1
|
Martins MLT, Sforça DA, Dos Santos LP, Pimenta RJG, Mancini MC, Aono AH, Cardoso-Silva CB, Vautrin S, Bellec A, Dos Santos RV, Bérgès H, da Silva CC, de Souza AP. Identifying candidate genes for sugar accumulation in sugarcane: an integrative approach. BMC Genomics 2024; 25:1201. [PMID: 39695384 DOI: 10.1186/s12864-024-11089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation. One successful strategy for identifying candidate genes linked to agronomic traits, particularly those associated with sugar accumulation, leverages synteny and potential collinearity with related species. RESULTS In this study, we explored synteny between sorghum and sugarcane. Genes from a sorghum Brix QTL were used to screen bacterial artificial chromosome (BAC) libraries from two Brazilian sugarcane varieties (IACSP93-3046 and SP80-3280). The entire region was successfully recovered, confirming synteny and collinearity between the species. Manual annotation identified 51 genes in the hybrid varieties that were subsequently confirmed to be present in Saccharum spontaneum. This study employed a multifaceted approach to identify candidate genes for sugar accumulation, including retrieving the genomic region of interest, performing a gene-by-gene analysis, analyzing RNA-seq data for internodes from Saccharum officinarum and S. spontaneum accessions, constructing a coexpression network to examine the expression patterns of genes within the studied region and their neighbors, and finally identifying differentially expressed genes (DEGs). CONCLUSIONS This comprehensive approach led to the discovery of three candidate genes potentially involved in sugar accumulation: an ethylene-responsive transcription factor (ERF), an ABA 8'-hydroxylase, and a prolyl oligopeptidase (POP). These findings could be valuable for identifying additional candidate genes for other important agricultural traits and directly targeting candidate genes for further work in molecular breeding.
Collapse
Affiliation(s)
| | - Danilo Augusto Sforça
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luís Paulo Dos Santos
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Alexandre Hild Aono
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cláudio Benício Cardoso-Silva
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
- National Laboratory of Biorenewables-LNBR/CNPEM, Campinas, SP, Brazil
| | - Sonia Vautrin
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | - Arnaud Bellec
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | | | - Helene Bérgès
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | - Carla Cristina da Silva
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Agronomy Department, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Anete Pereira de Souza
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo, CEP, 13083-875, Brazil.
| |
Collapse
|
2
|
Ling K, Yi-ning D, Majeed A, Zi-jiang Y, Jun-wen C, Li-lian H, Xian-hong W, Lu-feng L, Zhen-feng Q, Dan Z, Shu-jie G, Rong X, Lin-yan X, Fu X, Yang D, Fu-sheng L. Evaluation of genome size and phylogenetic relationships of the Saccharum complex species. 3 Biotech 2022; 12:327. [PMID: 36276474 PMCID: PMC9582063 DOI: 10.1007/s13205-022-03338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
"Saccharum complex" is a hypothetical group of species, which is supposed to be involved in the origin of modern sugarcane, and displays large genomes and complex chromosomal alterations. The utilization of restricted parents in breeding programs of modern cultivated sugarcane has resulted in a genetic blockage, which controlled its improvement because of the limited genetic diversity. The use of wild relatives is an effective way to broaden the genetic composition of cultivated sugarcane. Due to the infrequent characterization of genomes, the potential of wild relatives is diffused in improving the cultivated sugarcane. To characterize the genomes of the wild relatives, the genome size and phylogenetic relationships among eight species, including Saccharum spontaneum, Erianthus arundinaceus, E. fulvus, E. rockii, Narenga porphyrocoma, Miscanthus floridulus, Eulalia quadrinervis, and M. sinensis were evaluated based on flow cytometry, genome surveys, K-mer analysis, chloroplast genome sequencing, and whole-genome SNPs analysis. We observed highly heterozygous genomes of S. spontaneum, E. rockii, and E. arundinaceus and the highly repetitive genome of E. fulvus. The genomes of Eulalia quadrinervis, N. porphyrocoma, M. sinensis, and M. floridulus were highly complex. Phylogenetic results of the two approaches were dissimilar, however, both indicate E. fulvus displayed closer relationships to Miscanthus and Saccharum than other species of Saccharum complex. Eulalia quadrinervis was more closely related to M. floridulus than M. sinensis; E. arundinaceus differ significantly from Miscanthus, Narenga, and Saccharum, but was relatively close to Erianthus. We proved the point of E. rockii and E. fulvus should not be classified as one genus, and E. fulvus should be classified as the Saccharum genus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03338-5.
