1
|
Naghinejad M, Parvizpour S, Khaniani MS, Mehri M, Derakhshan SM, Amirfiroozy A. The known structural variations in hearing loss and their diagnostic approaches: a comprehensive review. Mol Biol Rep 2025; 52:131. [PMID: 39821465 DOI: 10.1007/s11033-025-10231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Hearing loss (HL) is the most common sensory disorder, characterized by a wide range of causes, including both environmental and genetic factors. While single-nucleotide variants (SNVs) and small insertions/deletions have been extensively studied, the role of structural variations (SVs) in hearing impairment has gained increasing recognition. This review article aims to provide a comprehensive overview of the importance of SVs in HL, by exploring the SVs associated with HL and their underlying pathogenic mechanisms. Additionally, diagnostic methods of SVs have been briefly evaluated and compared in general. Three major mechanisms by which SVs can lead to HL are gene disruption, gene dosage imbalance, and position effect. Furthermore, to facilitate the detection of SVs in HL, this review presents a table highlighting the key genes and genomic regions implicated in SVs and their diagnostic approaches associated with HL patients. In the next step, indications for the use of SV diagnostic techniques are compiled in another table in this article, which will help experts in choosing the most appropriate technique. At last, the comprehensive review presented here underscores the significant role of SVs in HL. Further research is required to fully elucidate the spectrum of SVs in HL and optimize the clinical use of SV detection methods in routine diagnostic procedures.
Collapse
Affiliation(s)
- Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsood Mehri
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Bendas Feres Lima I, Fátima Marques de Moraes LD, Roberto da Fonseca C, Clinton Llerena Junior J, Mehrjouy M, Tommerup N, Ferreira Bastos E. Mesomelia-synostoses syndrome: contiguous deletion syndrome, SULF1 haploinsufficiency or enhancer adoption? Mol Cytogenet 2024; 17:15. [PMID: 38992676 PMCID: PMC11241779 DOI: 10.1186/s13039-024-00684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Mesomelia-Synostoses Syndrome (MSS)(OMIM 600,383) is a rare autosomal dominant disorder characterized by mesomelic limb shortening, acral synostoses and multiple congenital malformations which is described as a contiguous deletion syndrome involving the two genes SULF1 and SLCO5A1. The study of apparently balanced chromosomal rearrangements (BCRs) is a cytogenetic strategy used to identify candidate genes associated with Mendelian diseases or abnormal phenotypes. With the improved development of genomic technologies, new methods refine this search, allowing better delineation of breakpoints as well as more accurate genotype-phenotype correlation. CASE PRESENTATION We present a boy with a global development deficit, delayed speech development and an ASD (Asperger) family history, with an apparently balanced "de novo" reciprocal translocation [t(1;8)(p32.2;q13)dn]. The cytogenetic molecular study identified a likely pathogenic deletion of 21 kb in the 15q12 region, while mate pair sequencing identified gene-truncations at both the 1p32.2 and 8q13 translocation breakpoints. CONCLUSIONS The identification of a pathogenic alteration on 15q12 involving GABRA5 was likely the main cause of the ASD-phenotype. Importantly, the chr8 translocation breakpoint truncating SLCO5A1 exclude SLCO5A1 as a candidate for MSS, leaving SULF1 as the primary candidate. However, the deletions observed in MSS remove a topological associated domain (TAD) boundary separating SULF1 and SLCO5A1. Hence, Mesomelia-Synostoses syndrome is either caused by haploinsufficiency of SULF1 or ectopic enhancer effects where skeletal/chrondrogenic SULF1 enhancers drive excopic expression of developmental genes in adjacent TADs including PRDM14, NCOA2 and/or EYA1.
Collapse
Affiliation(s)
- Ingrid Bendas Feres Lima
- Clinical Cytogenetics Laboratory, Center for Medical Genetics/IFF/Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Juan Clinton Llerena Junior
- Clinical Cytogenetics Laboratory, Center for Medical Genetics/IFF/Fiocruz, Rio de Janeiro, Brazil
- Reference Center for Rare Diseases/IFF/Fiocruz, Rio de Janeiro, Brazil
| | - Mana Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elenice Ferreira Bastos
- Clinical Cytogenetics Laboratory, Center for Medical Genetics/IFF/Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Ou J, Sun J, Yang C, Ni M, Zou Q, Xing S, Lin C, Meng Q, Ding J, Zheng A, Zhang Y, Kong L, Liang B, Li H. Identification and interruption of inheritance of familial cryptic translocations: A case report. Mol Genet Genomic Med 2024; 12:e2356. [PMID: 38284442 PMCID: PMC10795077 DOI: 10.1002/mgg3.2356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/15/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Cryptic translocations can be identified via genetic analysis of aborted tissues or malformed infants, but it is difficult to deduce the parental origins of the translocations. In the absence of such information, it is not easy to distinguish translocations from normal embryos during pre-implantation genetic testing, that seeks to block familial transmission of translocations. METHODS Here, we present a new method that detects cryptic translocations and blocks familial transmission thereof. Whole-genome, low-coverage mate-pair sequencing (WGLMPS) revealed chromosome breakpoint sequences, and preimplantation genetic haplotyping (PGH) was then used to discard embryos with cryptic translocations. RESULTS Cryptic translocations were found in all four families, and familial transmission was successfully blocked in one family. CONCLUSION Whole-genome, low-coverage mate-pair sequencing combined with preimplantation genetic haplotyping methods powerfully and practically identify cryptic translocations and block familial transmissions.
