration of the structure and function of the submandibular gland was detected after the administration of hUCB-MSCs.
Collapse
Affiliation(s)
- Zienab A. Gouda
- Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Mohamed E. Ali Khalifa
- Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Sally M. Shalaby
- Medical Biochemistry and Molecular Biology Departments, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Departments, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| |
Collapse
|