Collapse
Affiliation(s)
- Kui Ling
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067 China
| | - Di Yi-ning
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Aasim Majeed
- School of Agricultural Biotechnology, Punjab Agriculture University, Ludhiana, 141004 India
| | - Yang Zi-jiang
- Applied Genomics Technology Laboratory, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Chen Jun-wen
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - He Li-lian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Wang Xian-hong
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Liu Lu-feng
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Qian Zhen-feng
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Zeng Dan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Gu Shu-jie
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Xu Rong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Xie Lin-yan
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
| | - Xu Fu
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Dong Yang
- Applied Genomics Technology Laboratory, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| | - Li Fu-sheng
- The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, 650201 Yunnan China
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201 Yunnan China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201 Yunnan China
| |
Collapse
|
3
|
Comparative Analysis of Chloroplast Genome in Saccharum spp. and Related Members of ‘Saccharum Complex’. Int J Mol Sci 2022; 23:ijms23147661. [PMID: 35887005 PMCID: PMC9315705 DOI: 10.3390/ijms23147661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
High ploids of the sugarcane nuclear genome limit its genomic studies, whereas its chloroplast genome is small and conserved, which is suitable for phylogenetic studies and molecular marker development. Here, we applied whole genome sequencing technology to sequence and assemble chloroplast genomes of eight species of the ‘Saccharum Complex’, and elucidated their sequence variations. In total, 19 accessions were sequenced, and 23 chloroplast genomes were assembled, including 6 species of Saccharum (among them, S. robustum, S. sinense, and S. barberi firstly reported in this study) and 2 sugarcane relative species, Tripidium arundinaceum and Narenga porphyrocoma. The plastid phylogenetic signal demonstrated that S. officinarum and S. robustum shared a common ancestor, and that the cytoplasmic origins of S. sinense and S. barberi were much more ancient than the S. offcinarum/S. robustum linage. Overall, 14 markers were developed, including 9 InDel markers for distinguishing Saccharum from its relative species, 4 dCAPS markers for distinguishing S. officinarum from S. robustum, and 1 dCAPS marker for distinguishing S. sinense and S. barberi from other species. The results obtained from our studies will contribute to the understanding of the classification and plastome evolution of Saccharinae, and the molecular markers developed have demonstrated their highly discriminatory power in Saccharum and relative species.