Collapse
Affiliation(s)
- Jian Ou
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Jian Sun
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Chuan‐Chun Yang
- School of Basic Medical SciencesGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Meng‐Xia Ni
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Qin‐Yan Zou
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Shi‐Yu Xing
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Chun‐Hua Lin
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Qing‐Xia Meng
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Jie Ding
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Ai‐Yan Zheng
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | - Yan Zhang
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| | | | - Bo Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hong Li
- Center for Reproduction and GeneticsThe affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuChina
| |
Collapse
|
4
|
Angelopoulou E, Theodosiou A, Papaevripidou I, Alexandrou A, Liehr T, Gyftodimou Y, Stefanou EG, Sismani C. CHD2 pathogenic nonsense variant in a three-generation family with variable phenotype and a paracentric inversion 16: Case report. Heliyon 2023; 9:e22987. [PMID: 38125503 PMCID: PMC10731059 DOI: 10.1016/j.heliyon.2023.e22987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/27/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Chromosomal inversions are usually balanced structural chromosomal rearrangements that do not have an impact on the clinical phenotype of a carrier. The main clinical consequence of inversions is the risk for unbalanced gametes and offspring with severe phenotypes. Rarely though, inversions are associated with a phenotype, mainly due to submicroscopic Copy Number Variants (CNVs) or disruption at the breakpoints of a functionally important gene and/or genomic elements. In this study, a paracentric inversion of chromosome 16 [inv(16)(q22.3q24.1)] was identified in a three-generation family with discordant phenotypes with/without epilepsy and/or intellectual impairment, as well as with an unaffected carrier. This finding was confirmed by fluorescence in situ hybridization (FISH). Genetic investigation, initially with chromosomal microarray (CMA), did not reveal any copy number variants. Finally, Clinical Exome Sequencing (CES), detected the presence of a pathogenic nonsense variant (rs797044912) in the Chromodomain Helicase DNA-binding protein 2 (CHD2) gene [NM_001271.4:c.5035C>T p.(Arg1679Ter)]. CHD2 pathogenic variants have been associated with Developmental and Epileptic Encephalopathy-94 (DEE-94), a rare yet severe condition, characterized by developmental delay, seizures with an early onset, intellectual impairment, autism spectrum disorder, and sometimes behavioral issues. Family testing showed that the variant segregated with phenotypic heterogeneity in the affected individuals and appears to be causative. To the best of our knowledge, this is the first CHD2 pathogenic variant segregating in a three-generation family and the fourth familial case reported. These results further support our previous findings that familial, balanced rearrangements with discordant phenotypes in the same family are, in the vast majority, coincidental.
Collapse
Affiliation(s)
- Eleni Angelopoulou
- Laboratory of Medical Genetics, University General Hospital of Patras, 26504 Rio, Greece
| | - Athina Theodosiou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, 07747 Jena, Germany
| | | | - Eunice G. Stefanou
- Laboratory of Medical Genetics, University General Hospital of Patras, 26504 Rio, Greece
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus
| |
Collapse
|
5
|
Rao H, Zhang H, Zou Y, Ma P, Huang T, Yuan H, Zhou J, Lu W, Li Q, Huang S, Liu Y, Yang B. Analysis of chromosomal structural variations in patients with recurrent spontaneous abortion using optical genome mapping. Front Genet 2023; 14:1248755. [PMID: 37732322 PMCID: PMC10507169 DOI: 10.3389/fgene.2023.1248755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background and aims: Certain chromosomal structural variations (SVs) in biological parents can lead to recurrent spontaneous abortions (RSAs). Unequal crossing over during meiosis can result in the unbalanced rearrangement of gamete chromosomes such as duplication or deletion. Unfortunately, routine techniques such as karyotyping, fluorescence in situ hybridization (FISH), chromosomal microarray analysis (CMA), and copy number variation sequencing (CNV-seq) cannot detect all types of SVs. In this study, we show that optical genome mapping (OGM) quickly and accurately detects SVs for RSA patients with a high resolution and provides more information about the breakpoint regions at gene level. Methods: Seven couples who had suffered RSA with unbalanced chromosomal rearrangements of aborted embryos were recruited, and ultra-high molecular weight (UHMW) DNA was isolated from their peripheral blood. The consensus genome map was created by de novo assembly on the Bionano Solve data analysis software. SVs and breakpoints were identified via alignments of the reference genome GRCh38/hg38. The exact breakpoint sequences were verified using either Oxford Nanopore sequencing or Sanger sequencing. Results: Various SVs in the recruited couples were successfully detected by OGM. Also, additional complex chromosomal rearrangement (CCRs) and four cryptic balanced reciprocal translocations (BRTs) were revealed, further refining the underlying genetic causes of RSA. Two of the disrupted genes identified in this study, FOXK2 [46,XY,t(7; 17)(q31.3; q25)] and PLXDC2 [46,XX,t(10; 16)(p12.31; q23.1)], had been previously shown to be associated with male fertility and embryo transit. Conclusion: OGM accurately detects chromosomal SVs, especially cryptic BRTs and CCRs. It is a useful complement to routine human genetic diagnostics, such as karyotyping, and detects cryptic BRTs and CCRs more accurately than routine genetic diagnostics.
Collapse
Affiliation(s)
- Huihua Rao
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Haoyi Zhang
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yongyi Zou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Pengpeng Ma
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Tingting Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Huizhen Yuan
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jihui Zhou
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Wan Lu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qiao Li
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shuhui Huang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bicheng Yang
- Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Joaquim TM, Roy SD, de Albuquerque CGP, Grangeiro CHP, Squire JA, Yoshimoto M, Martelli L. Xp22.33p22.13 Duplication in a Male Patient Carrying a Recombinant X Chromosome Derived from an Inherited Intrachromosomal Insertion. Cytogenet Genome Res 2023; 163:24-31. [PMID: 37482055 DOI: 10.1159/000532051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
Intrachromosomal insertions are complex structural rearrangements that are challenging to interpret using classical cytogenetic methods. We report a male patient carrying a recombinant X chromosome derived from a maternally inherited intrachromosomal insertion. The patient exhibited developmental delay, intellectual disability, behavioral disorder, and dysmorphic facial features. To accurately identify the rearrangements in the abnormal X chromosome, additional cytogenetic studies were conducted, including fluorescence in situ hybridization (FISH), multicolor-banding FISH, and array comparative genomic hybridization. The results showed a recombinant X chromosome, resulting in a 13.05 Mb interstitial duplication of segment Xp22.33-Xp22.13, which was inserted at cytoband Xq26.1. The duplicated region encompasses 99 genes, some of which are associated with the patient's clinical manifestations. We propose that the combined effects of the Xp-duplicated genes may contribute to the patient's phenotype.