Collapse
|
4
|
Tsuruta SI, Srithawong S, Sakuanrungsirikul S, Ebina M, Kobayashi M, Terajima Y, Tippayawat A, Ponragdee W. Erianthus germplasm collection in Thailand: genetic structure and phylogenetic aspects of tetraploid and hexaploid accessions. BMC PLANT BIOLOGY 2022; 22:45. [PMID: 35065606 PMCID: PMC8783461 DOI: 10.1186/s12870-021-03418-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/24/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND The genus Erianthus, which belongs to the "Saccharum complex", includes C4 warm-season grasses. Erianthus species are widely distributed throughout Southeast Asia, East Asia and South Asia. Erianthus arundinaceus (Retz.) Jeswiet is highly adaptable to the environment, has a high percentage of dry matter, and is highly productive. Recently, this species has attracted attention as a novel bioenergy crop and as a breeding material for sugarcane improvement. Such interest in E. arundinaceus has accelerated the collection and conservation of its genetic resources, mainly in Asian countries, and also evaluation of morphological, agricultural, and cytogenetic features in germplasm collections. In Thailand, genetic resources of E. arundinaceus have been collected over the past 20 years and their phenotypic traits have been evaluated. However, the genetic differences and relatedness of the germplasms are not fully understood. RESULTS A set of 41 primer pairs for nuclear simple sequence repeats (SSRs) developed from E. arundinaceus were used to assess the genetic diversity of 121 Erianthus germplasms collected in Thailand; of these primer pairs, 28 detected a total of 316 alleles. A Bayesian clustering approach with these alleles classified the accessions into four main groups, generally corresponding to the previous classification based on phenotypic analysis. The results of principal coordinate analysis and phylogenetic analysis of the 121 accessions on the basis of the SSR markers showed the same trend as Bayesian clustering, whereas sequence variations of three non-coding regions of chloroplast DNA revealed eight haplotypes among the accessions. The analysis of genetic structure and phylogenetic relationships, however, found some accessions whose classification contradicted the results of previous phenotypic classification. CONCLUSIONS The molecular approach used in this study characterized the genetic diversity and relatedness of Erianthus germplasms collected across Thailand. This knowledge would allow efficient maintenance and conservation of the genetic resources of this grass and would help to use Erianthus species as breeding materials for development of novel bioenergy crops and sugarcane improvement.
Collapse
Affiliation(s)
- Shin-Ichi Tsuruta
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa, 907-0002, Japan.
| | - Suparat Srithawong
- Department of Agriculture, Khon Kaen Field Crops Research Center (KKFCRC), Khon Kaen, 40000, Thailand
- Present address: Biotechnology Research and Development Office (BIRDO), Department of Agriculture, Pathum Thani, 12110, Thailand
| | | | - Masumi Ebina
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Tochigi, 329-2793, Japan
| | - Makoto Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Nasushiobara, Tochigi, 329-2793, Japan
| | - Yoshifumi Terajima
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa, 907-0002, Japan
| | - Amarawan Tippayawat
- Department of Agriculture, Khon Kaen Field Crops Research Center (KKFCRC), Khon Kaen, 40000, Thailand
- Present address: Department of Agriculture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Werapon Ponragdee
- Department of Agriculture, Khon Kaen Field Crops Research Center (KKFCRC), Khon Kaen, 40000, Thailand
- Present address: Field and Renewable Energy Crops Research Institute (FCRI), Department of Agriculture, Bangkok, 10900, Thailand
| |
Collapse
|
5
|
Yu F, Chai J, Li X, Yu Z, Yang R, Ding X, Wang Q, Wu J, Yang X, Deng Z. Chromosomal Characterization of Tripidium arundinaceum Revealed by Oligo-FISH. Int J Mol Sci 2021; 22:ijms22168539. [PMID: 34445245 PMCID: PMC8395171 DOI: 10.3390/ijms22168539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022] Open
Abstract
Sugarcane is of important economic value for producing sugar and bioethanol. Tripidium arundinaceum (old name: Erianthus arundinaceum) is an intergeneric wild species of sugarcane that has desirable resistance traits for improving sugarcane varieties. However, the scarcity of chromosome markers has hindered the cytogenetic study of T. arundinaceum. Here we applied maize chromosome painting probes (MCPs) to identify chromosomes in sorghum and T. arundinaceum using a repeated fluorescence in situ hybridization (FISH) system. Sequential FISH revealed that these MCPs can be used as reliable chromosome markers for T. arundinaceum, even though T. arundinaceum has diverged from maize over 18 MYs (million years). Using these MCPs, we identified T. arundinaceum chromosomes based on their sequence similarity compared to sorghum and labeled them 1 through 10. Then, the karyotype of T. arundinaceum was established by multiple oligo-FISH. Furthermore, FISH results revealed that 5S rDNA and 35S rDNA are localized on chromosomes 5 and 6, respectively, in T. arundinaceum. Altogether, these results represent an essential step for further cytogenetic research of T. arundinaceum in sugarcane breeding.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Chai
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehuai Yu
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
| | - Ruiting Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueer Ding
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiusong Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
- Correspondence: (J.W.); (Z.D.)