Collapse
Affiliation(s)
- Tatiana Mozer Joaquim
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of General Biology, State University of Londrina, Londrina, Brazil
| | - Scott David Roy
- Cytogenetics Laboratory North Sector, Genetics & Genomics, Alberta Precision Laboratories, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Clarissa Gondim Picanço de Albuquerque
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Henrique Paiva Grangeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jeremy A Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maisa Yoshimoto
- Cytogenetics Laboratory North Sector, Genetics & Genomics, Alberta Precision Laboratories, University of Alberta Hospital, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Lucia Martelli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Nascimento CG, Prota JRM, Sgardioli IC, Spineli-Silva S, Campos NLV, Gil-da-Silva-Lopes VL, Vieira TP. Rare 15q21.1q22.31 Duplication Due to a Familial Chromosomal Insertion and Diagnostic Investigation in a Carrier of Balanced Chromosomal Rearrangement and Intellectual Disability. Genes (Basel) 2023; 14:genes14040885. [PMID: 37107643 PMCID: PMC10138010 DOI: 10.3390/genes14040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Insertions are rare balanced chromosomal rearrangements with an increased risk of imbalances for the offspring. Moreover, balanced rearrangements in individuals with abnormal phenotypes may be associated to the phenotype by different mechanisms. This study describes a three-generation family with a rare chromosomal insertion. G-banded karyotype, chromosomal microarray analysis (CMA), whole-exome sequencing (WES), and low-pass whole-genome sequencing (WGS) were performed. Six individuals had the balanced insertion [ins(9;15)(q33;q21.1q22.31)] and three individuals had the derivative chromosome 9 [der(9)ins(9;15)(q33;q21.1q22.31)]. The three subjects with unbalanced rearrangement showed similar clinical features, including intellectual disability, short stature, and facial dysmorphisms. CMA of these individuals revealed a duplication of 19.3 Mb at 15q21.1q22.31. A subject with balanced rearrangement presented with microcephaly, severe intellectual disability, absent speech, motor stereotypy, and ataxia. CMA of this patient did not reveal pathogenic copy number variations and low-pass WGS showed a disruption of the RABGAP1 gene at the 9q33 breakpoint. This gene has been recently associated with a recessive disorder, which is not compatible with the mode of inheritance in this patient. WES revealed an 88 bp deletion in the MECP2 gene, consistent with Rett syndrome. This study describes the clinical features associated with the rare 15q21.1-q22.31 duplication and reinforces that searching for other genetic causes is warranted for individuals with inherited balanced chromosomal rearrangements and abnormal phenotypes.
Collapse
Affiliation(s)
- Carolina Gama Nascimento
- Department of Translational Medicine-Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil
| | - Joana Rosa Marques Prota
- Department of Translational Medicine-Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil
| | - Ilária Cristina Sgardioli
- Department of Translational Medicine-Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil
| | - Samira Spineli-Silva
- Department of Translational Medicine-Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil
| | - Nilma Lúcia Viguetti Campos
- Department of Translational Medicine-Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine-Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil
| | - Társis Paiva Vieira
- Department of Translational Medicine-Medical Genetics and Genomic Medicine, School of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil
| |
Collapse
|
8
|
Tamura T, Shimojima Yamamoto K, Imaizumi T, Yamamoto H, Miyamoto Y, Yagasaki H, Morioka I, Kanno H, Yamamoto T. Breakpoint analysis for cytogenetically balanced translocation revealed unexpected complex structural abnormalities and suggested the position effect for MEF2C. Am J Med Genet A 2023; 191:1632-1638. [PMID: 36916329 DOI: 10.1002/ajmg.a.63182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023]
Abstract
Many disease-causing genes have been identified by determining the breakpoints of balanced chromosomal translocations. Recent progress in genomic analysis has accelerated the analysis of chromosomal translocation-breakpoints at the nucleotide level. Using a long-read whole-genome sequence, we analyzed the breakpoints of the cytogenetically balanced chromosomal translocation t(5;15)(q21;26.3), which was confirmed to be of de novo origin, in a patient with a neurodevelopmental disorder. The results showed complex rearrangements with seven fragments consisting of five breakpoint-junctions (BJs). Four of the five BJs showed microhomologies of 1-3-bp, and only one BJ displayed a signature of blunt-end ligation, indicating chromothripsis as the underlying mechanism. Although the BJs did not disrupt any disease-causing gene, the clinical features of the patient were compatible with MEF2C haploinsufficiency syndrome. Complex rearrangements were located approximately 2.5-Mb downstream of MEF2C. Therefore, position effects were considered the mechanism of the occurrence of MEF2C haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Imaizumi
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hisako Yamamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yusaku Miyamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Exploring the Genetic Causality of Discordant Phenotypes in Familial Apparently Balanced Translocation Cases Using Whole Exome Sequencing. Genes (Basel) 2022; 14:genes14010082. [PMID: 36672823 PMCID: PMC9859009 DOI: 10.3390/genes14010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) are usually not associated with a phenotype; however, rarely, ABTs segregate with discordant phenotypes in family members carrying identical rearrangements. The current study was a follow-up investigation of four familial ABTs, where whole exome sequencing (WES) was implemented as a diagnostic tool to identify the underlying genetic aetiology of the patients' phenotypes. Data were analysed using an in-house bioinformatics pipeline alongside VarSome Clinical. WES findings were validated with Sanger sequencing, while the impact of splicing and missense variants was assessed by reverse-transcription PCR and in silico tools, respectively. Novel candidate variants were identified in three families. In family 1, it was shown that the de novo pathogenic STXBP1 variant (NM_003165.6:c.1110+2T>G) affected splicing and segregated with the patient's phenotype. In family 2, a likely pathogenic TUBA1A variant (NM_006009.4:c.875C>T, NP_006000.2:p.(Thr292Ile)) could explain the patient's symptoms. In family 3, an SCN1A variant of uncertain significance (NM_006920.6:c.5060A>G, NP_008851.3:p.(Glu1687Gly)) required additional evidence to sufficiently support causality. This first report of WES application in familial ABT carriers with discordant phenotypes supported our previous findings describing such rearrangements as coincidental. Thus, WES can be recommended as a complementary test to find the monogenic cause of aberrant phenotypes in familial ABT carriers.