| | - Xiping Yang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
- Correspondence: (J.W.); (Z.D.)
| |
Collapse
|
6
|
Comparative analysis and phylogenetic investigation of Hong Kong Ilex chloroplast genomes. Sci Rep 2021; 11:5153. [PMID: 33664414 PMCID: PMC7933167 DOI: 10.1038/s41598-021-84705-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/19/2021] [Indexed: 11/29/2022] Open
Abstract
Ilex is a monogeneric plant group (containing approximately 600 species) in the Aquifoliaceae family and one of the most commonly used medicinal herbs. However, its taxonomy and phylogenetic relationships at the species level are debatable. Herein, we obtained the complete chloroplast genomes of all 19 Ilex types that are native to Hong Kong. The genomes are conserved in structure, gene content and arrangement. The chloroplast genomes range in size from 157,119 bp in Ilex graciliflora to 158,020 bp in Ilex kwangtungensis. All these genomes contain 125 genes, of which 88 are protein-coding and 37 are tRNA genes. Four highly varied sequences (rps16-trnQ, rpl32-trnL, ndhD-psaC and ycf1) were found. The number of repeats in the Ilex genomes is mostly conserved, but the number of repeating motifs varies. The phylogenetic relationship among the 19 Ilex genomes, together with eight other available genomes in other studies, was investigated. Most of the species could be correctly assigned to the section or even series level, consistent with previous taxonomy, except Ilex rotunda var. microcarpa, Ilex asprella var. tapuensis and Ilex chapaensis. These species were reclassified; I. rotunda was placed in the section Micrococca, while the other two were grouped with the section Pseudoaquifolium. These studies provide a better understanding of Ilex phylogeny and refine its classification.
Collapse
|
7
|
Bressan EA, de Carvalho IAS, Borges MTMR, Carneiro MS, da Silva EF, Gazaffi R, Shirasuna RT, Abreu V, Popin RV, Figueira A, Oliveira GCX. Assessment of Gene Flow to Wild Relatives and Nutritional Composition of Sugarcane in Brazil. Front Bioeng Biotechnol 2020; 8:598. [PMID: 32637401 PMCID: PMC7317034 DOI: 10.3389/fbioe.2020.00598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
The commercial release of genetically modified organisms (GMO) requires a prior environmental and human/animal health risk assessment. In Brazil, the National Biotechnology Technical Commission (CTNBio) requires a survey of the area of natural occurrence of wild relatives of the GMO in the Brazilian ecosystems to evaluate the possibility of introgressive hybridization between sexually compatible species. Modern sugarcane cultivars, the focus of this study, derive from a series of hybridization and backcrossing events among Saccharum species. The so-called "Saccharum broad sense" group includes around 40 species from a few genera, including Erianthus, found in various tropical regions, particularly South-Eastern Asia. In Brazil, three native species, originally considered to belong to Erianthus, were reclassified as S. angustifolium (Nees) Trin., S. asperum (Nees) Steud., and S. villosum Steud., based on inflorescence morphology. Thus, we have investigated the potential occurrence of gene flow among the Brazilian Saccharum native species and commercial hybrids as a requisite for GMO commercial release. A comprehensive survey was carried out to map the occurrence of the three native Saccharum species in Brazil, concluding that they are sympatric with sugarcane cultivation only from around 14°S southwards, which precludes most Northeastern sugarcane-producing states from undergoing introgression. Based on phenology, we concluded that the Brazilian Saccharum species are unable to outcross naturally with commercial sugarcane since the overlap between the flowering periods of sugarcane and the native species is limited. A phylogenomic reconstruction based on the full plastid genome sequence showed that the three native Saccharum species are the taxa closest to sugarcane in Brazil, being closer than introduced Erianthus or Miscanthus. A 2-year study on eight nutritional composition traits of the 20 main sugarcane cultivars cultivated in Brazil was carried out in six environments. The minimum and maximum values obtained were, in percent: moisture (62.6-82.5); sucrose (9.65-21.76); crude fiber (8.06-21.03); FDN (7.20-20.68); FDA (4.55-16.90); lipids (0.06-1.59); ash (0.08-2.67); and crude protein (0.18-1.18). Besides a considerable amount of genetic variation and plastic responses, many instances of genotype-by-environment interaction were detected.