Collapse
|
10
|
Wang Y, Zhao Z, Fu X, Li S, Zhang Q, Kong X. Detection of a Cryptic 25 bp Deletion and a 269 Kb Microduplication by Nanopore Sequencing in a Seemingly Balanced Translocation Involving the LMLN and LOC105378102 Genes. Front Genet 2022; 13:883398. [PMID: 36110201 PMCID: PMC9469083 DOI: 10.3389/fgene.2022.883398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Preimplantation genetic testing plays a critical role in enabling a balanced translocation carrier to obtain the normal embryo. Identifying the precise breakpoints for the carriers with phenotypic abnormity, allows us to reveal disrupted genes. In this study, a seemingly balanced translocation 46, XX, t (3; 6) (q29; q26) was first detected using conventional karyotype analysis. To locate the precise breakpoints, whole genomes of DNA were sequenced based on the nanopore GridION platform, and bioinformatic analyses were further confirmed by polymerase-chain-reaction (PCR) and copy number variation (CNV). Nanopore sequencing results were consistent with the karyotype analysis. Meanwhile, two breakpoints were successfully validated using polymerase-chain-reaction and Sanger Sequencing. LOC105378102 and LMLN genes were disrupted at the breakpoint junctions. Notably, observations found that seemingly balanced translocation was unbalanced due to a cryptic 269 kilobases (Kb) microduplication and a 25 bp deletion at the breakpoints of chromosome (chr) 6 and chr 3, respectively. Furthermore, 269 Kb microduplication was also confirmed by copy number variation analyses. In summary, nanopore sequencing was a rapid and direct method for identifying the precise breakpoints of a balanced translocation despite low coverage (3.8×). In addition, cryptic deletion and duplication were able to be detected at the single-nucleotide level.
Collapse
|
11
|
CAPS2 Deficiency Impairs the Release of the Social Peptide Oxytocin, as Well as Oxytocin-Associated Social Behavior. J Neurosci 2021; 41:4524-4535. [PMID: 33846232 DOI: 10.1523/jneurosci.3240-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+-dependent activator protein for secretion 2 (CAPS2) regulates dense-core vesicle (DCV) exocytosis to facilitate peptidergic and catecholaminergic transmitter release. CAPS2 deficiency in mice has mild neuronal effects but markedly impairs social behavior. Rare de novo Caps2 alterations also occur in autism spectrum disorder, although whether CAPS2-mediated release influences social behavior remains unclear. Here, we demonstrate that CAPS2 is associated with DCV exocytosis-mediated release of the social interaction modulatory peptide oxytocin (OXT). CAPS2 is expressed in hypothalamic OXT neurons and localizes to OXT nerve projection and OXT release sites, such as the pituitary. Caps2 KO mice exhibited reduced plasma albeit increased hypothalamic and pituitary OXT levels, indicating insufficient release. OXT neuron-specific Caps2 conditional KO supported CAPS2 function in pituitary OXT release, also affording impaired social interaction and recognition behavior that could be ameliorated by exogenous OXT administered intranasally. Thus, CAPS2 appears critical for OXT release, thereby being associated with social behavior.SIGNIFICANCE STATEMENT The role of the neuropeptide oxytocin in enhancing social interaction and social bonding behavior has attracted considerable public and neuroscientific attention. A central issue in oxytocin biology concerns how oxytocin release is regulated. Our study provides an important insight into the understanding of oxytocin-dependent social behavior from the perspective of the CAPS2-regulated release mechanism.
Collapse
|
12
|
Toraman B, Bilginer SÇ, Hesapçıoğlu ST, Göker Z, Soykam HO, Ergüner B, Dinçer T, Yıldız G, Ünsal S, Kasap BK, Kandil S, Kalay E. Finding underlying genetic mechanisms of two patients with autism spectrum disorder carrying familial apparently balanced chromosomal translocations. J Gene Med 2021; 23:e3322. [PMID: 33591602 DOI: 10.1002/jgm.3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Genetic etiologies of autism spectrum disorders (ASD) are complex, and the genetic factors identified so far are very diverse. In complex genetic diseases such as ASD, de novo or inherited chromosomal abnormalities are valuable findings for researchers with respect to identifying the underlying genetic risk factors. With gene mapping studies on these chromosomal abnormalities, dozens of genes have been associated with ASD and other neurodevelopmental genetic diseases. In the present study, we aimed to idenitfy the causative genetic factors in patients with ASD who have an apparently balanced chromosomal translocation in their karyotypes. METHODS For mapping the broken genes as a result of chromosomal translocations, we performed whole genome DNA sequencing. Chromosomal breakpoints and large DNA copy number variations (CNV) were determined after genome alignment. Identified CNVs and single nucleotide variations (SNV) were evaluated with VCF-BED intersect and Gemini tools, respectively. A targeted resequencing approach was performed on the JMJD1C gene in all of the ASD cohorts (220 patients). For molecular modeling, we used a homology modeling approach via the SWISS-MODEL. RESULTS We found that there was no contribution of the broken genes or regulator DNA sequences to ASD, whereas the SNVs on the JMJD1C, CNKSR2 and DDX11 genes were the most convincing genetic risk factors for underlying ASD phenotypes. CONCLUSIONS Genetic etiologies of ASD should be analyzed comprehensively by taking into account of the all chromosomal structural abnormalities and de novo or inherited CNV/SNVs with all possible inheritance patterns.
Collapse
Affiliation(s)
- Bayram Toraman
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Samiye Çilem Bilginer
- Faculty of Medicine Child and Adolescent Psychiatry Department, Karadeniz Technical University, Trabzon, Turkey
| | - Selma Tural Hesapçıoğlu
- Child and Adolescent Psychiatry Department, Yildirim Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Zeynep Göker
- Ministry of Health Ankara City Hospital, Child-Adolescent and Mental Health, Cankaya, Ankara, Turkey
| | - Hüseyin Okan Soykam
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, İstanbul, Turkey
| | - Bekir Ergüner
- Sabanci University Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bio engineering, Istanbul, Turkey
| | - Tuba Dinçer
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Gökhan Yıldız
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Serbülent Ünsal
- Graduate School of Health Science, Biostatistics and Medical Informatics Department, PhD Candidate, Karadeniz Technical University, Trabzon, Turkey
| | - Burak Kaan Kasap
- Graduate School of Health Science, Medical Biology Department, PhD Candidate, Karadeniz Technical University, Trabzon, Turkey
| | - Sema Kandil
- Faculty of Medicine Child and Adolescent Psychiatry Department, Karadeniz Technical University, Trabzon, Turkey
| | - Ersan Kalay
- Faculty of Medicine Department of Medical Biology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
13
|
Li R, Wang J, Gu A, Xu Y, Guo J, Pan J, Zeng Y, Ma Y, Zhou C, Xu Y. Feasibility study of using unbalanced embryos as a reference to distinguish euploid carrier from noncarrier embryos by single nucleotide polymorphism array for reciprocal translocations. Prenat Diagn 2021; 41:681-689. [PMID: 33411373 DOI: 10.1002/pd.5897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To study the feasibility of using unbalanced embryos as a reference in distinguishing euploid carrier and noncarrier embryos by single nucleotide polymorphism (SNP) array-based preimplantation genetic testing (PGT) for reciprocal translocations. METHODS After comprehensive chromosome screening (CCS), euploid embryos were identified as normal or carriers using a family member as a reference. Next, unbalanced embryos were used as a reference, and the results were compared with the previous ones. Karyotypes of transferred embryos were validated by prenatal diagnosis. RESULTS Of 995 embryos from 110 couples, 288 were found to be euploid. Using a family member as a reference, 142 and 144 embryos were tested to be euploid noncarrier and carrier respectively, and the remaining 2 embryos were undetermined. When unbalanced embryos were selected as references, all the results were consistent with the previous ones. A total of 107 embryos were transferred, resulting in 66 clinical pregnancies. Karyotypes of prenatal diagnosis were all in accordance with the results of tested embryos. CONCLUSIONS SNP array-based haplotyping is a rapid and effective way to distinguish between euploid carrier and noncarrier embryos. In case no family member is available as a reference, unbalanced embryos can be used for identification of euploid carrier and noncarrier embryos.
Collapse
Affiliation(s)
- Rong Li
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jing Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Ailing Gu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jing Guo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jiafu Pan
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yanhong Zeng
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Madjunkova S, Sundaravadanam Y, Antes R, Abramov R, Chen S, Yin Y, Zuzarte PC, Moskovtsev SI, Jorgensen LGT, Baratz A, Simpson JT, Librach C. Detection of Structural Rearrangements in Embryos. N Engl J Med 2020; 382:2472-2474. [PMID: 32558475 DOI: 10.1056/nejmc1913370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Ran Antes
- CReATe Fertility Centre, Toronto, ON, Canada
| | | | - Siwei Chen
- CReATe Fertility Centre, Toronto, ON, Canada
| | - Yin Yin
- CReATe Fertility Centre, Toronto, ON, Canada
| | | | | | | | - Ari Baratz
- University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
15
|
Ou J, Yang C, Cui X, Chen C, Ye S, Zhang C, Wang K, Chen J, Zhang Q, Qian C, Fang G, Zhang W. Successful pregnancy after prenatal diagnosis by NGS for a carrier of complex chromosome rearrangements. Reprod Biol Endocrinol 2020; 18:15. [PMID: 32113484 PMCID: PMC7049181 DOI: 10.1186/s12958-020-00572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The study is aimed to provide prediction for fertility risk in the setting of assisted reproduction for a woman with complex chromosomal rearrangements (CCRs). METHODS We implemented a robust approach, which combined whole-genome low-coverage mate-pair sequencing (WGL-MPS), junction-spanning PCR and preimplantation genetic testing for aneuploidy (PGT-A) method to provide accurate chromosome breakpoint junctional sequences in the embryo selection process in the setting of assisted reproduction for a couple with recurrent abortions due to CCRs. RESULT WGL-MPS was applied to a female carrying CCRs which consisted of 9 breakpoints and 1 cryptic deletion related to fertility risks. Sequencing data provided crucial information for designing junction-spanning PCR and PGT-A process, which was performed on the 11 embryos cultivated. One embryo was considered qualified for transplanting, which carried the exact same CCRs as the female carrier, whose phenotype was normal. The amniotic fluid was also investigated by WGL-MPS and karyotyping at 19 weeks' gestation, which verified the results that the baby carried the same CCRs. A healthy baby was born at 39 weeks' gestation by vaginal delivery. CONCLUSION(S) Our study illustrates the WGL-MPS approach combining with junction-spanning PCR and PGT-A is a powerful and practical method in the setting of assisted reproduction for couples with recurrent miscarriage due to chromosomal abnormalities, especially CCRs carriers.
Collapse
Affiliation(s)
- Jian Ou
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Chuanchun Yang
- CheerLand Biological Technology Co., Ltd, Shenzhen, 518000, China
| | - Xiaoli Cui
- CheerLand Biological Technology Co., Ltd, Shenzhen, 518000, China
| | - Chuan Chen
- CheerLand Biological Technology Co., Ltd, Shenzhen, 518000, China
| | - Suyan Ye
- Shenzhen Dapeng New District Maternity & Child Health Hospital Department of Gynecology, Shenzhen, China
| | - Cai Zhang
- CheerLand Biological Technology Co., Ltd, Shenzhen, 518000, China
| | - Kai Wang
- CheerLand Biological Technology Co., Ltd, Shenzhen, 518000, China
| | - Jianguo Chen
- CheerLand Biological Technology Co., Ltd, Shenzhen, 518000, China
| | - Qin Zhang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Chunfeng Qian
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Guangguang Fang
- Shenzhen Dapeng New District Maternity & Child Health Hospital Department of Gynecology, Shenzhen, China.
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Wenyong Zhang
- Southern University of Science and Technology-CheerLand Institute of Precision Medicine, Shenzhen, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
16
|
Wang H, Jia Z, Mao A, Xu B, Wang S, Wang L, Liu S, Zhang H, Zhang X, Yu T, Mu T, Xu M, Cram DS, Yao Y. Analysis of balanced reciprocal translocations in patients with subfertility using single-molecule optical mapping. J Assist Reprod Genet 2020; 37:509-516. [PMID: 32026199 DOI: 10.1007/s10815-020-01702-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Approximately 1% of individuals who carry a balanced reciprocal translocation (BRT) are subfertile. Current karyotyping does not have the resolution to determine whether the breakpoints of the involved chromosomes perturb genes important for fertility. The aim of this study was to apply single-molecule optical mapping (SMOM) to patients presenting for IVF (in vitro fertilization) to ascertain whether the BRT disrupted any genes associated with normal fertility. METHODS Nine subfertile patients with different BRTs were recruited for the study. Methyltransferase enzyme DLE1 was used to fluorescently label their genomic DNA samples at the recognition motif CTTAAG. The SMOM was performed on the Bionano platform, and long molecules aligned against the reference genome hg19 to identify the breakpoint regions. Mate-pair and PCR-Sanger sequencing were used to confirm the precise breakpoint sequences. RESULTS Both breakpoint regions in each of the nine BRTs were finely mapped to small regions of approximately 10 Kb, and their positions were consistent with original cytogenetic banding patterns determined by karyotyping. In three BRTs, breakpoints disrupted genes known to be associated with male infertility, namely NUP155 and FNDC3A [46,XY,t(5;13)(p15;q22)], DPY19L1 [46,XY,t(1;7)(p36.3;p15), and BAI3 [46,XY,t(3;6)(p21;q16)]. CONCLUSIONS The SMOM has potential clinical application as a rapid tool to screen patients with BRTs for underlying genetic causes of infertility and other diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Zhengjun Jia
- Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, 102200, China
| | - Bing Xu
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Shuling Wang
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Li Wang
- The First Hospital of KunMing, Kunming, 650034, China
| | - Sai Liu
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China.,The First Hospital of KunMing, Kunming, 650034, China
| | - Haiman Zhang
- Berry Genomics Corporation, Beijing, 102200, China
| | | | - Tao Yu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Ting Mu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Mengnan Xu
- Berry Genomics Corporation, Beijing, 102200, China
| | - David S Cram
- Berry Genomics Corporation, Beijing, 102200, China.