Collapse
Affiliation(s)
- Eduardo Andrade Bressan
- Evolution Laboratory, Department of Genetics, “Luiz de Queiroz” Agricultural College, University of São Paulo, Piracicaba, Brazil
| | - Igor Araújo Santos de Carvalho
- Evolution Laboratory, Department of Genetics, “Luiz de Queiroz” Agricultural College, University of São Paulo, Piracicaba, Brazil
| | - Maria Teresa Mendes Ribeiro Borges
- Technological Analysis and Simulation Laboratory, Department of Agroindustrial Technology and Rural Socioeconomics, Center of Agricultural Sciences, Federal University of São Carlos, Araras, Brazil
| | - Monalisa Sampaio Carneiro
- Plant Biotechnology Laboratory, Department of Biotechnology, Vegetal and Animal Production, Center of Agricultural Sciences, Federal University of São Carlos, Araras, Brazil
| | - Edson Ferreira da Silva
- Plant Breeding Laboratory, Biology Department, Federal Rural University of Pernambuco, Recife, Brazil
| | - Rodrigo Gazaffi
- Department of Biotechnology, Vegetal and Animal Production, Center of Agricultural Sciences, Federal University of São Carlos, Araras, Brazil
| | - Regina Tomoko Shirasuna
- Herbarium Curatorship Research Nucleus, Vascular Plants Research Center, Institute of Botany, São Paulo, Brazil
| | - Vinícius Abreu
- Laboratory of Cell and Molecular Biology, Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Rafael V. Popin
- Laboratory of Cell and Molecular Biology, Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Plant Breeding Laboratory, Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Giancarlo Conde Xavier Oliveira
- Evolution Laboratory, Department of Genetics, “Luiz de Queiroz” Agricultural College, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
8
|
Lloyd Evans D, Joshi SV, Wang J. Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. BMC Evol Biol 2019; 19:33. [PMID: 30683070 PMCID: PMC6347779 DOI: 10.1186/s12862-019-1356-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/03/2019] [Indexed: 11/13/2022] Open
Abstract
Background For over 50 years, attempts have been made to introgress agronomically useful traits from Erianthus sect. Ripidium (Tripidium) species into sugarcane based on both genera being part of the ‘Saccharum Complex’, an interbreeding group of species believed to be involved in the origins of sugarcane. However, recent low copy number gene studies indicate that Tripidium and Saccharum are more divergent than previously thought. The extent of genus Tripidium has not been fully explored and many species that should be included in Tripidium are still classified as Saccharum. Moreover, Tripidium is currently defined as incertae sedis within the Andropogoneae, though it has been suggested that members of this genus are related to the Germainiinae. Results Eight newly-sequenced chloroplasts from potential Tripidium species were combined in a phylogenetic study with 46 members of the Panicoideae, including seven Saccharum accessions, two Miscanthidium and three Miscanthus species. A robust chloroplast phylogeny was generated and comparison with a gene locus phylogeny clearly places a monophyletic Tripidium clade outside the bounds of the Saccharinae. A key to the currently identified Tripidium species is presented. Conclusion For the first time, we have undertaken a large-scale whole plastid study of eight newly assembled Tripidium accessions and a gene locus study of five Tripidium accessions. Our findings show that Tripidium and Saccharum are 8 million years divergent, last sharing a common ancestor 12 million years ago. We demonstrate that four species should be removed from Saccharum/Erianthus and included in genus Tripidium. In a genome context, we show that Tripidium evolved from a common ancestor with and extended Germainiinae clade formed from Germainia, Eriochrysis, Apocopis, Pogonatherum and Imperata. We re-define the ‘Saccharum complex’ to a group of genera that can interbreed in the wild and extend the Saccharinae to include Sarga along with Sorghastrum, Microstegium vimineum and Polytrias (but excluding Sorghum). Monophyly of genus Tripidium is confirmed and the genus is expanded to include Tripidium arundinaceum, Tripidium procerum, Tripidium kanashiroi and Tripidium rufipilum. As a consequence, these species are excluded from genus Saccharum. Moreover, we demonstrate that genus Tripidium is distinct from the Germainiinae. Electronic supplementary material The online version of this article (10.1186/s12862-019-1356-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dyfed Lloyd Evans
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa. .,School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa. .,BeauSci Ltd., Waterbeach, Cambridge, CB25 9TL, UK.