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
17
|
Chow JF, Cheng HH, Lau EY, Yeung WS, Ng EH. Distinguishing between carrier and noncarrier embryos with the use of long-read sequencing in preimplantation genetic testing for reciprocal translocations. Genomics 2020; 112:494-500. [DOI: 10.1016/j.ygeno.2019.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/16/2019] [Accepted: 04/01/2019] [Indexed: 01/21/2023]
|
18
|
Chow JFC, Cheng HHY, Lau EYL, Yeung WSB, Ng EHY. High-resolution mapping of reciprocal translocation breakpoints using long-read sequencing. MethodsX 2019; 6:2499-2503. [PMID: 31908979 PMCID: PMC6939040 DOI: 10.1016/j.mex.2019.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/25/2019] [Indexed: 11/25/2022] Open
Abstract
Long-read nanopore sequencing enables direct high-resolution breakpoint mapping on balanced carriers of reciprocal translocation. The mean sequencing depth on the translocated chromosomes to achieve accurate mapping of breakpoints ranged from 2.5-fold to 6.2-fold. To speed up determination of the breakpoints from long-read sequencing data, alignment reads on the translocated chromosomes were extracted before piped into NanoSV. Checking the position of breakpoints on Interactive Genomics Viewer (IGV) was crucial to successful design of breakpoint PCR primers, especially when large deletion was involved at the breakpoints. Long-read sequencing enables accurate breakpoint mapping with base-pair resolution Splitting bam files by translocated chromosomes drastically speeded up the breakpoint determination IGV helps to identify the breakpoint positions and facilitate the design of breakpoint PCR primers
Collapse
Affiliation(s)
- Judy F C Chow
- Department of Obstetrics and Gynecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Heidi H Y Cheng
- Department of Obstetrics and Gynecology, Queen Mary Hospital, Hong Kong
| | - Estella Y L Lau
- Department of Obstetrics and Gynecology, Queen Mary Hospital, Hong Kong
| | - William S B Yeung
- Department of Obstetrics and Gynecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
19
|
Fjorder AS, Rasmussen MB, Mehrjouy MM, Nazaryan-Petersen L, Hansen C, Bak M, Grarup N, Nørremølle A, Larsen LA, Vestergaard H, Hansen T, Tommerup N, Bache I. Haploinsufficiency of ARHGAP42 is associated with hypertension. Eur J Hum Genet 2019; 27:1296-1303. [PMID: 30903111 PMCID: PMC6777610 DOI: 10.1038/s41431-019-0382-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Family studies have established that the heritability of blood pressure is significant and genome-wide association studies (GWAS) have identified numerous susceptibility loci, including one within the non-coding part of Rho GTPase-activating protein 42 gene (ARHGAP42) on chromosome 11q22.1. Arhgap42-deficient mice have significantly elevated blood pressure, but the phenotypic effects of human variants in the coding part of the gene are unknown. In a Danish cohort of carriers with apparently balanced chromosomal rearrangements, we identified a family where a reciprocal translocation t(11;18)(q22.1;q12.2) segregated with hypertension and obesity. Clinical re-examination revealed that four carriers (age 50-77 years) have had hypertension for several years along with an increased body mass index (34-43 kg/m2). A younger carrier (age 23 years) had normal blood pressure and body mass index. Mapping of the chromosomal breakpoints with mate-pair and Sanger sequencing revealed truncation of ARHGAP42. A decreased expression level of ARHGAP42 mRNA in the blood was found in the translocation carriers relative to controls and allele-specific expression analysis showed monoallelic expression in the translocation carriers, confirming that the truncated allele of ARHGAP42 was not expressed. These findings support that haploinsufficiency of ARHGAP42 leads to an age-dependent hypertension. The other breakpoint truncated a regulatory domain of the CUGBP Elav-like family member 4 (CELF4) gene on chromosome 18q12.2 that harbours several GWAS signals for obesity. We thereby provide additional support for an obesity locus in the CELF4 domain.
Collapse
Affiliation(s)
- Amanda S Fjorder
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Malene B Rasmussen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Mana M Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Claus Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Mads Bak
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Iben Bache
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark.
| |
Collapse
|
20
|
Friedenson B. A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns. BIOMEDICAL INFORMATICS INSIGHTS 2019; 11:1178222619863369. [PMID: 31391780 PMCID: PMC6669855 DOI: 10.1177/1178222619863369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to test the hypothesis that infections are linked to chromosomal anomalies that cause neurodevelopmental disorders. In children with disorders in the development of their nervous systems, chromosome anomalies known to cause these disorders were compared with foreign DNAs, including known teratogens. Genes essential for neurons, lymphatic drainage, immunity, circulation, angiogenesis, cell barriers, structure, epigenetic and chromatin modifications were all found close together in polyfunctional clusters that were deleted or rearranged in neurodevelopmental disorders. In some patients, epigenetic driver mutations also changed access to large chromosome segments. These changes account for immune, circulatory, and structural deficits that accompany neurologic deficits. Specific and repetitive human DNA encompassing large deletions matched infections and passed rigorous artifact tests. Deletions of up to millions of bases accompanied infection-matching sequences and caused massive changes in human homologies to foreign DNAs. In data from 3 independent studies of private, familial, and recurrent chromosomal rearrangements, massive changes in homologous microbiomes were found and may drive rearrangements and encourage pathogens. At least 1 chromosomal anomaly was found to consist of human DNA fragments with a gap that corresponded to a piece of integrated foreign DNA. Microbial DNAs that match repetitive or specific human DNA segments are thus proposed to interfere with the epigenome and highly active recombination during meiosis, driven by massive changes in human DNA-foreign DNA homologies. Abnormal recombination in gametes produces zygotes containing rare chromosome anomalies that cause neurologic disorders and nonneurologic signs. Neurodevelopmental disorders may be examples of assault on the human genome by foreign DNAs at a critical stage. Some infections may be more likely tolerated because they resemble human DNA segments. Even rare developmental disorders can be screened for homology to infections within altered epigenomes and chromatin structures. Considering effects of foreign DNAs can assist prenatal and genetic counseling, diagnosis, prevention, and early intervention.
Collapse
Affiliation(s)
- Bernard Friedenson
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Zhang S, Zhao D, Zhang J, Mao Y, Kong L, Zhang Y, Liang B, Sun X, Xu C. BasePhasing: a highly efficient approach for preimplantation genetic haplotyping in clinical application of balanced translocation carriers. BMC Med Genomics 2019; 12:52. [PMID: 30885195 PMCID: PMC6423798 DOI: 10.1186/s12920-019-0495-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preimplantation genetic testing (PGT) has already been applied in chromosomally balanced translocation carriers to improve the clinical outcome of assisted reproduction. However, traditional methods could not further distinguish embryos carrying a translocation from those with a normal karyotype prior to implantation. METHODS To solve this problem, we developed a method named "Chromosomal Phasing on Base level" (BasePhasing), which based on Infinium Asian Screening Array-24 v1.0 (ASA) and a specially phasing pipeline. Firstly, by comparing the number of single nucleotide polymorphism (SNP) loci in different minor allele frequencies (MAFs) and in 2Mbp continuous windows of ASA chip and karyomap-12 chip, we verified whether ASA could be adopted for genome-wide haplotype linkage analysis. Besides, the whole gene amplification (WGA) of 3-10 cells of GM16457 cell line was used to verify whether ASA chip could be used for testing of WGA products. Finally, two balanced translocation families were utilized to carry out BasePhasing and to validate the feasibility of its clinical application. RESULTS The average number of SNP loci in each window of ASA (473.2) was twice of that of Karyomap-12 (201.2). The coincidence rate of SNP loci in genomic DNA and WGA products was about 97%. The 5.3Mbp deletion was detected positively in cell line GM16457 of both genomic DNA and WGA products, and haplotype linkage analysis was performed in genome wide successfully. In the two balanced translocation families, 18 blastocysts were analyzed, in which 8 were unbalanced and the other 10 were balanced or normal chromosomes. Two embryos were transferred back to the patients successfully, and prenatal cytogenetic analysis of amniotic fluid was performed in the second trimester. The results predicted by BasePhasing and prenatal diagnosis were totally consistent. CONCLUSIONS Infinium ASA bead chip based BasePhasing pipeline shows good performance in balanced translocation carrier testing. With the characteristics of simple operation procedure and accurate results, we demonstrate that BasePhasing is one of the most suitable methods to distinguish between balanced and structurally normal chromosome embryos from translocation carriers in PGT at present.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Science, Fudan University, 588 Fangxie Rd, Shanghai, 200438, China
| | - Dingding Zhao
- Basecare Medical Device Co., Ltd, 218 Xinghu Road, SIP, Suzhou, Jiangsu, 215001, China
| | - Jun Zhang
- Basecare Medical Device Co., Ltd, 218 Xinghu Road, SIP, Suzhou, Jiangsu, 215001, China
| | - Yan Mao
- Basecare Medical Device Co., Ltd, 218 Xinghu Road, SIP, Suzhou, Jiangsu, 215001, China
| | - Lingyin Kong
- Basecare Medical Device Co., Ltd, 218 Xinghu Road, SIP, Suzhou, Jiangsu, 215001, China
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Bo Liang
- Basecare Medical Device Co., Ltd, 218 Xinghu Road, SIP, Suzhou, Jiangsu, 215001, China. .,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China.
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
22
|
Aristidou C, Theodosiou A, Bak M, Mehrjouy MM, Constantinou E, Alexandrou A, Papaevripidou I, Christophidou-Anastasiadou V, Skordis N, Kitsiou-Tzeli S, Tommerup N, Sismani C. Position effect, cryptic complexity, and direct gene disruption as disease mechanisms in de novo apparently balanced translocation cases. PLoS One 2018; 13:e0205298. [PMID: 30289920 PMCID: PMC6173455 DOI: 10.1371/journal.pone.0205298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
The majority of apparently balanced translocation (ABT) carriers are phenotypically normal. However, several mechanisms were proposed to underlie phenotypes in affected ABT cases. In the current study, whole-genome mate-pair sequencing (WG-MPS) followed by Sanger sequencing was applied to further characterize de novo ABTs in three affected individuals. WG-MPS precisely mapped all ABT breakpoints and revealed three possible underlying molecular mechanisms. Firstly, in a t(X;1) carrier with hearing loss, a highly skewed X-inactivation pattern was observed and the der(X) breakpoint mapped ~87kb upstream an X-linked deafness gene namely POU3F4, thus suggesting an underlying long-range position effect mechanism. Secondly, cryptic complexity and a chromothripsis rearrangement was identified in a t(6;7;8;12) carrier with intellectual disability. Two translocations and a heterozygous deletion disrupted SOX5; a dominant nervous system development gene previously reported in similar patients. Finally, a direct gene disruption mechanism was proposed in a t(4;9) carrier with dysmorphic facial features and speech delay. In this case, the der(9) breakpoint directly disrupted NFIB, a gene involved in lung maturation and development of the pons with important functions in main speech processes. To conclude, in contrast to familial ABT cases with identical rearrangements and discordant phenotypes, where translocations are considered coincidental, translocations seem to be associated with phenotype presentation in affected de novo ABT cases. In addition, this study highlights the importance of investigating both coding and non-coding regions to decipher the underlying pathogenic mechanisms in these patients, and supports the potential introduction of low coverage WG-MPS in the clinical investigation of de novo ABTs.