| | - Shailesh V Joshi
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa.,School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA.,Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.,Plant Molecular and Biology Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Sebastin R, Lee KJ, Cho GT, Shin MJ, Kim SH, Hyun DY, Lee JR. The complete chloroplast genome sequence of a Bolivian wild chili pepper, Capsicum eximium Hunz. (Solanaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1601533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Kyung Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Do Yoon Hyun
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Jeollabuk-Do, Republic of Korea
| |
Collapse
|
10
|
Li Z, Jia G, Ni X. The complete chloroplast genome sequence of Achnatherum splendens (Pooideae), a high-quality forage grass in Northern China. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1612720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Zhigang Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Guolun Jia
- School of Life Science, Northwest University, Xi’an, China
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Ningxia University, Yinchuan, China
| |
Collapse
|
11
|
Sebastin R, Lee GA, Lee KJ, Shin MJ, Cho GT, Lee JR, Ma KH, Chung JW. The complete chloroplast genome sequences of little millet ( Panicum sumatrense Roth ex Roem. and Schult.) (Poaceae). Mitochondrial DNA B Resour 2018; 3:719-720. [PMID: 33474296 PMCID: PMC7800850 DOI: 10.1080/23802359.2018.1483771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Little millet, Panicum sumatrense Roth ex Roem. & Schult., is an important cultivated species under the tribe Paniceae, sub-family Panicoideae and family Poaceae. In this study, for the first time we sequenced the complete chloroplast (cp) genome of P. sumatrense to investigate their phylogenetic relationship in the family Poaceae. The complete cp genome sequence of P. sumatrense is 139,384 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (22,723 bp) separated by a small single-copy region (12,583 bp) and a large single-copy region (81,355 bp). The P. sumatrense cp genome encodes 125 unique genes, which include 91 protein-coding genes, 4 rRNA genes, 30 tRNA genes, and 20 genes were duplicated in the inverted repeat region. This newly determined cp genome (P. sumatrense) could be valuable information for the breeding programs of this cereal crops in the family Poaceae.
Collapse
Affiliation(s)
- Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Kyung Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Jeonju-Si, Republic of Korea
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
12
|
Sebastin R, Lee KJ, Shin MJ, Cho GT, Ma KH, Lee JR, Lee GA, Chung JW. The complete chloroplast genome sequence of wild oat, Avena sterilis L. (Poaceae) and its phylogeny. Mitochondrial DNA B Resour 2018; 3:311-312. [PMID: 33474156 PMCID: PMC7799852 DOI: 10.1080/23802359.2018.1444518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022] Open
Abstract
Wild oat, Avena sterilis L. is a stout broad-leaved annual grass resembling cultivated oats in general appearance. In this study, we sequenced the complete chloroplast (cp) genome sequence of A. sterilis for the first time to investigate their phylogenetic relationship in the family Poaceae. The complete cp genome sequence is 135,887 bp in length with 38.5% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeats (21,603 bp) separated by a small single-copy region (12,575 bp) and a large single-copy region (80,106). The cp genome encodes 111 unique genes, 76 of which are protein-coding genes, four rRNA genes, 30 tRNA genes, and 18 duplicated genes in the inverted repeat region. The phylogenetic analysis indicated A. sterilis closely clustered with the cultivated oat, A. sativa L.
Collapse
Affiliation(s)
- Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Kyung Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Myoung-Jae Shin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju-Si, Republic of Korea
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|