Collapse
Affiliation(s)
- Constantia Aristidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Athina Theodosiou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N., Denmark
| | - Mana M. Mehrjouy
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N., Denmark
| | - Efthymia Constantinou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Nicos Skordis
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- St George’s University of London Medical School at the University of Nicosia, Nicosia, Cyprus
| | - Sophia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N., Denmark
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
23
|
Aristidou C, Theodosiou A, Ketoni A, Bak M, Mehrjouy MM, Tommerup N, Sismani C. Cryptic breakpoint identified by whole-genome mate-pair sequencing in a rare paternally inherited complex chromosomal rearrangement. Mol Cytogenet 2018; 11:34. [PMID: 29930709 PMCID: PMC5991433 DOI: 10.1186/s13039-018-0384-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/15/2018] [Indexed: 11/21/2022] Open
Abstract
Background Precise characterization of apparently balanced complex chromosomal rearrangements in non-affected individuals is crucial as they may result in reproductive failure, recurrent miscarriages or affected offspring. Case presentation We present a family, where the non-affected father and daughter were found, using FISH and karyotyping, to be carriers of a three-way complex chromosomal rearrangement [t(6;7;10)(q16.2;q34;q26.1), de novo in the father]. The family suffered from two stillbirths, one miscarriage, and has a son with severe intellectual disability. In the present study, the family was revisited using whole-genome mate-pair sequencing. Interestingly, whole-genome mate-pair sequencing revealed a cryptic breakpoint on derivative (der) chromosome 6 rendering the rearrangement even more complex. FISH using a chromosome (chr) 6 custom-designed probe and a chr10 control probe confirmed that the interstitial chr6 segment, created by the two chr6 breakpoints, was translocated onto der(10). Breakpoints were successfully validated with Sanger sequencing, and small imbalances as well as microhomology were identified. Finally, the complex chromosomal rearrangement breakpoints disrupted the SIM1, GRIK2, CNTNAP2, and PTPRE genes without causing any phenotype development. Conclusions In contrast to the majority of maternally transmitted complex chromosomal rearrangement cases, our study investigated a rare case where a complex chromosomal rearrangement, which most probably resulted from a Type IV hexavalent during the pachytene stage of meiosis I, was stably transmitted from a fertile father to his non-affected daughter. Whole-genome mate-pair sequencing proved highly successful in identifying cryptic complexity, which consequently provided further insight into the meiotic segregation of chromosomes and the increased reproductive risk in individuals carrying the specific complex chromosomal rearrangement. We propose that such complex rearrangements should be characterized in detail using a combination of conventional cytogenetic and NGS-based approaches to aid in better prenatal preimplantation genetic diagnosis and counseling in couples with reproductive problems.
Collapse
Affiliation(s)
- Constantia Aristidou
- 1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,2The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Athina Theodosiou
- 1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andria Ketoni
- 1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Mads Bak
- 3Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mana M Mehrjouy
- 3Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- 3Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Carolina Sismani
- 1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,2The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
24
|
Luo A, Cheng D, Yuan S, Li H, Du J, Zhang Y, Yang C, Lin G, Zhang W, Tan YQ. Maternal interchromosomal insertional translocation leading to 1q43-q44 deletion and duplication in two siblings. Mol Cytogenet 2018; 11:24. [PMID: 29636822 PMCID: PMC5883343 DOI: 10.1186/s13039-018-0371-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/08/2018] [Indexed: 12/05/2022] Open
Abstract
Background 1q43-q44 deletion syndrome is a well-defined chromosomal disorder which is characterized by moderate to severe mental retardation, and variable but characteristic facial features determined by the size of the segment and the number of genes involved. However, patients with 1q43-q44 duplication with a clinical phenotype comparable to that of 1q43-q44 deletion are rarely reported. Moreover, pure 1q43-q44 deletions and duplications derived from balanced insertional translocation within the same family with precisely identified breakpoints have not been reported. Case presentation The proband is a 6-year-old girl with profound developmental delay, mental retardation, microcephaly, epilepsy, agenesis of the corpus callosum and hearing impairment. Her younger brother is a 3-month-old boy with macrocephaly and mild developmental delay in gross motor functions. G-banding analysis of the subjects at the 400-band level did not reveal any subtle structural changes in their karyotypes. However, single-nucleotide polymorphism (SNP) array analysis showed a deletion and a duplication of approximately 6.0 Mb at 1q43-q44 in the proband and her younger brother, respectively. The Levicare analysis pipeline of whole-genome sequencing (WGS) further demonstrated that a segment of 1q43-q44 was inserted at 14q23.1 in the unaffected mother, which indicated that the mother was a carrier of a 46,XX,ins(14;1)(q23.1;q43q44) insertional translocation. Moreover, Sanger sequencing was used to assist the mapping of the breakpoints and the final validation of those breakpoints. The breakpoint on chromosome 1 disrupted the EFCAB2 gene in the first intron, and the breakpoint on chromosome 14 disrupted the PRKCH gene within the 12th intron. In addition, fluorescence in situ hybridization (FISH) further confirmed that the unaffected older sister of the proband carried the same karyotype as the mother. Conclusion Here, we describe a rare family exhibiting pure 1q43-q44 deletion and duplication in two siblings caused by a maternal balanced insertional translocation. Our study demonstrates that WGS with a carefully designed analysis pipeline is a powerful tool for identifying cryptic genomic balanced translocations and mapping the breakpoints at the nucleotide level and could be an effective method for explaining the relationship between karyotype and phenotype. Electronic supplementary material The online version of this article (10.1186/s13039-018-0371-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aixiang Luo
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China
| | - Dehua Cheng
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China.,2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| | - Shimin Yuan
- 2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| | - Haiyu Li
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China
| | - Juan Du
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China.,2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| | - Yang Zhang
- 3School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, 999077 People's Republic of China
| | - Chuanchun Yang
- Cheerland Precision Biomed Co., Ltd., Shenzhen, Guangdong 518055 People's Republic of China
| | - Ge Lin
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China.,2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| | - Wenyong Zhang
- Southern University of Science and Technology, Shenzhen, Guangdong 518055 People's Republic of China
| | - Yue-Qiu Tan
- 1Institute of Reproduction and Stem Cell Engineering, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 People's Republic of China.,2Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410078 People's Republic of China
| |
Collapse
|
25
|
Correction: Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing. PLoS One 2017; 12:e0174190. [PMID: 28296978 PMCID: PMC5352023 DOI: 10.1371/journal.pone.0174190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0169935.].
Collapse
|